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Asymptotically inspired moment-closure approximation for adaptive networks
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Adaptive social networks, in which nodes and network structure coevolve, are often described using a mean-
field system of equations for the density of node and link types. These equations constitute an open system due to
dependence on higher-order topological structures. We propose a new approach to moment closure based on the
analytical description of the system in an asymptotic regime. We apply the proposed approach to two examples
of adaptive networks: recruitment to a cause model and adaptive epidemic model. We show a good agreement
between the improved mean-field prediction and simulations of the full network system.
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I. INTRODUCTION

In recent years we have seen much progress in the field of
network dynamics and dynamics on networks [1–4]. Strong
interest in understanding phenomena such as disease spread
in social networks, interaction online social media such as
Facebook and Twitter, dynamics of neuronal networks, and
many others have encouraged development of mathematical
tools necessary to analyze the behavior of such systems [5–9].

Often the first step in analyzing such systems is to represent
them as networks, where an individual unit, e.g., a person, a
user account, or a neuron, is represented by a node, and the
possibility of interaction between any two units is represented
by a link between them. The dynamical processes on such
networks are often characterized by their statistical properties
via a mean-field approach [10–13]. Such mean-field equations
consist of a hierarchy of equations, where the expected state of
the nodes, due to interaction via the network, is coupled to the
statistical description of links in the network. The dynamical
evolution of the links in turn depends on the evolution of
statistical description of node triples, which in turn depend
on higher-order structures, and so on. In other words, this
mean-field description yields an infinite system of coupled
equations, which usually must be truncated in order to be
solvable. The truncated system is open and has to be closed by
introducing additional information about the system.

The dynamics on network systems are often closed at the
level of link equations, where the network information makes
its first appearance [14]. Perhaps the simplest closure approach
is based on the assumption of homogeneous distribution of
different node types in the system and that the probability of
finding a particular type of node in the neighborhood of a given
node is independent of what else can be found in that node’s
neighborhood. This closure was shown to produce excellent
results for many different systems [14–19]. On the other hand,
the heterogeneous mean-field approach, where conditioning
on the total degree of nodes is introduced, may improve the
accuracy of the approximation, although drastically increasing
the number of equations in the description [9,20]. Often,
additional information about the system, such as the expected
clustering coefficient, may be used to improve the closure [17].
In other cases, assumptions about the shape of degree distribu-
tion functions [19], possibly guided by numerical simulations
or physical observations [15,21], may lead to an improvement

in closure. Equation-free approaches may also be used when
closing the mean-field equations [22,23].

All of the above closures often lead to a reasonable
approximation of the system dynamics. However, they all
suffer either from the lack of a priori knowledge of the validity
of approximation or from having an excessive number of
equations that must be analyzed. In this paper, we propose
a new method that may lead to accurate closures and that
also allows one to manage the expectation of the accuracy
of the obtained closure. The proposed approach is based on
simplification of the mean-field system of equations in some
asymptotic regime. In the rest of the paper we demonstrate our
approach by applying it to two adaptive network systems, i.e.,
networks where dynamical processes on the nodes affect the
network structure, which in turn affects subsequent dynamics
on the nodes [24]. In Sec. II we derive an improved closure
for an adaptive epidemic model [10]. In Sec. III, we derive a
closure for a system modeling recruitment to a cause [12].

II. ADAPTIVE EPIDEMIC MODEL

Our first example is a model for epidemic spread in an
adaptive social network [10]. Here the disease spread is
described using the susceptible-infected-susceptible model,
where each individual in the society is in one of the two states:
sick or infected and healthy but susceptible to infection. In the
framework of networks, we refer to these as I and S nodes,
respectively. The infected individuals become susceptible
at recovery rate r . The disease can spread at a rate p

from infected individuals to susceptible ones via a contact
between them, where the existence of the contact is defined
by the network structure. The adaptation mechanism allows
susceptible individuals to change their local connectivity to
avoid contact with infected individuals. Thus, the susceptibles
rewire their contacts away from infecteds at rate w, connecting
instead to a randomly chosen susceptible. The node and link
dynamical rules are summarized in the Figs. 1(a) and 1(b),
respectively.

In order to describe the evolution of this system, we
begin with developing a heterogeneous mean-field descrip-
tion [20]. We characterize the time evolution of ρα;k, the
expected number of nodes of type α with k1 and k2

nodes of type S and I, respectively, in their neighborhoods,
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FIG. 1. Schematic representation of (a) node dynamical rules and
(b) link dynamical rules in the adaptive epidemic model.

where k = (k1,k2),

∂tρS;k = rρI ;k − pk2ρS;k

+
∑

i

[�S;k−ri
(ri)ρS;k−ri

− �S;k(ri)ρS;k], (1a)

∂tρI ;k = −rρI ;k + pk2ρS;k

+
∑

i

[
�I ;k−ri

(ri)ρI ;k−ri
− �I ;k(ri)ρI ;k

]
. (1b)

