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Spread of infectious diseases in a hyperbolic reaction-diffusion susceptible-infected-removed model
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A one-dimensional hyperbolic reaction-diffusion model of epidemics is developed to describe the dynamics of
diseases spread occurring in an environment where three kinds of individuals mutually interact: the susceptibles,
the infectives, and the removed. It is assumed that the disease is transmitted from the infected population to
the susceptible one according to a nonlinear convex incidence rate. The model, based upon the framework of
extended thermodynamics, removes the unphysical feature of instantaneous diffusive effects, which is typical of
parabolic models. Linear stability analyses are performed to study the nature of the equilibrium states against
uniform and nonuniform perturbations. Emphasis is given to the occurrence of Hopf and Turing bifurcations,
which break the temporal and the spatial symmetry of the system, respectively. The existence of traveling wave
solutions connecting two steady states is also discussed. The governing equations are also integrated numerically
to validate the analytical results and to characterize the spatiotemporal evolution of diseases.
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I. INTRODUCTION

Nowadays infectious diseases are still the major causes
of mortality in developing countries, so that the possibility
of predicting their spread is a compelling challenge in many
fields, such as public health, agriculture, and zoology. For this
reason, the proper characterization of the temporal evolution
of the population becomes fundamental for the understanding
of the underlying dynamics and for the definition of the
mathematical model which better reproduces the scenario
under investigation. In particular, many efforts have been
devoted to the development of epidemiological models based
on different mathematical approaches, either deterministic or
stochastic [1–6]. Furthermore, with the aim of describing the
spread of epidemics in a more realistic way, several spatially
extended models, mostly based on systems of parabolic
reaction-diffusion equations, have been also proposed [7–13].
However, the parabolic character of these models would lead
the disease to propagate instantaneously over large distances.
This unphysical feature can be overcome by building up a
hyperbolic system [14,15]. Indeed, such a kind of system has
been successfully applied in many different contexts like forest
fire models [16], chemical and ecological systems [17–21],
population dynamics [22,23], spread of hantavirus infection
[24], transmission lines, and nonlinear oscillators [25].

Therefore, in this paper we make use of the theoretical
framework of the extended thermodynamics [26] to develop a
hyperbolic reaction-diffusion model describing the spatiotem-
poral interactions among susceptible, infected, and removed
individuals. In our model the disease is assumed to be
transmitted from the infected population to the susceptible
one through a nonlinear convex incidence rate.

The paper is organized as follows. In Sec. II we build
up the one-dimensional hyperbolic reaction-diffusion model
of epidemics governing the above-mentioned population dy-
namics. In Sec. III we perform a linear stability analysis on
the steady states. In particular, we investigate their stability
against homogeneous and nonhomogeneous perturbations and
focus our attention on the occurrence of Hopf and Turing
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bifurcations. As is known, the space-independent Hopf bifur-
cation breaks the temporal symmetry of a system and gives
rise to oscillations that are uniform in space and periodic in
time. On the other hand, the diffusion-driven Turing instability
breaks the spatial symmetry and manifests itself through
the formation of “patterns” that are stationary in time and
oscillatory in space [27]. The analytical results here obtained
are then compared, in Sec. IV, to the ones arising from the
numerical integration of the governing equations.

Another approach for investigating the spatial spread of
infection involves the analysis of traveling wave solutions. In
particular, within the theoretical framework of wave propaga-
tion in continuous media, the validation of an evolution model
requires a qualitative response in terms of wave processes,
which are expected to occur at finite velocity. This is in contrast
to the scenarios encountered in parabolic models where the
speed parameter is not subjected to any upper limit. Therefore,
it is of a certain interest to characterize the behavior of the
resulting traveling wave solutions admitted by the hyperbolic
model herein proposed. Such an analysis is carried out, both
analytically and numerically, in Sec. V. Finally, concluding
remarks are made in Sec. VI.

II. HYPERBOLIC MODEL

We consider a one-dimensional epidemic model where
the whole population is subdivided into three classes of
individuals: the susceptibles, who can catch the disease; the
infectives, who have already contracted the disease and can
transmit it; and the removed, who are either recovered and
immune or isolated. The dynamics of these species can be
described through the following system of partial differential
equations written in convenient dimensionless units:

∂S

∂t
+ ∂J S

∂x
= A(1 − S) − βSI 2, (1)

∂I

∂t
+ ∂J I

∂x
= βSI 2 − (A + μ)I, (2)

∂R

∂t
+ ∂JR

∂x
= μI − AR, (3)
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where S(t,x), I (t,x), and R(t,x) represent, respectively, the
susceptibles, infectives, and removed, at time t and position
x, measured with respect to some reference populations.
Moreover A is the birth (death) rate of the population, μ is the
recovery rate, and the transmission of the infection is governed
by a nonlinear incidence rate βSI 2, with the parameter β

representing the transmission rate.
From the biological point of view, according to our

definition of S and I , we are thus assuming that the number of
individuals locally is changing in time and that a susceptible
will contact an infected with a rate proportional to the number
of infecteds around. In particular, an incidence rate which
increases more than linearly with respect to the number of
infectives I takes places if an effective cooperativity exists
among the infectives [28–35]. For example, it can be observed
in vectored diseases where multiple exposures to the disease
vector are necessary before infection occurs or if individuals
could harbor low-level infections that did not make them
infectious but did increase susceptibility. Such a nonlinear
incidence rate gives rise to a convex function with respect to
the numbers of infectives, which implies that, with the growth
of the infective population, the probability for a single infective
individual to pass the infection further increases [36,37]. From
the mathematical point of view, such a choice also allows us to
deal with a richer variety of dynamical behaviors with respect
to the bilinear case βSI [28,29].

