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In the voter and many other opinion formation models, agents are assumed to behave as congregators (also
called the conformists); they are attracted to the opinions of others. In this study I investigate linear extensions
of the voter model with contrarian agents. An agent is either congregator or contrarian and assumes a binary
opinion. I investigate three models that differ in the behavior of the contrarian toward other agents. In model 1,
contrarians mimic the opinions of other contrarians and oppose (i.e., try to select the opinion opposite to) those of
congregators. In model 2, contrarians mimic the opinions of congregators and oppose those of other contrarians.
In model 3, contrarians oppose anybody. In all models, congregators are assumed to like anybody. I show that
even a small number of contrarians prohibits the consensus in the entire population to be reached in all three
models. I also obtain the equilibrium distributions using the van Kampen small-fluctuation approximation and
the Fokker-Planck equation for the case of many contrarians and a single contrarian, respectively. I show that
the fluctuation around the symmetric coexistence equilibrium is much larger in model 2 than in models 1 and 3
when contrarians are rare.

DOI: 10.1103/PhysRevE.88.052803 PACS number(s): 89.65.−s, 02.50.Le, 05.40.−a, 89.75.Fb

I. INTRODUCTION

Dynamics of collective opinion formation is widely studied
in various disciplines including statistical physics. In typical
models of opinion formation, agents interact and dynamically
change the opinion, which I call the state, according to others’
states and perhaps the agent’s own state. The voter model
is a paradigmatic stochastic model of this kind [1–4]. In
the voter model, each agent flips the binary state at a rate
proportional to the number of neighboring agents possessing
the opposite state. In arbitrary finite contact networks and in
some infinite networks, the stochastic dynamics of the voter
model always ends up with perfect consensus of either state.
The time required before the consensus is reached has been
characterized in many cases. The possibility of consensus
and the relaxation time, among other things, have also been
examined in other opinion formation models [2,5].

The voter model as well as many other opinion formation
models assume that the population is homogeneous. In fact,
real agents are considered to be heterogeneous in various
aspects. The agents’ heterogeneity has been incorporated into
the voter model in the form of, for example, heterogeneous
degrees (i.e., number of neighbors) in the contact network
[6–11], positions in the so-called Watts-Strogatz small-world
network [7,12,13], heterogeneity in the flip rate [14,15], and
zealosity [16–18].

In the present study, I examine extensions of the voter
model in which some agents are not like-minded voters. Such
contrarian agents would transit to the state opposite to that
of others and were first studied in Ref. [19]. It should be
noted that contrarians are assumed to dynamically change
their states; contrarians are assumed to be zealots (i.e., those
that never change the state) in a previous study [20]. In
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models in which consensus is the norm in the absence of
contrarians, contrarians often prohibit the consensus to be
reached such that the dynamics finally reaches the coexistence
of different states. This holds true for the majority vote
model [19–23], Ising model [24], so-called Sznajd model [25],
a model with a continuous state space [26], and a general
model including some of these models [27]. These models
show phase transitions between a consensus (or similar) phase
and a coexistence phase when the fraction of contrarians
in the population (i.e., quenched randomness) [21,24,26] or
the probability of the contrarian behavior adopted by all
the agents in the population (i.e., annealed randomness) is
varied [19,21,22,25,27]. The effects of contrarians have been
also examined in the so-called minority game [28].

In contrast to these nonlinear models, I focus on three
linear extensions of the voter model with contrarian agents
(i.e., quenched randomness). By linearity, I mean to pertain
to stochastic mass interaction. A previous study numerically
examined coevolutionary dynamics of a linear extension of
the voter model with contrarians and network formation [29].
In contrast, I focus on a fixed and well-mixed population.
I show that even a small density of contrarians changes
the collective dynamics of the extended voter models from
the consensus configuration to the coexistence configuration.
I also analytically quantify the fluctuations in the agents’
behavior in the coexistence equilibrium.

II. MODEL

I consider three variants of the voter model with contrarians.
The agent that obeys the state transition rule of the standard
voter in the voter model is referred to as congregator. The
fraction of congregators and that of contrarians are denoted
by X and Y (= 1 − X), respectively. Contrarian is assumed to
be a quenched property. In other words, an agent is either
congregator or contrarian throughout the dynamics. Each
agent, either congregator or contrarian, takes either state 0 or
state 1 at any time. I denote the mean fraction of congregators
in state 1 within the congregator subpopulation by x and that
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TABLE I. Agents’ behavior in the three models.

Behavior Model 1 Model 2 Model 3

Congregators toward congregators Like Like Like
Congregators toward contrarians Like Like Like
Contrarians toward congregators Oppose Like Oppose
Contrarians toward contrarians Like Oppose Oppose

of contrarians in state 1 within the contrarian subpopulation
by y (0 � x,y � 1). The mean fractions of congregators
and contrarians in state 0 in the congregator and contrarian
subpopulations are given by 1 − x and 1 − y, respectively.