The allowed the transitions and corresponding rates shown in
Table I. In the transition rates table, the function K (function
M) corresponds to the expected number of node chains that
originate at an S node (I node) with a neighborhood specified
by k, which connects to an S node, which in turn connects
to an I node. The terms NX1...Xn

correspond to the expected
number of node chains in the system, where a node chain
constitutes a set of nodes, connected as follows: a node of
type X1 is connected to the node of type X2, which in turn
is connected to node of type X3, and so on. For example,
NS is the expected number of S nodes in the network, while
NIS is the expected number of links with S and I nodes at
its ends. In our definition of node chains we require the ith
and i + 1st nodes to differ; however, ith and i + 2nd nodes
can in fact be the same node. In the example of a network
presented in Fig. 2(a) there are four ISI triples, corresponding
to the following node combinations: 1-2-1, 1-2-3, 3-2-1, and
3-2-3. It should be noted that whether or not nodes 1 and 3
are connected is irrelevant to this definition. Also note that the
order in which the nodes appear matters, which, for example,
means that NSS corresponds to twice the expected number of
undirected links between two susceptible nodes.

The heterogeneous mean-field equations are high dimen-
sional and, therefore, are extremely difficult to analyze. A
common way to analyze the dynamics of social networks
is via lower-dimensional mean-field equations. These are
typically obtained by simply writing down rates of change
for nodes and links, based on an intuitive understanding of
the dynamics, such as in Refs. [10,11]. Here, however, we
will derive them formally from the heterogeneous mean-field
system so the procedure and assumptions are clear. The
lower-dimensional mean-field equations are generated by

TABLE I. Transitions and nonzero transition rates in Eq. (1).

Transitions Nonzero rates

r1 = (1, −1) �I ;k(r1) = �S;k(r1) = rk2

r2 = (−1,1) �S;k(r2) = pK(k), �I ;k(r2) = pM(k)
r3 = (1, −1) �S;k(r3) = wk2

r4 = (1,0) �S;k(r4) = wNIS/NS

r5 = (−1,0) �I ;k(r5) = wk1
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FIG. 2. (a) Schematic representation of an I-S-I triple.
(b) Schematic representation of four-node chains I-S-S-I. The term
NISSI corresponds to the expected number of such chains.

multiplying the heterogeneous mean-field equations by k
i1
1 k

i2
2

for some non-negative integer values of ij and summing over
k. Thus, the equations describing node dynamics are obtained
by taking i1 + i2 = 0, as given in Eqs. (A1a) and (A1b) of
Appendix A, while the description of the link dynamics is
obtained by taking i1 + i2 = 1, as given in Eqs. (A1c)–(A1e).

The hierarchy of equations generated in this manner must be
truncated in order to obtain a finite-dimensional description of
the system. Such truncation leaves the system open and in need
of closure. For example, the system of node and link equations
in (A1) contains the terms NSSI and NISI, which describe
higher-order structures. The usual approach to closure [15]
comes from the assumption of homogeneous distribution of the
I nodes in the neighborhood of S nodes, which leads to the
following closure equations:

NSSI

NS

= NSS

NS

NIS

NS

, (2a)

NISI

NS

=
(

NIS

NS

)2

+ NIS

NS

, (2b)

where we also assumed that the degree distribution of
susceptible nodes is Poisson. The details of these closures
are presented in the Appendix B.

These closures are based on ad hoc assumption and may
fail to capture the system behavior accurately if, for example,
correlations are present. Here we develop an approach that
derives the closure based on the system behavior in some
asymptotic regime.

We begin by generating equations for the time evolution of
second moments by multiplying the heterogeneous mean-field
equations by k

i1
1 k

i2
2 , with i1 + i2 = 2, and summing over k.

We consider a steady state of these equations, taken at some
asymptotic limit. While we cannot provide an exact algorithm
for deciding which limit to take, we rely on the fact that the
number of parameters is finite and therefore all the possible
limits can be considered. The choice of the particular limit
is based on the condition that in this limit the higher-order
moments, which are present in the second moment equations,
approach zero or can be well approximated by the lower-order
terms. Note that the resulting relation is accurate in the
considered limit, i.e., it is not ad hoc and can be expected
to perform well at least in the considered limit. In other
words, this approach serves to decouple the first few moment
equations from the rest of the equation hierarchy. We will
derive a closure expression for the NISI term and numerically
explore the performance of the derived closures, in parameter
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regimes outside of the asymptotic limit and outside of the
steady state.

A. Closure of ISI term

We derive a new closure of the ISI term by first considering
the evolution of the number of ISI triples. Multiplying
equation (1a) by k2

2 and summing over k at steady state,∑
k

k2
2∂tρS;k = 0, (3)

we obtain the following equation:

0 = rNIII − p
∑

k

[
k3

2ρS;k
] + (r + w)[−2NISI + NIS]

+p[2NISSI + NSSI], (4)

where the four-point term ISSI corresponds to the total number
of node configurations shown in Fig. 2(b). Details of the
derivation of Eq. (4) are given in Appendix C. Using the
steady-state relations in Eqs. (A3a) and (A3b), we arrive at

2(r + w)NS

(
NISI

NS

− NIS

NS

− NIS

NS

NISSI

NSSI

)

= rNI

(
NIII

NI

− NII

NI

∑
k

[
k3

2ρS;k
]