It should be noticed that, since the first two equations
of system (1)–(3) are independent of the last one, we can
hereafter focus our attention on the dynamics of susceptibles
and infected only described by the subsystem (1) and (2).

Usually, according to Fick’s law, the diffusion fluxes, J S

and J I , are assumed to be proportional to the gradient of the
corresponding densities, namely,

J S = −DS

∂S

∂x
, J I = −DI

∂I

∂x
, (4)

where the diffusion coefficients, DS and DI , take into account
the diffusive transport mechanism of the susceptible and
infected, respectively. Typically, in biological systems, the
population of infected individuals (which play the role of pro-
cess activators) are less mobile than healthy individuals (which
act as process inhibitors), so that the relation DS > DI holds.

In passing we note that the governing equations (1) and (2),
together with the constitutive relations (4), coincide with the
model proposed in Ref. [13] when only one spatial dimension
is taken into account. Furthermore, for β = 1 the system under
investigation reduces to the classical Gray-Scott model [38],
which, in spite of being usually encountered in the context of
kinetics of chemical species [7,39,40], has been also used to
characterize the spread of epidemics [8,13,28,29].

It should be also emphasized that Fickian diffusion (4),
inserted into the governing equations (1) and (2), leads to a
parabolic reaction-diffusion system which, as known, admits
instantaneous diffusive effects. This unphysical feature can be
removed by making use of hyperbolic models. For this reason,
following the guidelines of the extended thermodynamics
theory [26], we develop a hyperbolic reaction-diffusion model
to describe the finite velocity spread of infectious diseases.

To this aim, instead of assuming Fick’s laws (4) as
constitutive equations for the dissipative fluxes, we consider

J S and J I to be field variables (as well as S and I ) satisfying
the following balance equations:

∂J S

∂t
+ ∂T S

∂x
= GS,

(5)
∂J I

∂t
+ ∂T I

∂x
= GI ,

where the constitutive functions, T S , T I , GS , and GI , must
be determined in terms of the whole set of the independent
variables constituting the field E = (S,I,J S,J I ). Since we are
interested in a process not far away from the thermodynamical
equilibrium characterized by vanishing fluxes J S and J I , we
suppose a linear dependence of the constitutive functions on
the fluxes, that is,

T S = ν(S,I ) + ν1(S,I )J S + ν2(S,I )J I ,

T I = η (S,I ) + η1 (S,I ) J S + η2 (S,I ) J I ,
(6)

GS = γ (S,I ) + γ1 (S,I ) J S + γ2 (S,I ) J I ,

GI = δ (S,I ) + δ1 (S,I ) J S + δ2 (S,I ) J I .

Then, assuming that the balance equations (5) reduce to (4)
in the stationary case, we easily deduce

T S = ν(S), GS = −ν ′ (S)

DS

J S,

(7)

T I = η(I ), GI = −η′ (I )

DI

J I ,

where the prime stands for the derivative of a given function
with respect to its argument.

A further restriction on the constitutive functions (7)
follows from the entropy principle. It assumes the existence
of a concave entropy density h and an entropy flux φ,
both depending on E, and satisfying, for all solutions of
system (1), (2), (5), and (7), the well-known entropy inequality

∂h

∂t
+ ∂φ

∂x
� 0. (8)

The compatibility of system (1), (2), (5), and (7) with (8)
can be achieved through the use of the so-called Lagrange
multipliers 	, 
, ξ , �, as shown in Refs. [26,41], which
must also be determined in terms of the whole set of the
field variables. Then the searched compatibility leads to the
following expressions for the entropy functions:

h = h̃0 (S) + ĥ0 (I ) + X (S)

2
J SJ S + Y (I )

2
J IJ I ,

(9)
φ = 	0 (S) J S + 
0 (I ) J I ,

while the Lagrange multipliers take the form

ξ = X(S)J S, � = Y (I ) J I ,

	 = 	0(S) + X′(S)

2
J SJ S, (10)


 = 
0(I ) + Y ′ (I )

2
J IJ I ,

where

	′
0(S) = ν ′(S)X(S), 
′

0 (I ) = η′ (I ) Y (I ) ,
(11)

h̃′
0(S) = 	0(S), ĥ′

0 (I ) = 
0 (I ) .
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Finally, the concavity condition for h with respect to the
field variables yields the further restrictions:

X(S) < 0, Y (I ) < 0, (12)

ν ′(S) > 0, η′ (I ) > 0. (13)

As a consequence, the resulting system, which is obtained
by considering (1) and (2) and substituting (7) into (5),

∂S

∂t
+ ∂J S

∂x
= A (1 − S) − βSI 2,

∂I

∂t
+ ∂J I

∂x
= βSI 2 − (A + μ) I,

(14)
∂J S

∂t
+ ν ′ ∂S

∂x
= − ν ′

DS

J S,

∂J I

∂t
+ η′ ∂I

∂x
= − η′

DI

J I ,

becomes symmetric hyperbolic in the sense of Friedrichs-Lax
[42], and so the Cauchy problem is well posed for suitable
smooth initial data [26]. Moreover, the concavity condi-
tions (13) ensure that the characteristic velocities associated
to the system (14),

λ1,2 = ±
√

ν ′ (S), λ3,4 = ±
√

η′(I ), (15)

are always real as well as the two relaxation times τS = DS/ν
′

and τI = DI/η
′ are positive, as expected. Furthermore, it has

to be noticed that, in the limit case τS → 0 and τI → 0, the
hyperbolic model (14) reduces to the corresponding parabolic
one analyzed in Ref. [13].