I assume that the population is well mixed and contains N

agents. The continuous-time stochastic opinion dynamics is
defined as follows. Each congregator in state 0 independently
flips to state 1 with the rate equal to the number of 1 agents,
no matter whether they are congregators and contrarians.
Likewise, each congregator in state 1 flips to state 0 with
the rate equal to the number of 0 agents. This assumption is
common to the three models. The behavior of the congregator
in the present models is the same as that of the voter in the
standard voter model.

The three models are different in the behavior of contrarians
as follows. In model 1, it is assumed that contrarians oppose
congregators and like contrarians. In other words, each
contrarian in state 0 independently flips to state 1 with the
rate equal to the sum of the number of 0 congregators and that
of 1 contrarians. In model 2, contrarians like congregators and
oppose contrarians. In other words, each contrarian in state 0
flips to state 1 with the rate equal to the sum of the number of 1
congregators and that of 0 contrarians. In model 3, contrarians
oppose both congregators and contrarians. In other words, each
contrarian in state 0 flips to state 1 with the rate equal to the
sum of the number of 0 agents. In all models, the parallel
definition is applied to the flip rate for the contrarian to transit
from 1 to 0. It should be noted that the cognitive demand for
the agents is considered to be the lowest for model 3 because
the contrarian does not have to recognize the type of other
agents when possibly updating its state. The definition of the
three models is summarized in Table I.

III. RESULTS

A. Mean-field dynamics

The rate equations for model 1 are given by

dx

dt
= (1 − x)(Xx + Yy) − x[X(1 − x) + Y (1 − y)], (1)

dy

dt
= (1 − y)[X(1 − x) + Yy] − y[Xx + Y (1 − y)]. (2)

If 0 < Y < 1, the steady state is given by

(x∗,y∗) = (
1
2 , 1

2

)
, (3)

where ∗ denotes the values in the equilibrium. It should be
noted that putting X = 1 and Y = 1 − X = 0 in Eq. (1) yields
the standard voter model. In this case, we obtain dx/dt = 0,
which implies that x is conserved. It is an artefact of the
mean-field equation. In fact, stochastic dynamics of the voter
model drives the population toward x = 0 or x = 1, which are

absorbing configurations. In contrast, x = 0 and x = 1 with
whatever y values are not absorbing in the present model with
0 < Y < 1.

Using the relationship X + Y = 1, the following character-
istic equation is obtained for the mean-field dynamics in the
steady state given by Eq. (3):

λ2 + λ + 2Y (1 − Y ) = 0. (4)

Because the real parts of the two eigenvalues obtained from
Eq. (4) are negative, the steady state is stable.

Therefore, consensus is not asymptotically reached in
this model, and the dynamics starting from an arbitrary
initial condition tends to the steady state given by Eq. (3),
regardless of the density of contrarians, Y . If Y � (2 + √

2)/4
or Y � (2 − √

2)/4, the two eigenvalues are real, such that
the dynamics overdamps to the equilibrium. If (2 − √

2)/4 <

Y < (2 + √
2)/4, the two eigenvalues have imaginary parts

such that the relaxation accompanies an oscillation.
The equilibrium fraction of agents in either state is equal to

1/2, for both the congregator subpopulation and contrarian
subpopulation, regardless of the density of contrarians in
the population. The influence of even just a few number of
contrarians on the dynamics can be huge; they prevent the
consensus. The behavior of the model is very different from
that of the voter model, for which consensus is necessarily
reached via diffusion.

In the limit Y � 1, the larger eigenvalue, which determines
the decay rate of the dynamics to the steady state, is
approximately equal to ≈−2Y . Therefore, for a small density
of contrarian, the actual dynamics would fluctuate around the
steady state in a long run. I will quantify fluctuations of the
stochastic dynamics in Secs. III B and III C.

For model 2, the rate equations are given by Eq. (1) and

dy

dt
= (1 − y)[Xx + Y (1 − y)] − y[X(1 − x) + Yy]. (5)

The equilibrium is in fact given by Eq. (3). The characteristic
equation in the equilibrium is given by

λ2 + (1 + 2Y )λ + 2Y 2 = 0, (6)

which has two eigenvalues with negative real parts, implying
that the equilibrium given by Eq. (3) is stable. However, the
leading eigenvalue when Y � 1 is given by λ ≈ −2Y 2, which
is much closer to zero than for model 1 (i.e., λ ≈ −2Y ).
Therefore, the fluctuation in the equilibrium for model 2 is
expected to be much larger than that for model 1. This is in
fact the case, as shown in Sec. III B.

For model 3, the rate equations are given by Eq. (1) and

dy

dt
= (1 − y)[X(1 − x) + Y (1 − y)] − y(Xx + Yy). (7)

The equilibrium is again given by Eq. (3). The characteristic
equation in the equilibrium is given by

λ2 + (1 + 2Y )λ + 2Y = 0, (8)
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which has two eigenvalues with negative real parts. Therefore,
the equilibrium given by Eq. (3) is stable. When Y � 1, the
eigenvalue scales as λ ≈ −2Y , the same as for model 1.

B. van Kampen small-fluctuation approximation

To understand the fluctuation around the equilibrium of the
mean-field dynamics, I carry out the small-fluctuation approxi-
mation of the master equation developed by van Kampen [4,30]
for the three models. The van Kampen expansion reveals the
relationship between the system size N and the magnitude of
fluctuation under the Gaussian assumption of the quantities of
interest.