∑
k

[
k2

2ρS;k
])

. (5)

The left-hand side of the equation corresponds to the flux of
the expected number of ISI triples due to the changes in the
neighborhood of the susceptible nodes, while the right-hand
side corresponds to the flux due to the infection and recovery
of the susceptible node in the ISI triple. In the limit of large
infection rate and weak rewiring, the amount of time any node

spends in the susceptible state approaches zero. Therefore, it is
reasonable to assume that the flux of triples due to the changes
in the neighborhood of the susceptible node will approach zero
as well. This leads us to conclude that the two sides of Eq. (5)
must vanish, leaving us with the following relation:

NISI

NS

= NIS

NS

+ NIS

NS

NISSI

NSSI
. (6)

Finally, we note that the term NISSI/NSSI corresponds to the
expected number of I nodes, node 1 in Fig. 2(b), attached to
the chain of nodes numbered 2, 3, and 4 in that figure. This
relation is well approximated by the homogeneity assumption
that the information about the neighborhood of the third
node in Fig. 2(b) has no effect on the information about the
neighborhood of the second node. In other words, the following
moment closure is considered:

NISSI

NSSI
= NSSI

NSS
. (7)

That is, we make a homogeneity assumption about the
neighborhood of a neighbor, and we expect this assumption
to be more accurate than the same assumption about a given
node’s neighborhood, i.e., the closures in Eqs. (2a) and (2b).

Thus, we have derived a new closure of NISI,

NISI

NS

= NIS

NS

+ NIS

NS

NSSI

NSS
, (8)

which relies on our ability to close the NSSI term, and this
brings us one step closer to finding an accurate closure of the
mean-field description of the adaptive epidemic model (A1).
The closure of Eq. (8) is tested in Figs. 3 and 4, as is the
homogeneity closure of Eq. (2b). We also show the relative
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FIG. 3. (Color online) Number of ISI triples per S node as a function of rewiring rate w, for several infection rates p: simulations compared
to the moment closure of Eq. (2b) and the newly derived closure of Eq. (8). The values of the infection rates are as follows: p = 10−1/2 in (a)
and (b), p = 100 in (c) and (d), and p = 101 in (e) and (f). Panels (a), (c), and (e) show NISI/NS measured in simulation (circles, red online),
approximated using the homogeneity closure of Eq. (2b) (light gray curve, green online), and approximated using the result of asymptotic
analysis in Eq. (8) (dark gray curve, black online). The closures are evaluated using node and link quantities measured in the simulations. The
light gray curves (green online) in panels (b), (d), and (f) show the relative error, Eq. (9), of the homogeneity approximation, Eq. (2b), while
dark gray curves (black online) show the relative error due to the newly derived approximation, Eq. (8). Cusps in the relative error curves
correspond to the NISI/NS homogeneity closure curve crossing through the curve measured in simulations. Simulations are performed on a
network with 105 nodes and 5 × 105 links, with r = 1, following algorithm in Ref. [25].
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FIG. 4. (Color online) Number of ISI triples per S node as a function of infection rate, for several rewiring rates: simulations compared
to two approximations. The values of the rewiring rates are as follows: w = 10−1 in (a) and (b), w = 100 in (c) and (d), and w = 101

in (e) and (f). The curves and circles are defined as in Fig. 3, with the same values for the number of nodes and links, as well as the
recovery rate.

error of the two closures,

� =
∣∣∣∣1 − approximation

exact value

∣∣∣∣, (9)

where simulation measurements are used as the
exact value.

Curiously, the homogeneity closure of NSSI in Eq. (2a),
together with Eq. (8), leads to the homogeneity closure in
Eq. (2b). Thus, as suggested by Figs. 3 and 4, where the
measured values of NSSI are used, improving the closure of
NSSI beyond the homogeneity assumption leads to improve-
ment of the NISI closure. In fact, Figs. 3(b), 3(d), and 3(f),
as well as 4(b), 4(d), and 4(f) show the relative deviation
of the closure relations from the approximated quantity and
suggest that the new approximation in Eq. (8) is superior to the
relation in Eq. (2b). Note that the only time the homogeneity
closure appears to perform better is when it intersects the
measured value of NISI/NS , and, therefore, its superiority over
the performance of the new closure is rather coincidental.
Further consideration of the results in Fig. 3 shows that, as
we move away from the derivation regime of slow rewiring
rates, the performance of the new closure diminishes, though
it is still superior to the old approximation. Predictably, as
shown in Fig. 4, the performance of the new approximation
improves for the larger values of infection rate and outperforms
the original closure even near the epidemic threshold.

Finally, we test our new closure outside of the steady state.
Figure 5(a) compares the performance of the newly derived
approximation to that of the homogeneity approximation. We
can see that, unlike the homogeneity closure, the new closure
follows the measured values of NISI/NS very accurately.
Furthermore, as shown in Fig. 5(b), the new closure of Eq. (8)
performs better as the solution approaches the steady state.