In order to reduce the number of the parameters involved
in the model, we rescale the governing equation (14) by
introducing the following change of variables:

x̃ =
√

A

DI

x, t̃ = At, S̃ = S, Ĩ = I,

J̃ S =
√

1

ADI

J S, J̃ I =
√

1

ADI

J I ,

(16)
ν̃ = 1

ADI

ν, η̃ = 1

ADI

η, β̃ = β

A
,

μ̃ = μ

A
, D̃ = DS

DI

,

so that, by dropping the tilde notation for convenience, the
system (14) can be recast as

∂S

∂t
+ ∂J S

∂x
= 1 − S − βSI 2 = f (S,I ) ,

∂I

∂t
+ ∂J I

∂x
= βSI 2 − (1 + μ) I = g (S,I ) ,

(17)
∂J S

∂t
+ ν ′ ∂S

∂x
= − ν ′

D
JS,

∂J I

∂t
+ η′ ∂I

∂x
= −η′J I ,

where the rescaled relaxation times become τS = D/ν ′ and
τI = 1/η′.

III. LINEAR STABILITY AND BIFURCATION ANALYSIS

The system of field equations (17) admits three different
homogeneous steady states of the form E∗ = (S∗,I ∗,0,0),
which are

E∗
1 = (1,0,0,0), E∗

2 =
(

β + √
�

2β
,

β − √
�

2β(1 + μ)
,0,0

)
,

(18)

E∗
3 =

(
β − √

�

2β
,

β + √
�

2β (1 + μ)
,0,0

)
,

with � = β2 − 4β (1 + μ)2. The disease-free equilibrium
state E∗

1 always exists, whereas the two endemic states E∗
2

and E∗
3 are meaningful iff � � 0, that is, for β � βex =

4 (1 + μ)2. These equilibria are graphically represented in
Fig. 1 in the S-I phase plane as intersections of the nullclines
f (S,I ) = 0 (continuous line) and g(S,I ) = 0 (dashed line). In
particular, two qualitatively different scenarios are shown: in
Fig. 1(a), corresponding to β = 20 < βex, the only equilibrium
state is the disease-free configuration E∗

1 , which results from
the unique intersection between the nullclines; in Fig. 1(b),
obtained for β = 80 > βex, the nullclines exhibit three inter-
section points corresponding to the three steady states (18).

The subsequent analysis is devoted to give an insight into
the behavior of these equilibria with respect to uniform and
nonuniform perturbations by assuming μ and β as control
parameters.

FIG. 1. (Color online) Nullclines f (S,I ) = 0 (solid line) and g(S,I ) = 0 (dashed line) obtained for μ = 2.5.
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A. Spatially homogeneous perturbations

The local stability of the homogeneous steady states
E∗ under small spatially independent perturbations can be
determined by the sign of the eigenvalues σ of the following
Jacobian matrix:⎡⎢⎢⎢⎣

f ∗
S f ∗

I 0 0

g∗
S g∗

I 0 0

0 0 − ν ′∗
D

0

0 0 0 −η′∗

⎤⎥⎥⎥⎦ , (19)

where the subscript stands for the partial derivative with respect
to the indicated variable and the asterisk denotes that the
functions are evaluated at E∗.

It is easy to check that two eigenvalues σ1 = −ν ′∗/D and
σ2 = −η′∗ are always negative according to (13), whereas the
other two eigenvalues are solutions of the equation

σ 2 − (f ∗
S + g∗

I )σ + (f ∗
S g∗

I − f ∗
I g∗

S) = 0, (20)

so that the stability of the steady states is ensured iff the
following conditions hold:

f ∗
S + g∗

I < 0, (21)

f ∗
S g∗

I − f ∗
I g∗

S > 0. (22)

By evaluating these functions at the disease-free equilib-
rium E∗

1 , we obtain

fS(E∗
1 ) = −1 < 0, fI (E∗

1 ) = 0, gS(E∗
1 ) = 0,

(23)
gI (E∗

1 ) = −(1 + μ) < 0,

and it turns out that E∗
1 is always stable. This result is consistent

with our choice of the nonlinear incidence rate since, for small
enough I , the nonlinear term βSI 2 does not yield a significant
contribution.

For what concerns the endemic equilibria E∗
2 and E∗

3 , we
have

f ∗
S = − β

1 + μ
I ∗ < 0, f ∗

I = −2(1 + μ) < 0,

(24)
g∗

S = βI ∗2 > 0, g∗
I = 1 + μ > 0.

Therefore, E∗
2 turns out to be unstable because the con-

dition (22) is always violated, while the character of E∗
3

depends upon the value of the control parameters. In particular,
since (22) evaluated at E∗

3 is always satisfied, its stability is
determined by (21), namely,

E∗
3 stable for

{
μ � 1, ∀β,

μ > 1, β > βcr,
(25)

where

βcr = (1 + μ)4

μ
> βex. (26)

Consequently, for μ > 1, E∗
3 changes its stability character

as a function of β. It is interesting to notice that such a transition
takes place through a Hopf bifurcation. Indeed, when f ∗

S +
g∗

I = 0, the characteristic equation (20) admits a pair of purely
imaginary conjugate roots for β = βcr, and the transversality

condition

dRe (σ )

dβ

∣∣∣∣
βcr

= − μ2

2 (1 + μ)3 (μ − 1)
�= 0 (27)

is fulfilled. Thus, system (17) undergoes a Hopf bifurcation
at E∗

3 to a spatially uniform periodic solution whose angular
frequency δ =

√
μ2 − 1 is determined by substituting σ = iδ

into Eq. (20) at β = βcr.
It should be mentioned that the results hitherto obtained are

in agreement with the ones proposed in Refs. [28,29].