To this end, let us shift from the density description used
in Sec. III A to the number description. The number of
congregators and that of contrarians are denoted by Nx and
Ny , respectively. Let nx and ny represent the number of state
1 congregators and that of state 1 contrarians, respectively. It
should be noted that N = Nx + Ny , 0 � nx � Nx , and 0 �
ny � Ny . The ansatz for the van Kampen small-fluctuation
approximation is given by

nx(t) = Nxx(t) +
√

Nxξ, (9)

ny(t) = Nyy(t) + √
Nyη, (10)

where x and y are the mean densities of state 1 congregators
and state 1 contrarians in the congregator and contrarian
subpopulations, respectively, as introduced in Sec. III A. ξ

and η are stochastic variables, which are assumed to be
intensive quantities. I represent the probability that there
are nx state 1 congregators and ny state 1 contrarians by
P (nx,ny,t) = �(ξ,η,t).

1. Model 1

For model 1, the master equation in terms of P is given by

N
dP

dt
= (Ex − 1)[nx(Nx − nx + Ny − ny)P ]

+ (
E−1

x − 1
)
[(Nx − nx)(nx + ny)P ]

+ (Ey − 1)[ny(nx + Ny − ny)P ]

+ (
E−1

y − 1
)
[(Ny − ny)(Nx − nx + ny)P ],

(11)

where Ex , E−1
x , Ey , and E−1

y are the operators representing
an increment in Nx by one, a decrement in Nx by one, an
increment in Ny by one, and a decrement in Ny by one,
respectively. For example, the first term on the right-hand side
of Eq. (11) represents the inflow and outflow of the probability
induced by a decrement in Nx by one. The operators are given
by

Ex = 1 + 1√
Nx

∂

∂ξ
+ 1

2Nx

∂2

∂ξ 2
+ · · · , (12)

E−1
x = 1 − 1√

Nx

∂

∂ξ
+ 1

2Nx

∂2

∂ξ 2
+ · · · , (13)

Ey = 1 + 1√
Ny

∂

∂η
+ 1

2Ny

∂2

∂η2
+ · · · , (14)

E−1
y = 1 − 1√

Ny

∂

∂η
+ 1

2Ny

∂2

∂η2
+ · · · . (15)

By substituting Eqs. (9), (10), (12), (13), (14), and (15) in
Eq. (11) and replacing the time derivative of P by that of �, I
obtain

N

(
∂�

∂t
−

√
Nx

dx

dt

∂�

∂ξ
− √

Ny

dy

dt

∂�

∂η

)

=
(

1√
Nx

∂

∂ξ
+ 1

2Nx

∂2

∂ξ 2

)
(Nxx +

√
Nxξ )[Nx(1 − x) −

√
Nxξ + Ny(1 − y) − √

Nyη]�

+
(

− 1√
Nx

∂

∂ξ
+ 1

2Nx

∂2

∂ξ 2

)
[Nx(1 − x) −

√
Nxξ ](Nxx +

√
Nxξ + Nyy + √

Nyη)�

+
(

1√
Ny

∂

∂η
+ 1

2Ny

∂2

∂η2

)
(Nyy + √

Nyη)[Nxx +
√

Nxξ + Ny(1 − y) − √
Nyη]�

+
(

− 1√
Ny

∂

∂η
+ 1

2Ny

∂2

∂η2
)[Ny(1 − y) − √

Nyη][Nx(1 − x) −
√

Nxξ + Nyy + √
Nyη]�. (16)

The highest order terms on the right-hand side, where Nx

and Ny are regarded to be of the order of N , are equal to

√
NxNy[x(1 − y) − (1 − x)y]

∂�

∂ξ

+Nx

√
Ny[xy − (1 − x)(1 − y)]

∂�

∂η
. (17)

By comparing Eq. (17) to the highest order terms on the left-
hand side of Eq. (16), I obtain

dx

dt
= Ny

N
[(1 − x)y − x(1 − y)], (18)

dy

dt
= Nx

N
[(1 − x)(1 − y) − xy], (19)
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which are equivalent to the mean-field dynamics given by
Eqs. (1) and (2).

By equating the second highest order terms in Eq. (16), I
obtain

N
∂�

∂t
= Ny

∂

∂ξ
(ξ�) − √

NxNyη
∂�

∂ξ

+
[
Nxx(1 − x) + Ny

2
(x + y − 2xy)

]
∂2�

∂ξ 2

+Nx

∂

∂η
(η�) + √

NxNyξ
∂�

∂η

+
[
Nx

2
(1 − x − y + 2xy) + Nyy(1 − y)

]
∂2�

∂η2
.

(20)

Application of
∫ ∫

dξ dη ξ and
∫ ∫

dξ dη η to Eq. (20)
yields

N
∂〈ξ 〉
∂t

= −Ny〈ξ 〉 + √
NxNy〈η〉 (21)

and

N
∂〈η〉
∂t

= −√
NxNy〈ξ 〉 − Nx〈η〉, (22)

respectively. Because the characteristic equation for the Jaco-
bian of the dynamics given by Eqs. (21) and (22) coincides
with Eq. (4), 〈ξ 〉 and 〈η〉 converge to the unique equilibrium
given by 〈ξ 〉∗ = 〈η〉∗ = 0.