III. ADAPTIVE RECRUITMENT MODEL

The other example that we consider is a model for recruit-
ment to a cause, introduced in Ref. [12]. A society is modeled
as a network in which some of its individuals represent a

particular ideology and actively recruit new members. These
nodes are referred to as the recruiting nodes or R nodes.
The rest of the people in the society are either susceptible
to recruitment or nonsusceptible, referred to as S and N nodes,
respectively. The N nodes may spontaneously change their
state and become S nodes, and vice versa, at rates λ1 and λ2,
respectively. The R nodes recruit S nodes at a recruitment rate
γ per contact with an S node. A schematic representation of
these transitions appears in Fig. 6(a). The R nodes can improve
their recruiting capability by abandoning their connections to
N nodes in favor of S nodes, as shown in Fig. 6(b). This
rewiring process takes place at a rate w per contact between R
and N nodes. The system is open in the sense that nodes die
at rate θ per node, and new nodes enter the system at rate μ.
The newborn nodes are born as N nodes and attach themselves
with links to σ randomly chosen nodes.

The evolution of the ensemble average of such a system is
described by the set of heterogeneous mean-field equations as
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FIG. 5. (Color online) Time evolution of ISI closure. (a) The time
evolution of the number of ISI triples per S node (circles, red online)
and the approximate value as obtained from the relation in Eq. (2b)
(light gray curve, green online) and from Eq. (8) (dark gray curve,
black online). (b) The relative error due to the two approximations.
The simulations are performed for w = 10−1, p = 100, r = 1,
105 nodes, and 5 × 105 links. The initial network is a realization of
an Erdös-Rényi random network; the state of each node is randomly
assigned, with 90% I nodes and 10% S nodes. We take the average
over 100 dynamical realizations.

052804-4



ASYMPTOTICALLY INSPIRED MOMENT-CLOSURE . . . PHYSICAL REVIEW E 88, 052804 (2013)

N S Rμ

θ θ θ

γper SR

λ

λ

2

1

(a)

NS

R

NS

R

w

(b)

RR

S

1

2

3

(c)

FIG. 6. (a) Schematic representation of node dynamics in the
recruitment model. The nodes are born into the N class at rate μ;
nodes die at rate θ ; the possible transitions between the classes
are marked by the arrows and labeled with the corresponding rates
(λ1, λ2, γ ). (b) Link rewiring takes place at a rate w. Here an RN link
is broken and a new RS link, based at the same R node, is created.
(c) Example of a node triple.

follows:

∂tρN ;k = λ2ρS;k − λ1ρN ;k − θρN ;k + μδk1+k2+k3,σ

+
∑

i

[�N ;k−ri
(ri)ρN ;k−ri

− �N ;k(ri)ρN ;k], (10a)

∂tρS;k = −λ2ρS;k − γ k3ρS;k + λ1ρN ;k − θρS;k

+
∑

i

[�S;k−ri
(ri)ρS;k−ri − �S;k(ri)ρS;k]. (10b)

∂tρR;k = γ k3ρS;k − θρR;k

+
∑

i

[�S;k−ri
(ri)ρS;k−ri − �S;k(ri)ρS;k], (10c)

where the value of ρα;k corresponds to the expected number
of α nodes with k1 of N nodes, k2 of S nodes, and k3 of
R nodes in their neighborhoods, with k ≡ (k1,k2,k3). The
allowed transitions and the corresponding rates are shown in
Table II. In the recruiting transition rates listed in the table,
function P (function Q) corresponds to the expected number
of node chains that originate at a given N node (S node) with
a neighborhood specified by k that is connected to an S node,
which is turn is connected to an R node. The functions NX1...Xn

are defined in the same way as in Sec. II.
The mean-field equations are generated by multiplying the

heterogeneous mean-field equations by k
i1
1 k

i2
2 k

i3
3 and summing

over k, where i1, i2, and i3 are non-negative integers. Thus,
three node equations are generated for i1 + i2 + i3 = 0, and
six link equations are generated for i1 + i2 + i3 = 1. These
equations, presented in the Appendix as Eqs. (D1a)–(D1i),
are open due to dependence on terms describing the expected
number of XSR triples, NXSR, with X corresponding to one

TABLE II. Transitions and nonzero transition rates in Eq. (10).

Transition Rate

r1 = (−1,1,0) �N ;k(r1) = �S;k(r1) = �R;k(r1) = λ1k1

r2 = (1, −1,0) �N ;k(r2) = �S;k(r2) = �R;k(r2) = λ2k2

r3 = (−1,0,0) �N ;k(r3) = �S;k(r3) = �R;k(r3) = θk1

r4 = (0, −1,0) �N ;k(r4) = �S;k(r4) = �R;k(r4) = θk2

r5 = (0,0, −1) �N ;k(r5) = �S;k(r5) = �R;k(r5) = θk3

r6 = (1,0,0) �N ;k(r6) = �S;k(r6) = �R;k(r6)
= σμ/(NN + NS + NR)

r7 = (0, −1,1) �N ;k(r7) = γP (k), �S;k(r7) = γQ(k)
r8 = (0,0, −1) �N ;k(r8) = wk3

r9 = (0,0,1) �S;k(r9) = wNRN/NS

r10 = (−1,1,0) �R;k(r10) = wNRN/NS

of the three node states. In order to close this system of
equations, additional information is required. Once again,
the usual approach [15] is to assume that the R nodes are
homogeneously distributed in the neighborhood of S nodes,
an assumption that leads to the following closure:

NXSR

NS

= NXS

NS

NRS

NS

, (11a)

NRSR

NS

=
(

NRS

NS

)2

+ NRS

NS

, (11b)

where we make an additional assumption that the total degree
distribution of susceptible nodes is Poisson, as was shown in
Appendix B for the epidemic model.