B. Spatially nonhomogeneous perturbations

In the case of spatially dependent perturbations, the hy-
perbolic system (17) is linearized around E∗ by looking for
solutions of the form

S = S∗ + S̄ exp (σ t + ikx) ,

I = I ∗ + Ī exp (σ t + ikx) ,
(28)

J S = J̄ S exp (σ t + ikx) ,

J I = J̄ I exp (σ t + ikx) ,

where k is the wave number. Then the resulting system⎡⎢⎢⎢⎢⎣
σ − f ∗

S −f ∗
I ik 0

−g∗
S σ − g∗

I 0 ik

ikν ′∗ 0 σ + ν ′∗
D

0

0 ikη′∗ 0 σ + η′∗

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

S̄

Ī

J̄ S

J̄ I

⎤⎥⎥⎦ = 0 (29)

admits a nontrivial solution iff[
σ 2 −

(
f ∗

S − ν ′∗

D

)
σ +

(
k2 − f ∗

S

D

)
ν ′∗

]
× [σ 2 − (g∗

I − η′∗)σ + (k2 − g∗
I )η′∗]

−
(

σ + ν ′∗

D

)
(σ + η′∗)f ∗

I g∗
S = 0. (30)

As it is well known, if the real parts of all the roots
of the characteristic equation (30) are negative for ev-
ery wave number k, then the equilibrium state is linearly
stable.

It is easy to ascertain that, taking into account (23),
Eq. (30) can be straightforwardly factorized at E∗

1 and all
its roots exhibit negative real part ∀k, so that E∗

1 preserves
the same stability character found in the case of uniform
perturbations.

On the other hand, the polynomial (30), evaluated at the
endemic states E∗

2 and E∗
3 , can be rewritten in the general

form

σ 4 + B1σ
3 + B2σ

2 + B3σ + B4 = 0, (31)

where

B1 = η′∗ + ν ′∗

D
− f ∗

S − g∗
I ,

B2 = k2(ν ′∗ + η′∗) −
(

η′∗ + ν ′∗

D

)
(f ∗

S + g∗
I )

+ η′∗ν ′∗

D
+ f ∗

S g∗
I − f ∗

I g∗
S,
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B3 = k2

[
ν ′∗(η′∗ − g∗

I ) + η′∗
(

ν ′∗

D
− f ∗

S

)]

− ν ′∗

D
f ∗

S (η′∗ − g∗
I ) − η′∗g∗

I

(
ν ′∗

D
− f ∗

S

)

−
(

η′∗ + ν ′∗

D

)
f ∗

I g∗
S,

B4 = ν ′∗η′∗
[
k4 − k2

(
g∗

I + f ∗
S

D

)
+ f ∗

S g∗
I − f ∗

I g∗
S

D

]
.

(32)

The stability of these equilibria can be thus discussed
by using the Routh-Hurwitz criterion, which asserts that
Eq. (31) admits all solutions with negative real parts iff the

conditions

B1 > 0, B3 > 0, B4 > 0, B1B2B3 > B2
3 + B2

1B4 (33)

are verified ∀k.
The instability of the equilibrium E∗

2 is easily determined
since, as proved in the previous subsection, there exists at least
a value of k (k = 0) at which conditions (33) are violated.

On the other hand, for what concerns the character of E∗
3 ,

bearing in mind that ν ′∗/D = 1/τS � 1 and η′∗ = 1/τI �
1, the evaluation of (33) is carried out by retaining the
corresponding leading terms only. Such an analysis leads to

B1 > 0 for ∀μ,β,{
B3 > 0
B1B2B3 > B2

3 + B2
1B4

for

{
μ � 1 ∀β

μ > 1 β > βcr
,

B4 > 0 for ∀μ, β > βT,

(34)

where

βT = Dμ̂3[8 + 7Dμ̂ + 3μ̂2D2 − 2 (2 + Dμ̂)
√

2μ̂D (μ̂D − 1)]

(1 + Dμ̂)2 , (35)

with μ̂ = μ + 1.
Since βT > βcr as it follows from (26) and (35), E∗

3 is
asymptotically stable, for any value of μ, if β > βT.

By comparing the result reported in (25) with (34), we can
conclude that in the region

μ � 1, βex < β < βT,
(36)

μ > 1, βcr < β < βT,

E∗
3 is stable with respect to small homogeneous perturbations

but becomes unstable to the inhomogeneous ones; namely, the
system exhibits a diffusion-driven instability which is typically
referred to as Turing instability.

As known, the onset of Turing bifurcation corresponds to
the presence of a null root of the characteristic equation (31) for
a value of k �= 0, which is tantamount to requiring B4(k2) = 0.
Therefore, from (34) it can be verified that this bifurcation
takes place at β = βT and that, in correspondence to such a
value of the control parameter, the minimum of the biquadratic
function B4(k2) = 0 defines the critical wave number kT given
by

k2
T =

βT +
√

β2
T − 4β2

Tμ̂

4β2
Tμ̂

×
√

2βTμ̂

D

(
4μ̂2 − βT +

√
β2

T − 4βTμ̂2
)
. (37)

This wave number is associated to the stationary spatial
pattern generated as a consequence of the diffusion-driven
instability when the control parameters cross the Turing
bifurcation locus (35).