Application of
∫ ∫

dξ dη ξ 2,
∫ ∫

dξ dη ξη, and∫ ∫
dξ dη η2 to Eq. (20) yields

N
∂〈ξ 2〉
∂t

= 2Nxx(1 − x) + Ny(x + y − 2xy) − 2Ny〈ξ 2〉
+ 2

√
NxNy〈ξη〉, (23)

N
∂〈ξη〉

∂t
= −√

NxNy〈ξ 2〉 − N〈ξη〉 + √
NxNy〈η2〉, (24)

and

N
∂〈η2〉
∂t

= Nx(1 − x − y + 2xy) + 2Nyy(1 − y)

− 2
√

NxNy〈ξη〉 − 2Nx〈η2〉, (25)

respectively. By substituting (x∗,y∗) = (1/2,1/2) in Eqs. (23),
(24), and (25) and setting the left-hand sides to 0, I obtain

〈ξ 2〉∗ = Nx + 3Ny

8Ny

, (26)

〈ξη〉∗ = 1

8

(√
Ny

Nx

−
√

Nx

Ny

)
, (27)

〈η2〉∗ = 3Nx + Ny

8Nx

. (28)

In terms of the original variables, I obtain

nx = Nx

2
+

√
Nxξ (29)

and

ny = Ny

2
+ √

Nyη (30)

in the infinite time limit. Therefore, in terms of the fraction of
1 congregators in the congregator subpopulation and that of 1
contrarians in the contrarian subpopulation, I obtain

σ (x) = σ (nx)

Nx

=
√

〈ξ 2〉
Nx

=
√

Nx + 3Ny

8NxNy

, (31)

σ (y) = σ (ny)

Ny

=
√

〈η2〉
Ny

=
√

3Nx + Ny

8NxNy

, (32)

where σ stands for the standard deviation.
The results obtained from direct numerical simulations

of model 1 are compared with the theoretical results given
by Eqs. (31) and (32) in Fig. 1. I set N = 10 000. The
numerical results agree well with the theory except when
Ny is small. The van Kampen expansion assumes that the
relevant distributions are Gaussian. Numerically calculated
distributions of the fraction of congregators in state 1 and
that of contrarians in state 1 are compared with the Gaussian
distributions with mean 0 and standard deviations as given by
Eqs. (31) and (32) in Fig. 2. I set N = 10 000 and examined
the cases Ny = 5 [Fig. 2(a)], Ny = 50 [Fig. 2(b)], and Ny =
500 [Fig. 2(c)]. The numerically obtained distributions are
very close to the theoretical ones when Ny is not small; in
Figs. 2(b) and 2(c), the numerical and theoretical results almost
completely overlap each other for both x and y. In contrast, the
numerical and theoretical distributions are not similar when Ny

is small [Fig. 2(a)]. Discrepancies between the numerical and
theoretical results for small Ny values are also nonnegligible
in Fig. 1(a). The deviation in the case of small Ny owes at least
partly to the fact that the distributions are significantly affected
by the boundary conditions at x,y = 0 and 1. The deviation
may be also due to the fact that the distribution of y is very
discrete when Ny is small.

Equations (31) and (32) imply the following. First, if
the fluctuation of the fraction, not the number, of state 1
congregators and that of state 1 contrarians are compared,
they are of the same order. However when the contrarians
are rare, σ (x) and σ (y) are different by a factor of 3.
Second, substitution of Nx = N (1 − Y ) and Ny = NY , where
Y (0 � Y � 1) is the density of contrarians (Sec. III A), in
Eqs. (31) and (32) yields

σ (x) =
√

1 + 2Y

8NY (1 − Y )
, (33)

σ (y) =
√

3 − 2Y

8NY (1 − Y )
. (34)

When Y is fixed, σ (x),σ (y) ∝ 1/
√

N . When N is fixed, it
holds that σ (x),σ (y) ∝ Y−1/2 as Y → 0.

2. Model 2

For model 2, the calculations in Appendix A yield

σ (x) =
√

N (Nx + 2Ny)

8NxN2
y

=
√

1 + Y

8NY 2(1 − Y )
, (35)

σ (y) =
√

N

8N2
y

=
√

1

8NY 2
. (36)
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FIG. 1. (Color online) The standard deviation in the fraction of congregators in state 1 within the congregator subpopulation (i.e., x) and
that in the fraction of contrarians in state 1 within the contrarian subpopulation (i.e., y). I set N = 10 000 and varied Ny . The distributions are
calculated on the basis of the results from t = 0.5 × 107 through t = 107 in a single run starting from x = y = 0.5. This condition is common
to the following numerical results unless otherwise stated. (a) Model 1; (b) model 2; (c) model 3.

When Y is fixed, σ (x),σ (y) ∝ 1/
√

N . This result is the same
as that for model 1. When N is fixed, it holds that σ (x),σ (y) ∝
Y−1 as Y → 0. This scaling is different from that for model 1.
Model 2 generates larger fluctuations than model 1 when the
contrarians are rare.