Similarly to the previous example, these closures are
ad hoc and are only as good as the assumptions that the
closures are based on. Using the approach demonstrated in
Sec. II, we derive moment closures for the triples NXSR and
test their accuracy against numerical simulations of the full
system.

A. Closure of NSR and SSR terms

We develop a closure of the NNSR and NSSR terms by
considering the evolution of the expected number of node
triples in the limit of γ,θ,μ/(NN + NS + NR) � w,λ1,λ2. We
consider the following expression:

∑
k

(
NRS

NS

∂tρS;k

NN

+ NRN

NN

∂tρN ;k

NN

)
(k1k3 + k2k3) . (12)

This relation is evaluated at the steady state and using Eq. (D2a)
and (D2b). After some algebraic manipulations described in
Appendix E, the above relation leads to

NNSR

NS

+ NSSR

NS

= NSN

NS

NRS

NS

+ NSS

NS

NRS

NS

, (13)

a result that is consistent with but does not imply the closure
in Eqs. (11a) for X = N and S.

We compare the asymptotically derived result of Eq. (13)
and the ad hoc closure for the NSSR term in Eq. (11a)
with the corresponding values measured in the Monte Carlo
simulations. Figure 7 presents the relative error [Eq. (9)]
of the two closures, where simulation measurements are
used as the exact value. We can see in Fig. 7(a) that the
expected number of NSR and SSR triples per susceptible
node, NNSR/NS + NSSR/NS , is well approximated (error on
the order of about 1% or less) by the closure of Eq. (13) in
the large λ1 and λ2 limit, further improving as w is increased.
According to Fig. 7(c), the closure of NNSR/NS + NSSR/NS

continues to hold even in the parameter regime outside of
the considered limit. As for the individual closures, Fig. 7(b)
shows that the closure of NSSR/NS holds as well in the large
λ1 and λ2 regime. However, as we can see in Fig. 7(d), the
closure fails for small λ1 and λ2, especially as γ becomes
dominant.
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FIG. 7. (Color online) Relative errors in NNSR + NSSR closure
[Eq. (13)] [panels (a) and (c)] and NSSR closure [Eq. (11a)] [panels (b)
and (d)] at steady state, as a function of γ for w = 100 (circle, green
online), w = 101 (triangle, red online), and w = 102 (cross, black
online). The simulations are performed following the continuous time
algorithm introduced in Ref. [25]. The values of transition rates are
as follows: λ1 = 101 and λ2 = 102 in (a) and (b), while λ1 = 10−1

and λ2 = 100 in (c) and (d). The other parameters are θ = 1, σ = 10,
and μ = 105.

B. Closure of RSR term

In order to develop a closure for the NRSR term, we consider
the expression

∑
k

k2
3∂tρS;k, (14)

which leads to the equation describing the evolution of the
expected number of RSR triples,

∂tNRSR = −λ2NRSR − γ
∑

k

k3
3ρS;k(k)

+ λ1NRNR − θNRSR + γ (2NRSSR + NSSR)

+w
NRN

NS

(2NRS + NS) + θ (−2NRSR + NRS).

(15)

Analyzing the steady state of this equation in the limit
where γ,θ,μ/(NN + NS + NR) � w,λ1,λ2, and utilizing the
relations in Eqs. (D2a) and (D2b), we are able to solve this
equation and obtain the following relation:

NRSR

NS

=
(

NRS

NS

− NRN

NN

)(
2
NRS

NS

+ 1

)
+ NRNR

NN

. (16)

Note that, unlike the ad hoc closure of Eq. (11b), this result
should at least be accurate in the considered limit and, therefore
should be more reliable.

In order to close the NRNR/NN term in Eq. (16), we analyze
the limiting behavior of the following expression:∑

k

k2
3[∂tρS;k + ∂tρN ;k], (17)

which in steady state reduces to

NRNR

NN

= NRN

NN

+ NRN

NN

NRS

NS

. (18)

On substituting the result of Eq. (18) into Eq. (16), we obtain
the following closure of the NRSR/NS term:

NRSR

NS

= 2

(
NRS

NS

)2

+ NRS

NS

− NRS

NS

NRN

NN

. (19)
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FIG. 8. (Color online) Recruitment level, NR , and expected number of RSR triples per S node, NRSR/NS , as a function of recruitment rate
γ for several sets of parameters λ1, λ2, and w. The values of transition rates are as follows: λ1 = 101 and λ2 = 102 in (a), (b), (c), and (d), while
λ1 = 10−1 and λ2 = 100 in (e), (f), (g), and (h). The values of rewiring rates are as follows: w = 102 in (a), (b), (e), and (f), while w = 10−1 in
(c), (d), (g), and (h). Simulation results are shown by circles (red online). In (a), (c), (e), and (g), the curves correspond to solution of mean-field
equations, while in (b), (d), (f), and (h) the curves correspond to the approximation of NRSR/NS using two different closures. Dark gray curves
(black online) correspond to closure in Eq. (19), while light gray curves (green online) correspond to closure in Eq. (11b). The other parameters
are same as in Fig. 7. Note that in figures (c), (d), (g), and (h) the curves corresponding to the two analytic solutions lie on top of each other.
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In Fig. 8, we compare the performance of the new closure
of NRSR in Eq. (19) to the ad hoc, homogeneity-based closure
of Eq. (11b). We consider the numerical solution of the
mean-field equations, found in Appendix D, closed according
to the two methods, and compare those to the steady-state
size of the recruiting class measured in the direct network
simulations. In both cases, the NNSR and NSSR terms are
closed according to the homogeneity assumption in Eq. (11a).
Thus, in Fig. 8(a) we see that in the considered limit, i.e.,
when λ1, λ2, and w are large, the mean-field closed using our
approach is in much better agreement with the simulations
than the ad hoc assumption of Eq. (11b). The reason for
the superior performance lies in the better approximation
of the NRSR/NS term, shown in Fig. 8(b). Here NRSR/NS

and NRS/NS are parametrized by γ , with larger values of
NRS/NS corresponding to the larger values of γ . Notice that
the performance of the closure is reduced at the larger values
of γ , as the system moves outside of the considered limit.

The appeal of this approach is evident when we test it
outside of the derivation limit. In Figs. 8(c) and 8(d) we see
that, when we reduce w, the mean-field recruited fraction and
the RSR closure continue to be in a good agreement with the
simulations. We also note that in this limit the new closure
approaches the homogeneity closure. We note that when
the rewiring is slow relative to transitions between N and S,
the expected number of R neighbors should be similar for the
two node types. This would make the last term in Eq. (19)
approach (NRS/NS)2, explaining why the two closures are
close. In Fig. 8(e), as λ1 and λ2 are reduced, the new mean-field
solution appears to be less consistent with the simulations,
which is also reflected in the closure in Fig. 8(f). Finally, in
Fig. 8(g), all the parameters are about the same order, and
yet the asymptotically derived closure and the corresponding
mean field are very much consistent with the simulations.

Thus far we have shown that our method has produced
a closure that is a good match for the simulated system in
steady state, and is either superior to or as good as the ad hoc
homogeneity closure. We further test the performance of our
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FIG. 9. (Color online) Panel (a) contains measurement and
approximation of NR . [Circles (red online)] simulation results; [light
gray curve (green online)] mean field with homogeneous closure;
[dark gray curve (black online)] mean field with asymptotically
developed closure from Eq. (19). (b) The time evolution of the number
of RSR triples per S node (circles, red online) and the approximate
value obtained from the relation in Eq. (11b) (light gray curve,
green online) and from Eq. (19) (dark gray curve, black online).
The simulations are performed with w = 102, λ1 = 101, λ2 = 102,
and γ = 3.0. The system evolves from a realization of Erdös-Rényi
network, with mean degree 10 and 105 nodes, 85% of which are
N nodes, 5% S nodes, and 10% R nodes. The results are averaged
over 10 dynamical realizations.

closure by using it outside of steady state. Figures 9(a) and 9(b)
show that our closure continues to be consistent with the
simulations even during the transient period. This suggests
that the time derivative of NRSR in Eq. (15) can be neglected
in the considered limit.

IV. CONCLUSIONS AND DISCUSSION

We presented an approach for closing a mean-field
description of dynamical network systems. In our approach
we proposed exploiting the possible simplification of the
heterogeneous mean-field description of the system in some
asymptotic regime. We applied this approach to two examples
of adaptive networks: a model of epidemic spread on an
adaptive network and recruitment to a cause model. For the
adaptive epidemic model, we took a limit of fast infection
rate and slow rewiring. This led to a relationship between
the triple we wished to approximate (NISI) and a four-point
term (NISSI). Making a homogeneity assumption for the
four-point term introduced fewer inaccuracies than making a
corresponding assumption for three-point terms, presumably
because correlations decay with distance between nodes. For
the adaptive recruitment model, we took a limit of fast rewiring
and rapid transitions between nonsusceptible and susceptible
node types, relative to other transition rates. In this limit,
and at steady state, equations involving nodes, links, and
triples decoupled from higher-order moments, and we obtained
closures for the triples in terms of nodes and links without
needing to make further assumptions. However, a disadvantage
is that we do not have a prescription for which asymptotic
limits will do best at decoupling the hierarchy of equations,
nor which will produce closures that work outside those
asymptotic limits. These are areas for future study.

For both models studied here, we successfully developed
closures that perform as well as or better than the usual
closures, which are based on the assumptions of homogeneous
distribution of nodes throughout the network. The closure
we developed for the recruitment model showed significant
improvement of the mean-field description over the one where
all of the high-order terms were approximated using the
homogeneity closure. Not only do we see an improvement
in the predicted levels of the recruited population, we also see
greater consistency between the moment closure approxima-
tion and direct measurements of the closed terms. Thus, of
the three node-triple terms that we approximated, one showed
significant improvement over the homogeneity-based closure,
and the sum of the remaining two triples proved to be consistent
with the homogeneity closure.