The complete bifurcation diagram in the μ-β plane,
showing the behavior of the system with respect to uniform
and nonuniform perturbations, is depicted in the top of
Fig. 2 for D = 6. This choice corresponds to the setup

shown in Ref. [13]. In particular, the bifurcation lines βcr (μ)
and βT (μ) , together with the curve βex (μ) , separate the
parametric plane into four distinct domains. The dynamics
occurring in region I are not taken into account since the
endemic states are meaningless in there. On the other hand,
the endemic state E∗

3 is unconditionally unstable if it falls into
domain II, defined by μ > 1 and βex < β < βcr. In this region,
both Hopf and Turing instabilities can occur. In domain III,
represented by (36), the steady state is stable with respect
to homogeneous perturbations but loses its stability with
respect to perturbations of given wave numbers k, so stationary
inhomogeneous patterns can be here observed. Finally, in
domain IV, corresponding to β > βT, E∗

3 is stable with respect
to both uniform and nonuniform perturbations.

In passing we note that the diagram shown in Fig. 2 slightly
differs from the corresponding one reported in Fig. 1 of
Ref. [13] since the Hopf bifurcation curve exhibits a different
behavior in the region μ < 1, so that the domain labeled
“I” in Ref. [13], where the system should be destabilized by
homogeneous oscillations only, does not occur in our model.

These results can be confirmed by investigating numerically
the characteristic equation (31). In particular, since (31) always
admits two negative real roots, hereafter it is possible to focus
the attention on the properties of the other two roots only.
Therefore, by setting the rescaled recovery rate at μ = 2.5
and considering ν ′∗ = η′∗ = 105, in the bottom of Fig. 2 we
depict the character of these roots in correspondence of the
points labeled A–F (shown in the top of Fig. 2), which are
representative of qualitatively different dynamical behaviors of
the endemic state E∗

3 . In detail, at point F, all the roots present
negative real part independently of k, namely, the system is
unconditionally stable. We checked that such a behavior also
holds in the region labeled “I” of Ref. [13], in agreement with
our theoretical predictions. On the other hand, at point E, the
characteristic equation (31) exhibits a null root for k = kT �= 0

052719-5



BARBERA, CONSOLO, AND VALENTI PHYSICAL REVIEW E 88, 052719 (2013)

A B C

D E F

FIG. 2. (Color online) (Top) Bifurcation diagram related to the endemic state E∗
3 in the μ-β parametric plane. The bottom figures are

representative of the real (solid line) and the imaginary (dotted lines) parts of two roots of (31) evaluated at the points (A–F), which lie along
the vertical dotted line indicated in the top figure.

and all the other roots with negative real part. This situation
corresponds to the onset of Turing bifurcation. Crossing the
bifurcation line βT (μ), namely, at point D, we observe a finite
range of wave numbers (not including k = 0) in which (31)
admits a positive real root. This interval corresponds to the
Turing instability region. By moving from point D to B, a pair
of complex conjugate roots reverses the sign of its real part at
k = 0 and thus manifests the occurrence of a Hopf bifurcation
(point C). So, at point B, both Turing and Hopf instability
arise. Finally, at point A, the system is fully destabilized by
virtue of the existence of a large interval of k (including k = 0)
where one root is always real and positive.

IV. NUMERICAL INTEGRATION OF
THE GOVERNING EQUATIONS

The analytical results obtained in the previous section are
now validated through the numerical integration of the gov-
erning system of differential equations (17). We present some
numerical results which are representative of the different
scenarios occurring as the control parameter β is varied. In

particular, we fix μ = 2.5 in order to explore the dynamics
corresponding to the points labeled in Fig. 2. We also set
the phenomenological parameters involved into the hyperbolic
model ν ′∗ = η′∗ = 105 and, when spatial effects are taken into
account, D = 6.

First, we investigate the dynamics occurring in region II
by choosing β = 55 (corresponding to point B of Fig. 2) in
the presence and in the absence of spatial effects, as shown in
Fig. 3. In particular, the numerical solution of the nonspatial
model (where all field variables do not depend on x) with
initial conditions S(0) = I (0) = 0.5 is depicted in Fig. 3(a). It
shows that, starting from an initial coexistence state, the system
evolves in time approaching the disease-free configuration E∗

1 ,
which, according to the analysis carried out in Sec. III A, is
the only stable equilibrium state in this region. In Figs. 3(b)
and 3(c), we integrate the spatially extended model (17) with
periodic boundary conditions at x = ±20 and the following
initial conditions:

S(0,x) = 0.5, I (0,x) =
{

α(1 − x2) −1 < x < 1,

0 otherwise,
(38)
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FIG. 3. (Color online) Dynamics observed at point B of Fig. 2. (a) Time evolution of susceptibles and infectives in the absence of diffusive
effects. The dotted and the dashed lines are representative of the endemic states E∗

2 and E∗
3 , respectively. (b, c) Spatiotemporal evolution

of susceptibles and infectives obtained in the presence of diffusive effects for α = 0.2 (b) and α = 0.3 (c). The corresponding trajectories
described in the phase plane are also shown in the figures on the right.

where the parameter α defines the initial density of infectives
at x = 0. Numerical results reveal a high sensitivity of the
system to small variations of this latter parameter. For instance,
in the case α = 0.2, the system rapidly converges towards the
disease-free equilibrium state [see Fig. 3(b)], whereas for a
slightly larger initial density of infectives, namely, α = 0.3,
spatial patterns are observed as a consequence of Turing
instability [see Fig. 3(c)].