The numerically obtained σ (x) and σ (y) values are com-
pared with Eqs. (35) and (36) in Fig. 1(b). The numerical and
theoretical results agree well when Ny � 100. It should be
noted that the fluctuation is larger for model 2 than for model 1
when Ny takes intermediate values, i.e., 10 � Ny � 2000. The
numerically obtained distributions of x and y are compared
with the Gaussian distributions whose standard deviations are
given by Eqs. (35) and (36) in Figs. 2(d), 2(e), and 2(f) for
three Ny values. The numerical and theoretical distributions
agree well when Ny is large enough [i.e., Ny = 500; Fig. 2(f)].
In Fig. 2(f), the numerical and theoretical results almost
completely overlap each other for both x and y. However,
when Ny is smaller, the numerically obtained distributions of
x and y have peaks at x,y ≈ 0 and 1 such that they are far
from the Gaussian distributions shown by the dotted lines in
Figs. 2(d) and 2(e). It should be noted that the theoretical
results for x and that for y are indistinguishable in Figs. 2(d)
and 2(e). In this range of Ny , the small-fluctuation expansion
breaks down, which is consistent with Fig. 1(b).

3. Model 3

For model 3, the calculations in Appendix B yield

σ (x) =
√

N (Nx + 6Ny)

8NxNy(Nx + 3Ny)
=

√
1 + 5Y

8NY (1 − Y )(1 + 2Y )
,

(37)

σ (y) =
√

3N

8Ny(Nx + 3Ny)
=

√
3

8NY (1 + 2Y )
. (38)

When Y is fixed, σ (x),σ (y) ∝ 1/
√

N . When N is fixed, it
holds that σ (x),σ (y) ∝ Y−1/2 as Y → 0. The scaling is the
same as those for model 1.

The numerically obtained σ (x) and σ (y) values are com-
pared with Eqs. (37) and (38) in Fig. 1(c). The numerical
results agree well with the theory unless Ny is small. The
numerically obtained distributions of x and y are compared
with the Gaussian distributions whose standard deviations are
given by Eqs. (37) and (38) in Figs. 2(g), 2(h), and 2(i) for
three Ny values. The theoretical results agree well with the
numerical results if Ny is not small [Figs. 2(h) and 2(i)]. In
Figs. 2(h) and 2(i), the numerical and theoretical results almost
entirely overlap each other. The results for model 3 are similar
to those for model 1.

C. Case of a single contrarian

The small-fluctuation approximation cannot capture the
behavior of the model when Ny is small (Sec. III B). To better
understand this situation, I calculate the stationary distribution
of the Fokker-Planck equation for the single-contrarian case,
i.e., Ny = 1. In this extreme case, the single contrarian does not
find other contrarians in the population. Therefore, model 1 and
model 3 are equivalent. I analyze this model in the following.
Model 2 is reduced to the standard voter model and therefore
is irrelevant.

There are Nx = N − 1 congregators. I denote by P (nx,0)
[P (nx,1)] the probability that there are nx congrega-
tors in state 1 and the ny = 0 (ny = 1) contrarian in
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FIG. 2. (Color online) The distribution of the fraction of state 1 congregators (i.e., x) and that of state 1 contrarians (i.e., y) in the equilibrium.
I set N = 10 000. (a) Model 1 with Ny = 5, (b) model 1 with Ny = 50, (c) model 1 with Ny = 500, (d) model 2 with Ny = 5, (e) model 2 with
Ny = 50, (f) model 2 with Ny = 500, (g) model 3 with Ny = 5, (h) model 3 with Ny = 50, and (i) model 3 with Ny = 500. In (d) and (e), the
distributions are calculated using the results obtained from t = 0.5 × 108 through t = 108 in a single run, 10 times longer simulation time than in
the other cases. This was done because the convergence of the distributions is much slower in the cases shown in (d) and (e) than in the other cases.

state 1. The normalization is given by
∑N−1

nx=0[P (nx,0) + P (nx,1)] = 1. The master equations are given by

N
dP (nx,0)

dt
= P (nx,1)

1

N

nx

N − 1
+ P (nx − 1,0)

(N − 1) − (nx − 1)

N

nx − 1

N − 1
+ P (nx + 1,0)

nx + 1

N

(N − 1) − (nx − 1) + 1

N − 1

−P (nx,0)

[
1

N

(N − 1) − nx

N − 1
+ (N − 1) − nx

N

nx

N − 1
+ nx

N

(N − 1) − nx + 1

N − 1

]
, (39)

N
dP (nx,1)

dt
= P (nx,0)

1

N

N − 1 − nx

N − 1
+ P (nx − 1,1)

(N − 1) − (nx − 1)

N

(nx − 1) + 1

N − 1

+P (nx + 1,1)
nx + 1

N

(N − 1) − (nx + 1)

N − 1
− P (nx,1)

[
1

N

nx

N − 1
+ (N − 1) − nx

N

nx + 1

N − 1
+ nx

N

(N − 1) − nx

N − 1

]
.