The type of results shown in Fig. 8 for the recruitment
model represent what one would ideally hope to generate with
this approach. We used a new closure for a triple (NRSR) in the
mean-field equations for nodes and links and then solved for
the steady-state recruited fraction in the system. When there are
n different node types, the number of node and link equations
scales as n2. In contrast, if one must consider heterogeneous
mean-field equations for every possible neighborhood of a
node up to a maximum degree dmax, the number of equations
scales as dn

max. The reduction in number of equations is
especially drastic when nodes can have large degrees and when
there are many node types.
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In case of the epidemic model, the closure developed with
the asymptotic approach also showed improvement over the
ad hoc, homogeneity-based closure. The result of utilizing our
approach was an improved moment closure approximation for
one of the terms, contingent on improvements of a closure for
the other term, as confirmed by the numerical simulations of
the adaptive system. However, because another term remains
to be measured in simulation or closed by some other means,
we did not obtain a closed system of node and link equations
as we did for the recruitment model.

It is important to note that the closures that we derived in
some asymptotic regimes proved to be more accurate than the
homogeneity closures even outside of the derivation limit. For
example, even though in both cases the closures were derived
at steady state, they showed excellent results outside of the
asymptotic parameter regime where the derivation took place,
as well as during the transient state of the dynamical process.
The additional benefit of using this approach is that it allows us
to expect good performance of the closure at least in the limit
where the derivation took place, more than can be said about
any ad hoc moment closure approximation. However, the more
rigorous statements about the accuracy of this approach as well
as the applicability of this approach to a more general class of
network problems are left to future investigations.
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APPENDIX A: MEAN-FIELD EQUATIONS
FOR SIS WITH ADAPTATION

The mean-field equations generated from the heterogeneous
mean-field equations (1a) and (1b) are as follows:

∂tNS = rNI − pNIS, (A1a)

∂tNI = −rNI + pNIS, (A1b)

∂tNSS = −2pNSSI + 2(r + w)NIS, (A1c)

∂tNIS = rNII − pNISI + pNSSI − (r + w)NIS, (A1d)

∂tNII = −2rNII + 2pNISI. (A1e)

The conservation equations for nodes and links are

NS + NI = N, (A2a)

NSS + 2NIS + NII = Nσ, (A2b)

where N is the total number of nodes and σ is the mean degree.
At steady state the mean-field equations give the following
relations used in the body of the paper:

pNSSI = (r + w)NIS, (A3a)

pNISI = rNII. (A3b)

APPENDIX B: HOMOGENEITY CLOSURE

The homogeneity closure is based on the assumption that
the probability of finding an I node at the end of a link
that stems from an S node is independent of what else is
in the neighborhood of that S node and is given by q = NIS/

(NIS + NSS). In other words, the probability for the S node
to have i of I nodes in its neighborhood is assumed to be
independent of the number of S nodes in the neighborhood,

PS;nI |nS
(i|s) = PS;nI

(i), (B1)

where PS;nI |nS
(i|s) is the probability that i of the I nodes are in

the neighborhood of the S node conditioned on the presence
of s of the S nodes in the neighborhood of that same S node,
and PS;nI

(i) is the probability distribution of the number of
I nodes in the neighborhood of S nodes.

When the expected number of SSI triples per S node is
evaluated, the homogeneity assumption Eq. (B1) translates
into the following relation:

NSSI

NS

=
∑
s,i

siPS;nI |nS
(i|s)PS;nS

(s)

=
[ ∑

i

iPS;nI
(i)

][ ∑
s

sPS;nS
(s)

]

= NNSS

NS

NIS

NS

. (B2)

In order to close the term describing the expected number
of ISI triples per S node, additional information about the total
degree distribution of S nodes, PS;nD

, is required. We make an
ad hoc assumption that the distribution is Poisson,

PS;nD
(d) = e−σ σ d

d!
, (B3)

which would be the case had the links between the nodes
been formed in a random fashion. Here the mean of the
distribution is known and given by σ = (NSS + NIS)/NS . The
homogeneity assumption on the distribution of I nodes implies
that the probability that an S node with total degree d has i of
the I nodes in its neighborhood, PS;nI |nD

(i|d), is given by the
binomial distribution,

PS;nI |nD
(i|d) =

(
d

i

)
qi(1 − q)d−i . (B4)

The expected number of ISI node triples per S node is now
evaluated as follows:

NISI

NS

=
∑

i2PS;nI
(i) =

∑
i,d

i2PS;nI |nD
(i|d)PS;nD

(d)

=
∑

d

[(dq)2 + dq(1 − q)]PS;nD
(d)

= q2(σ 2 + σ ) + q(1 − q)σ

= q2σ 2 + qσ =
(

NIS

NS

)2

+ NIS

NS

. (B5)

A similar approach leads to the homogeneity closure in the
recruitment model, where we replace the infected nodes by the
recruiting nodes.
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APPENDIX C: DERIVATION OF THE NISI CLOSURE