Next, we investigate the dynamics occurring at the bound-
ary between regions II and III (point C of Fig. 2, obtained for
β = βcr = 60.025), which corresponds to the onset of Hopf
bifurcation in the nonspatial model. As can be noticed in
Fig. 4, the trajectories described in the phase plane show the
existence of an unstable limit cycle. In fact, by choosing as
initial conditions a configuration which lies outside the limit
cycle [Fig. 4(a)], the system spirals outwards until it reaches
the stable disease-free state E∗

1 . A periodic closed trajectory is
observed only if the initial condition is chosen along the limit
cycle [Fig. 4(b)]. Also, it should be mentioned that the period
of the time oscillations computed numerically, �t = 2.75,

is in very good agreement with the analytical one found in
Sec. III A, �t = 2π/

√
μ2 − 1 = 2.74.

In domain III, constrained between Hopf and Turing
bifurcation lines, both equilibria E∗

1 and E∗
3 are found to be

stable with respect to homogenous perturbations so that all
trajectories converge to one of these steady states depending
on the initial conditions. More precisely, by choosing β = 70
(corresponding to point D) and two sets of initial conditions
having the same value of susceptibles, S(0) = 0.5, but slightly
different values of infectives, I (0) = 0.09 and I (0) = 0.1,
the system tends to E∗

1 and E∗
3 , respectively [see Figs. 5(a)

and 5(b)]. In the same region, we also integrated the spatial
model (17) with the same kind of boundary and initial
conditions used in Figs. 3(b) and 3(c). Numerical integration
of the governing equations shows that, by choosing α = 0.15,
the system approaches in time the uniform steady state E∗

1 ,
which, thus, preserves the stability character deduced in the
presence of nonuniform perturbations [see Fig. 5(c)]. On the
other hand, increasing slightly the value of α, namely, α = 0.2,

spatial patterns around E∗
3 are observed [see Fig. 5(d)].
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FIG. 4. (Color online) Dynamics observed at point C of Fig. 2. The figures in the first two columns show the time evolution of susceptibles
and infectives, respectively, whereas the figures in the last column represent the corresponding trajectories on the phase plane. The initial
conditions are (a) S(0) = 0.307 ≡ S|E∗

3
, I (0) = 0.244 > I |E∗

3
; (b) S(0) = 0.307 ≡ S|E∗

3
, I (0) = 0.214 > I |E∗

3
.

We would like to mention that such patterns are analogously
generated by choosing several other typologies of initial and
boundary conditions. The results hitherto obtained also reveal
that, contrary to what one could expect, in the model under
investigation, the occurrence of Turing patterns depends upon
the choice of initial conditions. This behavior is justified by the
existence of an unconditionally stable steady state, E∗

1 , within
the same Turing region.

For β = βT = 76.959, namely, at the Turing threshold
(point E), the system gives rise to a waveform stationary in time
and oscillatory in space similar to the one depicted in Fig. 5(d).
The wavelength λT = 5.67 associated to this pattern agrees
quite well with the analytical one 2π/kT = 5.46 obtained by
using (37) (see Fig. 6).

Finally, crossing upward the Turing bifurcation curve,
and so entering region IV, the qualitative behavior of the
equilibrium E∗

3 changes and the spatial symmetry of the
system is restored. In fact, both steady states E∗

1 and E∗
3

are here unconditionally stable, and thus, according to the
choice of initial conditions, the system converges towards one
of these equilibria, as shown in Fig. 7 (obtained for β = 80,
corresponding to point F).

V. TRAVELING WAVE SOLUTIONS

In this section we get an insight into the behavior of
traveling wave solutions admitted by the system (17).

From the biological viewpoint, such solutions represent
spatial patterns of the distribution of the infection in the
population which propagate at a certain speed as a wave
through, for instance, the conversion of part of the susceptibles
into infected ones. In other words, traveling wave solutions
describe the mechanism by which a wave of infection advances
and invades the susceptible population.

Therefore, we look for solutions of the form S = S(z),
I = I (z), J S = J S(z), J I = J I (z), where z = x − V t is the
wave coordinate and V > 0 is the constant wave speed. This
requirement leads to the following set of ordinary differential
equations:

−V
dS

dz
+ dJ S

dz
= f (S,I ) ,

−V
dI

dz
+ dJ I

dz
= g (S,I ) ,

(39)

−V
dJ S

dz
+ ν ′ dS

dz
= − ν ′

D
JS,

−V
dJ I

dz
+ η′ dI

dz
= −η′J I ,

which obviously admits the same steady states (18) of the
hyperbolic model (17).

Since any traveling wave front solution must be a hetero-
clinic orbit in the phase space that links two steady states, we
first consider the linear stability of these equilibria with respect
to z by assuming

S = S∗ + Ŝeχz, I = I ∗ + Î eχz,
(40)

J S = Ĵ Seχz, J I = Ĵ I eχz,

so that the (39) is recast as⎡⎢⎢⎣
−V χ − f ∗

S −f ∗
I χ 0

−g∗
S −V χ − g∗

I 0 χ

χν ′∗ 0 −V χ + ν ′∗
D

0
0 χη′∗ 0 −V χ + η′∗

⎤⎥⎥⎦

×

⎡⎢⎢⎣
Ŝ

Î

Ĵ S

Ĵ I

⎤⎥⎥⎦ = 0. (41)
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FIG. 5. (Color online) Dynamics observed at point D of Fig. 2. (a, b) Time evolution of susceptibles and infectives in the absence of
diffusive effects obtained by using different initial conditions for the infectives, namely, I (0) = 0.09 (a) and I (0) = 0.1 (b). The dotted and
the dashed lines are representative of the endemic states E∗

2 and E∗
3 , respectively. (c, d) Spatiotemporal evolution of susceptibles and infectives

obtained in the presence of diffusive effects for α = 0.15 (c) and α = 0.2 (d). The corresponding trajectories described in the phase plane are
also shown in the figures on the right.