(40)

The Fokker-Planck equations on the basis of Eqs. (39) and (40) are given by

N
∂P (nx,0)

∂t
= nx

N (N − 1)
P (nx,1) + ∂

∂nx

[
nx

N (N − 1)
P (nx,0)

]
+ 1

2

∂2

∂n2
x

[
nx(2N − 2nx − 1)

N (N − 1)
P (nx,0)

]
− N − 1 − nx

N (N − 1)
P (nx,0),

(41)

N
∂P (nx,1)

∂t
= N − 1 − nx

N (N − 1)
P (nx,0) − ∂

∂nx

[
N − 1 − nx

N (N − 1)
P (nx,1)

]
+ 1

2

∂2

∂n2
x

{
[N − 1 − nx)(2nx + 1)]

N (N − 1)
P (nx,1)

}

− nx

N (N − 1)
P (nx,1). (42)
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In terms of the fraction of state 1 congregators in the congregator subpopulation, i.e., x, Eqs. (41) and (42) are given by

N2 ∂P (x,0)

∂t
= xP (x,1) − (1 − x)P (x,0) + 1

N − 1

∂

∂x
[xP (x,0)] + 1

N − 1

∂2

∂x2

{
x

[
1 − x + 1

2(N − 1)

]
P (x,0)

}
, (43)

N2 ∂P (x,1)

∂t
= (1 − x)P (x,0) − xP (x,1) − 1

N − 1

∂

∂x
[(1 − x)P (x,1)] + 1

N − 1

∂2

∂x2

{[
x + 1

2(N − 1)

]
(1 − x)P (x,1)

}
. (44)

When N is large, P (x,0) and P (x,1) evolve on a fast time scale until

xP (x,1) − (1 − x)P (x,0) = g(x)

N − 1
(45)

is satisfied, where g(x) = O(1). Although I am interested in the equilibrium, the adiabatic approximation given by Eq. (45) holds
true in the course of the dynamics on a slow time scale as well as in the equilibrium. By substituting Eq. (45) in Eqs. (43) and
(44), I obtain the following equations in the equilibrium:

g(x) + ∂

∂x

[
x2

1 − x
P (x,1) − x

(N − 1)(1 − x)
g(x)

]
+ ∂2

∂x2

{[
1 + 1

2(1 − x)(N − 1)

][
x2P (x,1) − x

N − 1
g(x)

]}
= 0, (46)

−g(x) − ∂

∂x
[(1 − x)P (x,1)] + ∂2

∂x2

{[
x + 1

2(N − 1)

]
(1 − x)P (x,1)

}
= 0. (47)

By ignoring O[1/(N − 1)] terms, which is justified unless
x = O(1/N ) or 1 − x = O(1/N ), I obtain

g(x) + ∂

∂x

[
x2

1 − x
P (x,1)

]
+ ∂2

∂x2
[x2P (x,1)] = 0, (48)

−g(x) − ∂

∂x
[(1 − x)P (x,1)] + ∂2

∂x2
[x(1 − x)P (x,1)] = 0.

(49)

By summing Eqs. (48) and (49), I obtain

∂

∂x

[−1 + 2x

1 − x
P (x,1)

]
+ ∂2

∂x2
[xP (x,1)] = 0. (50)

The general solution of Eq. (50) is given by

P (x,1) = C1(1 − x) log
x

1 − x
+ C2(1 − x), (51)

where C1 and C2 are constants. Equation (51) and the
symmetry relationship P (x,0) = P (1 − x,1) yield

xP (x,1) − (1 − x)P (x,0) = xP (x,1) − (1 − x)P (1 − x,1)

= 2C1x(1 − x) log
x

1 − x
. (52)

For this quantity to be of order O(1/N ) [see Eq. (45)], C1 = 0
is required. It should be noted that I have already discarded
O(1/N ) terms in deriving Eqs. (48) and (49). Therefore,
Eq. (51) is reduced to P (x,1) = C2(1 − x). The normalization
condition

∫ 1
0 P (x,1) dx = 1/2, which in fact should be applied

with a caution because the solution given by Eq. (51) may be
invalid near x = 0 and x = 1, leads to C2 = 1. Finally, I obtain

P (x,0) = x, (53)

P (x,1) = 1 − x. (54)

Equations (53) and (54) imply that the fraction of 1
congregators that is not conditioned by the state of the
contrarian, i.e., P (x,0) + P (x,1), is uniformly distributed on
[0,1]. These equations also imply that the congregators would

be in the 0 state when the contrarian is in the 1 state. This
phenomenon occurs because the contrarian tries to escape
from the congregators. Numerically obtained equilibrium
distributions are shown in Fig. 3 for N = 1000. The results
are in an excellent agreement with Eqs. (53) and (54).

The uniform distribution of x implies σ (x) = 1/(2
√

3).
This value is in fact approached as Ny is decreased in models
1 and 3 [squares in Figs. 1(a) and 1(c)].