Consider multiplying equation (1a) by k2
2 and summing

over k at steady state,∑
k

k2
2∂tρS;k = 0. (C1)

This produces

0 = rNIII − p
∑

k

[
k3

2ρS;k
]

+ (r + w)
∑

k

[
(k2 + 1)k2

2ρS;(k1−1,k2+1) − k3
2ρS;k

]
+p

∑
k

[
k2

2K(k1 + 1,k2 − 1)ρS;k−r2 − k2
2K(k)ρS;k

]
,

(C2)

which gives the result of Eq. (4) when summation in-
dices are shifted and using the fact that

∑
k k2

2ρS;k = NISI,∑
k k2K(k)ρS;k = NISSI, and so on.

APPENDIX D: MEAN-FIELD EQUATIONS
FOR RECRUITMENT WITH ADAPTATION

The following mean-field equations are found by multiply-
ing Eq. (10) by k

i1
1 k

i2
2 k

i3
3 with i1 + i2 + i3 = 0,1:

∂tNN = μ − λ1NN + λ2NS − θNN, (D1a)

∂tNS = λ1NN − λ2NS − γNRS − θNS, (D1b)

∂tNR = γNRS − θNR, (D1c)

∂tNNN = 2σμ
NN

NN + NS + NR

+ 2λ2NSN

− 2(λ1 + θ )NNN, (D1d)

∂tNSN = σμ
NS

NN + NS + NR

+ λ2NSS − γNNSR

− (λ1 + λ2 + 2θ )NSN + λ1NNN, (D1e)

∂tNSS = −2γNSSR + 2λ1NSN

− 2(λ2 + θ )NSS, (D1f)

∂tNRN = σμ
NR

NN + NS + NR

+ γNNSR

− (λ1 + 2θ + w)NRN + λ2NRS, (D1g)

∂tNRS = −γNRSR + γNSSR − (λ2 + 2θ )NRS

+ (λ1 + w)NRN, (D1h)

∂tNRR = 2γNRSR − 2θNRR. (D1i)

At steady state, in the limit where γ,θ,μ/(NN + NS + NR) �
w,λ1,λ2, Eq. (D1b) and Eq. (D1h) lead to the following
relations:

λ1NN = λ2NS, (D2a)

(λ1 + w)NRN = λ2NRS. (D2b)

Note that here we do not take into consideration the fact that all
of the terms NX1X2...Xn

are functions of the system parameters.
For example, we implicitly assume that λ1, λ2, and w can be
chosen large enough such that γNRS � λ2NS,λ1NN in the
considered limit.

APPENDIX E: DERIVATION
OF THE NNSR + NSSR CLOSURE.

To obtain a closure of the NNSR and NSSR terms in the
recruiting model, we consider the expression

∑
k

(
NRS

NS

∂tρS;k

NN

+ NRN

NN

∂tρN ;k

NN

)
(k1k3 + k2k3) , (E1)

which should be 0 at steady state. Discarding quantities
proportional to parameters γ,θ,μ/(NN + NS + NR) (which
are assumed small relative to other parameters), we find that
the quantity in the first term of (E1) simplifies to∑

k

(
∂tρS;kk1k3

)
= −λ2NNSR + λ1NNNR

+
∑

k

[
λ1(k1 + 1)k1k3ρS;k−r1 − λ1k

2
1k3ρS;k

+ λ2k1(k2 + 1)k3ρS;k−r2 − λ2k1k2k3ρS;k

+w
NRN

NS

k1k3ρS;k−r9 − w
NRN

NS

k1k3ρS;k

]
= −λ2NNSR + λ1NNNR − λ1NNSR + λ2NSSR

+w
NRN

NS

NSN, (E2a)

using the fact that
∑

k k1k3ρS;k = NNSR,
∑

k k1k3ρN ;k =
NNNR, and so on. Other terms in (E1) sum similarly.

We use Eqs. (D2a) and (D2b) to eliminate parameters λ2,w

from the expression (E1), replacing them with combinations
of λ1 and node and link variables. This yields

1

λ1NN

∑
k

[∂tρS;k(k1k3 + k2k3)]

= −NNSR

NS

+ NNNR

NN

+
(

NRS

NS

− NRN

NN

)
NSN

NS

− NSSR

NS

+ NSNR

NN

+
(

NRS

NS

− NRN

NN

)
2NSS

NS

(E3a)

and

1

λ1NN

∑
k

[∂tρN ;k(k1k3 + k2k3)]

= NNSR

NS

− NRS

NS

NN

NRN

NNNR

NN

+ NSSR

NS

− NRS

NS

NN

NRN

NSNR

NN

(E4a)

Combining these quantities as in (E1) and setting to 0 for
steady state finally yields(

NNSR

NS

+ NSSR

NS

− NSN

NS

NRS

NS

− NSS

NS

NRS

NS

)

×
(

NRN

NN

− NRS

NS

)
= 0 (E5)

or

NNSR

NS

+ NSSR

NS

= NSN

NS

NRS

NS

+ NSS

NS

NRS

NS

. (E6)
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