Nontrivial solutions of the linearized system (41) are found
iff χ satisfies the following characteristic equation:

[
(ν ′∗ − V 2)χ2 −

(
f ∗

S − ν ′∗

D

)
V χ + f ∗

S

ν ′∗

D

]
× [(η′∗ − V 2)χ2 − (g∗

I − η′∗)V χ + g∗
I η

′∗]

−
(

V χ − ν ′∗

D

)
(V χ − η′∗)f ∗

I g∗
S = 0. (42)

Evaluating (42) at E∗
1 and taking into account (23), it is easy to

ascertain that the disease-free equilibrium is always unstable.
In fact, the roots of (42), given by

χ1,2(E∗
1 ) =

−(
1 + ν ′∗

D

)
V ±

√(
1 − ν ′∗

D

)2
V 2 + 4 ν ′∗2

D

2(ν ′∗ − V 2)
,

(43)

χ3,4(E∗
1 ) = −(μ̂ + η′∗)V ±

√
(μ̂ − η′∗)2V 2 + 4μ̂η′∗2

2(η′∗ − V 2)
,
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are real and, in particular, at least two of them are
positive.

For what concerns the coexistence equilibria E∗
2 and E∗

3 ,
the characteristic equation (42) can be rewritten in the general

form

(V χ )4 + C1(V χ )3 + C2(V χ )2 + C3V χ + C4 = 0, (44)

being

C1 = 1(
1 − ν ′∗

V 2

)(
1 − η′∗

V 2

) [(
1 − ν ′∗

V 2

)
(g∗

I − η′∗) +
(

1 − η′∗

V 2

) (
f ∗

S − ν ′∗

D

)]
, (45)

C2 = 1(
1 − ν ′∗

V 2

)(
1 − η′∗

V 2

) [(
f ∗

S − ν ′∗

D

)
(g∗

I − η′∗) −
(

1 − ν ′∗

V 2

)
g∗

I η
′∗ −

(
1 − η′∗

V 2

)
f ∗

S

ν ′∗

D
− f ∗

I g∗
S

]
, (46)

C3 = 1(
1 − ν ′∗

V 2

)(
1 − η′∗

V 2

) [
f ∗

I g∗
S

(
ν ′∗

D
+ η′∗

)
−

(
f ∗

S − ν ′∗

D

)
g∗

I η
′∗ − (g∗

I − η′∗)f ∗
S

ν ′∗

D

]
, (47)

C4 = 1(
1 − ν ′∗

V 2

)(
1 − η′∗

V 2

) (f ∗
S g∗

I − f ∗
I g∗

S)η′∗ν ′∗

D
. (48)

Therefore, the stability of these equilibria will be again
investigated by using the Routh-Hourwitz criterion and taking
into account the hyperbolic nature of the model under
consideration through the assumptions V 2 
 min{ν ′∗,η′∗} and
g∗

I 
 η′∗.
From a direct inspection of (48), it results that E∗

2 is always
asymptotically unstable, being C4 < 0 for any choice of the
control parameters.

For the coexistence state E∗
3 , we see that, while C1 > 0

and C4 > 0 are always verified, the other two conditions,
C3 > 0 and C1C2C3 > C2

3 + C2
1C4, lead to restrictions on

both the control parameters and the wave speed. In detail,
the asymptotical stability of E∗

3 is ensured only in the region
μ > 1 iff

βex < β < βTW for V 2 
 min{ν ′∗,η′∗},
(49)

βTW < β < βcr for V 2
TW (β,μ) < V 2 
 min{ν ′∗,η′∗},

being

βTW = μ̂3

(1 + Dμ̂)2
{(D + 1)2[(μ̂D + 1)2 + 1] − μ̂D2(μ̂D + 1)

−D(D + 1)(μ̂D + 2)
√

μ̂[μ̂(D2 + 1) − 2]}, (50)

FIG. 6. (Color online) Dynamics observed at point E of Fig. 2,
namely, at the Turing threshold. The figure depicts the stationary pat-
tern originated around E∗

3 together with its characteristic wavelength.

V 2
TW(β,μ) = − (f ∗

S − g∗
I D)2 + f ∗

I g∗
S(D + 1)2

(D + 1)(f ∗
S + g∗

I )
, (51)

where the critical value of the wave speed in (51) is obtained
from the condition C1C2C3 − C2

3 − C2
1C4 = 0. Therefore, it

is possible to conclude that if the control parameter β lies
in the range βex < β < βTW [region T1 in Fig. 8(a)], the
stability of a traveling wave connecting the endemic state
E∗

3 with one of the other unstable states is guaranteed if
the wave speed does not exceed the upper bound given by
min{√ν ′∗,

√
η′∗}. On the other hand, a traveling wave solution

can be also observed in the range βTW < β < βcr [region T2 in
Fig. 8(a)], provided that the wave speed overcomes the thresh-
old VTW(β,μ) but does not overtake the previous upper bound.

These results suggest the possibility to build up a stability
diagram in the V -β plane, as in Fig. 8(b), where the curve
here depicted represents the function VTW(β,μ) evaluated
at μ = 2.5.