IV. DISCUSSION

I proposed extensions of the voter model with contrarian
agents. Even a single contrarian turns out to change the final
configuration of the dynamics from the consensus of one state
to the coexistence of the two states. Among the three models
analyzed in the present study, model 2 behaves differently from
models 1 and 3 in that the coexistence equilibrium is much less
stable in model 2 than models 1 and 3 when contrarians are
rare. This difference is likely to owe to the fact that contrarians
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FIG. 3. Distribution of the fraction of 1 congregators when Ny =
1. The distribution conditioned that the contrarian is in state 0 and
that conditioned that the contrarian is in state 1 are shown by the solid
and dotted lines, respectively. N = 1000.
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are assumed to like congregators only in model 2 (Table I).
The results that model 1 and model 3 behave similarly suggest
that the behavior of contrarians toward the conspecific does
not much affect the collective behavior of the model, at least
in the current framework. It should be noted that, with model
2 included, the collective dynamics of the model is robust with
respect to the behavioral rule of the agent (Table I) if there are
sufficient contrarians in the population.

The effect of contrarians has been investigated in various
models of opinion formation, as reviewed in Sec. I. Most
of the previous models also found that contrarians promote
coexistence of different states when consensus is inevitable
in the models without contrarians. The strength of the current
study lies in that I confined myself to linear models, as is the
original voter models, and reached strong analytical conclu-
sions. I used the van Kampen small-fluctuation approximations
and solved the case of a single contrarian to characterize
the fluctuations around the coexistence equilibrium. As the
number of contrarians increases, the equilibrium distributions
change from the uniform distribution to the Gaussian distri-
bution with small standard deviations. It should be also noted
that the present models do not show phase transition, whereas

nonlinear models usually show phase transitions between the
consensus-like phase and the coexistence phase.

The voter model is peculiar in the sense that it is linear and
thus without assumed threshold behavior (see, for example,
Refs. [2,5,31,32] for nonlinear models). In contrast to the
present models, nonlinear opinion formation models with
contrarians can show rich behavior. For example, periodic and
chaotic behavior is briefly described in a model with contrari-
ans constructed on the basis of the Ising spin system [24]. In the
context of nonlinear coupled phase oscillators, rich behavior
including traveling waves and partial synchrony was reported
[33]. Further investigating nonlinear as well as linear opinion
formation models with contrarians warrants future work.
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APPENDIX A: SMALL-FLUCTUATION APPROXIMATION FOR MODEL 2

For model 2, the master equation in terms of P , the increment operators, and decrement operators is given by

N
dP

dt
= (Ex − 1)[nx(Nx − nx + Ny − ny)P ] + (

E−1
x − 1

)
[(Nx − nx)(nx + ny)P ]

+ (Ey − 1)[ny(Nx − nx + ny)P ] + (
E−1

y − 1
)
[(Ny − ny)(nx + Ny − ny)P ]. (A1)

Substitution of Eqs. (9), (10), (12), (13), (14), and (15) in Eq. (A1) yields

N

(
∂�

∂t
−

√
Nx

dx

dt

∂�

∂ξ
− √

Ny

dy

dt

∂�

∂η

)

=
(

1√
Nx

∂

∂ξ
+ 1

2Nx

∂2

∂ξ 2

)
(Nxx +

√
Nxξ )[Nx(1 − x) −

√
Nxξ + Ny(1 − y) − √

Nyη]�

+
(

− 1√
Nx

∂

∂ξ
+ 1

2Nx

∂2

∂ξ 2

)
[Nx(1 − x) −

√
Nxξ ](Nxx +

√
Nxξ + Nyy + √

Nyη)�

+
(

1√
Ny

∂

∂η
+ 1

2Ny

∂2

∂η2

)
(Nyy + √

Nyη)[Nx(1 − x) −
√

Nxξ + Nyy + √
Nyη]�

+
(

− 1√
Ny

∂

∂η
+ 1

2Ny

∂2

∂η2

)
[Ny(1 − y) − √

Nyη][Nxx +
√

Nxξ + Ny(1 − y) − √
Nyη]�. (A2)

The highest order terms of Eq. (A2) recover the mean-field dynamics given by Eqs. (1) and (5). The comparison of the second
highest order terms in Eq. (A2) yields

N
∂�

∂t
= Ny

∂

∂ξ
(ξ�) − √

NxNyη
∂�

∂ξ
+

[
Nxx(1 − x) + Ny

2
(x + y − 2xy)

]
∂2�

∂ξ 2

−√
NxNyξ

∂�

∂η
+ (Nx + 2Ny)

∂

∂η
(η�) +

[
Nx

2
(x + y − 2xy) + Ny

2
(1 − 2y + 2y2)

]
∂2�

∂η2
. (A3)