As can be verified, the characteristic equation (44) admits
a pair of purely imaginary roots V χ = iω under the following
constraints:

ω2 = C3

C1
, (52)

C1C2C3 = C2
3 + C2

1C4, (53)

so that (53) defines the Hopf bifurcation locus in the V -β plane,
which coincides with the curve represented in Fig. 8(b). In
fact, since the transversality condition is numerically verified
to be fulfilled, when the bifurcation locus (53) is crossed, the
system (39) undergoes a Hopf bifurcation at E∗

3 to a small
amplitude periodic solution, which corresponds to a traveling
wave solution of the hyperbolic system (17).

To validate these results, we carry out additional investiga-
tions by integrating numerically the system (39). In detail, we
consider two sets of parameters, (β,V ) = (55,3) and (52,3),
which identify, in the β-V parametric plane of Fig. 8(b), two
qualitatively different classes of dynamics occurring below
and above the bifurcation locus (53), respectively.
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FIG. 7. (Color online) Dynamics observed at point F of Fig. 2 for α = 0.10 (a) and α = 0.15 (b).

Figure 9, obtained for β = 55, shows the impossibility to
link two steady states with each other due to their instability
character. Indeed, by choosing as initial condition the state
E∗

1 or E∗
2 , the trajectory evolves in time toward the limit

cycle without entering it [see Figs. 9(a) and 9(b)], whereas,
starting from E∗

3 , the system spirals outwards approaching the
limit cycle from the interior [see Fig. 9(c)]. From a direct
inspection of Fig. 9 one can thus conclude that the limit cycle
is stable. On the other hand, the numerical results obtained for
β = 52 reveal the possibility of generating a stable connection
between two steady states, as depicted in Fig. 10. In particular,
depending on the choice of the initial conditions, by fixing a
point in space, two different scenarios can be observed as the
front passes by. If a perturbation acts in the neighborhood of
the disease-free state E∗

1 , an observer would see the infected
population growing from such an unstable zero to the stable
endemic value (I |E∗

3
), as depicted in Fig. 10(a). Such a situation

requires the initial dissipative fluxes to be large enough to
overcome the smallness of the nonlinear incidence term βSI 2.

On the other hand, if the configuration E∗
2 is perturbed (even

for zero initial dissipative fluxes), a spread of infectious disease
can propagate as a wave from an endemic state to the other
one; see Fig. 10(b). In particular, the connection between these
latter equilibria exhibits an overshoot, which determines a
surplus of infectives with respect to their final steady-state
value, followed by a damped ringing, due to the presence of
complex eigenvalues in (44).

VI. CONCLUSIONS

In this paper, along the leading ideas of extended thermo-
dynamics, we derived a hyperbolic system of PDEs in order
to describe the spread of disease in a population divided into
three subgroups: the susceptible, the infected, and the removed
individuals. In particular, it is assumed that the disease is
transmitted according to a nonlinear convex incidence rate.
The system of equations so obtained reduces to the parabolic

FIG. 8. (Color online) (a) Stability diagram in the μ-β parametric plane related to a traveling wave solution linking the endemic state E∗
3

with one of the other steady states. (b) Bifurcation diagram in the β-V plane evaluated at μ = 2.5.
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FIG. 9. (Color online) Numerical solution of system (39) for (β,V ) = (55,3) depicting the trajectories of the two species as a function of
the wave coordinate z and in the S-I phase plane. The plots represent the evolution of the system from the unstable steady states E∗

1 (a), E∗
2

(b), or E∗
3 (c) toward the stable limit cycle.

FIG. 10. (Color online) Numerical solution of system (39) for (β,V ) = (52,3) showing the stable connection (traveling wave) between E∗
1

(a) or E∗
2 (b) and E∗

3 .
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model considered in Ref. [13] when the relaxation times tend
to zero.

Moreover, we carried out the linear stability analysis of
the steady state solutions with respect to both homogeneous
and nonhomogeneous perturbations in terms of two control
parameters: the transmission rate and the recovery rate, both
normalized with respect to the birth rate of the population.
Analytical and numerical investigations showed that three
equilibria are admitted by the model in point: the disease-
free state, which is unconditionally stable, and two endemic
states, one of which is always unstable while the other one
changes its character according to the control parameter values.
Consequently it has been possible to draw the corresponding
stability diagram, which revealed some interesting features.
The most evident one is related to the existence of two kinds
of bifurcations, Hopf and Turing, which manifest themselves
with the appearance of stable oscillations in time and in space,
respectively. In particular, we demonstrated the existence of
Turing patterns in a well-defined region of the parametric
plane (36), slightly different with respect to the one found in
Ref. [13]. In fact, it has been shown that the diffusion-driven
instability occurs for any value of the recovery rate if the
strength of the transmission rate is smaller than a critical value
β < βT .

Also, since the infection can propagate as a wave, a
study of the behavior of a traveling wave solution has been
worked out. Our results revealed the existence of a critical
transmission rate β = βcr above which an epidemic wave
cannot occur. In particular, for βex < β < βTW , the infection
spreads with a velocity subjected to an upper limit due to the
hyperbolic nature of the model. On the other hand, for βTW <

β < βcr , an epidemic wave moves through the population
with a velocity lying between a lower and an upper bound.
Biologically speaking, the perturbation of a linear habitat,
which initially contains a smaller amount of infectives with
respect to susceptibles, may thus propagate as an infectious
wave moving across the population with a finite velocity and
can even exhibit overshoot phenomena. Finally, our theoretical
results are confirmed by numerical integration of the governing
equations.
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