Application of
∫ ∫

dξ dη ξ and
∫ ∫

dξ dη η to Eq. (A3) yields Eq. (21) and

N
∂〈η〉
∂t

= √
NxNy〈ξ 〉 − (Nx + 2Ny)〈η〉, (A4)

respectively. Because the characteristic equation of the Jacobian of the dynamics given by Eqs. (21) and (A4) coincides with
Eq. (6), the dynamics converges to the unique equilibrium given by 〈ξ 〉∗ = 〈η〉∗ = 0.
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Application of
∫ ∫

dξ dη ξ 2,
∫ ∫

dξ dη ξη, and
∫ ∫

dξ dη η2 to Eq. (A3) yields Eq. (23),

N
∂〈ξη〉

∂t
= √

NxNy〈ξ 2〉 − (Nx + 3Ny)〈ξη〉 + √
NxNy〈η2〉, (A5)

and

N
∂〈η2〉
∂t

= Nx(x + y − 2xy) + Ny(1 − 2y + 2y2) + 2
√

NxNy〈ξη〉 − 2(Nx + 2Ny)〈η2〉, (A6)

respectively. By substituting (x∗,y∗) = (1/2,1/2) in Eqs. (23), (A5), and (A6) and setting the left-hand sides to 0, I obtain

〈ξ 2〉∗ = N (Nx + 2Ny)

8N2
y

, (A7)

〈ξη〉∗ = N
√

Nx

8N
3
2
y

, (A8)

and

〈η2〉∗ = N

8Ny

. (A9)

By using the relationship σ (x) =
√

〈ξ 2〉∗/Nx and σ (y) = √〈η2〉∗/Ny , I obtain Eqs. (35) and (36).

APPENDIX B: SMALL-FLUCTUATION APPROXIMATION FOR MODEL 3

For model 3, the master equation is given by

N
dP

dt
= (Ex − 1)[nx(Nx − nx + Ny − ny)P ] + (

E−1
x − 1

)
[(Nx − nx)(nx + ny)P ]

+ (Ey − 1)[ny(nx + ny)P ] + (
E−1

y − 1
)
[(Ny − ny)(Nx − nx + Ny − ny)P ]. (B1)

Substitution of Eqs. (9), (10), (12), (13), (14), and (15) in Eq. (B1) yields

N

(
∂�

∂t
−

√
Nx

dx

dt

∂�

∂ξ
− √

Ny

dy

dt

∂�

∂η

)

=
(

1√
Nx

∂

∂ξ
+ 1

2Nx

∂2

∂ξ 2

)
(Nxx +

√
Nxξ )[Nx(1 − x) −

√
Nxξ + Ny(1 − y) − √

Nyη]�

+
(

− 1√
Nx

∂

∂ξ
+ 1

2Nx

∂2

∂ξ 2

)
[Nx(1 − x) −

√
Nxξ ](Nxx +

√
Nxξ + Nyy + √

Nyη)�

+
(

1√
Ny

∂

∂η
+ 1

2Ny

∂2

∂η2

)
(Nyy + √

Nyη)(Nxx +
√

Nxξ + Nyy + √
Nyη)�

+
(

− 1√
Ny

∂

∂η
+ 1

2Ny

∂2

∂η2

)
[Ny(1 − y) − √

Nyη][Nx(1 − x) −
√

Nxξ + Ny(1 − y) − √
Nyη]�. (B2)

The highest order terms of Eq. (B2) recovers the mean-field dynamics given by Eqs. (1) and (7). The comparison of the second
highest order terms in Eq. (B2) yields

N
∂�

∂t
= Ny

∂

∂ξ
(ξ�) − √

NxNyη
∂�

∂ξ
+

[
Nxx(1 − x) + Ny

2
(x + y − 2xy)

]
∂2�

∂ξ 2

+√
NxNyξ

∂�

∂η
+ (Nx + 2Ny)

∂

∂η
(η�) +

[
Nx

2
(1 − x − y + 2xy) + Ny

2
(1 − 2y + 2y2)

]
∂2�

∂η2
. (B3)

Application of
∫ ∫

dξ dη ξ and
∫ ∫

dξ dη η to Eq. (B3) yields Eq. (21) and

N
∂〈η〉
∂t

= −√
NxNy〈ξ 〉 − (Nx + 2Ny)〈η〉, (B4)

respectively. Because the characteristic equation of the Jacobian of the dynamics given by Eqs. (21) and (B4) coincides with
Eq. (8), the dynamics converges to 〈ξ 〉∗ = 〈η〉∗ = 0.

Application of
∫ ∫

dξ dη ξ 2,
∫ ∫

dξ dη ξη, and
∫ ∫

dξ dη η2 to Eq. (B3) yields Eq. (23),

N
∂〈ξη〉

∂t
= −√

NxNy〈ξ 2〉 − (Nx + 3Ny)〈ξη〉 + √
NxNy〈η2〉, (B5)
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and

N
∂〈η2〉
∂t

= Nx(1 − x − y + 2xy) + Ny(1 − 2y + 2y2) − 2
√

NxNy〈ξη〉 − 2(Nx + 2Ny)〈η2〉, (B6)

respectively. By substituting (x∗,y∗) = (1/2,1/2) in Eqs. (23), (B5), and (B6) and setting the left-hand sides to 0, I obtain

〈ξ 2〉∗ = N (Nx + 6Ny)

8Ny(Nx + 3Ny)
, (B7)

〈ξη〉∗ = − N
√

Nx

8(Nx + 3Ny)
√

Ny

, (B8)

and

〈η2〉∗ = 3N

8(Nx + 3Ny)
, (B9)

which lead to Eqs. (37) and (38).
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