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We investigate evolution models with recombination and neutrality. We consider the Crow-Kimura (parallel)
mutation-selection model with the neutral fitness landscape, in which there is a central peak with high fitness A,
and some of 1-point mutants have the same high fitness A, while the fitness of other sequences is 0. We find that
the effect of recombination and neutrality depends on the concrete version of both neutrality and recombination.
We consider three versions of neutrality: (a) all the nearest neighbor sequences of the peak sequence have the
same high fitness A; (b) all the l-point mutations in a piece of genome of length l � 1 are neutral; (c) the neutral
sequences are randomly distributed among the nearest neighbors of the peak sequences. We also consider three
versions of recombination: (I) the simple horizontal gene transfer (HGT) of one nucleotide; (II) the exchange of a
piece of genome of length l, HGT-l; (III) two-point crossover recombination (2CR). For the case of (a), the 2CR
gives a rather strong contribution to the mean fitness, much stronger than that of HGT for a large genome length
L. For the random distribution of neutral sequences there is a critical degree of neutrality νc, and for μ < μc and
(μc − μ) is not large, the 2CR suppresses the mean fitness while HGT increases it; for ν much larger than νc, the
2CR and HGT-l increase the mean fitness larger than that of the HGT. We also consider the recombination in the
case of smooth fitness landscapes. The recombination gives some advantage in the evolutionary dynamics, where
recombination distinguishes clearly the mean-field-like evolutionary factors from the fluctuation-like ones. By
contrast, mutations affect the mean-field-like and fluctuation-like factors similarly. Consequently, recombination
can accelerate the non-mean-field (fluctuation) type dynamics without considerably affecting the mean-field-like
factors.
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I. INTRODUCTION

Applications of statistical physics to molecular models of
biological evolution [1–8] and the origin of life [2,9,10] have
attracted much attention in recent years. A still unsolved and
interesting problem in evolution theory is the origin of sex.
It has been well recognized that recombination of genomes
from sexual organisms gives some evolutionary advantages
[11–14], which have been confirmed by many experimental
and theoretical results [15–18].

An important concept in modern molecular theory of
genetics and biological evolution is epistasis, which means
that different genes or mutations are not independent. The
epistasis is negative (positive) when the second derivative
of the fitness with respect to the number of mutations is
negative (positive). Feldman, Christiansen, and Brooks [13]
proposed that negative epistasis is needed for recombination
to be beneficial, but de Visser and Elena [18] reported that this
is not the case at least for viruses. To address the advantage
of sex, one needs to find some features, which are valid for
rather general situations. Here we solve the evolution models
with both neutrality (mutational robustness: the fitness does
not change for some mutations) [9] and recombination, and
identify clearly the evolutionary advantage of combining both
factors.

According to Ref. [19], for intermediate-size populations,
genetic drift (fluctuations due to finite population size) and
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selection together give a stronger benefit to recombination
than an appropriate epistasis. In [20] the advantage of
recombination has been assumed in case of neutrality. A further
advance was in [21], where the numerical calculations reveal
some increase of mean fitness in the case of recombination
and neutrality; however, there was no analytical theory for
the effect. Here, we solve rigorously an evolution model
with mutationally robust (neutral) fitness landscape and re-
combination, and give analytical theory for the phenomenon.
Our analytical solutions are consistent with Refs. [20,21].
According to our calculations, the increase of mean fitness
due to neutrality and recombination could be stronger than the
change due to epistasis [13], found in the HIV virus [22–26].
The effect does not depend much on population size and gives
a more general background to the recombination advantage
than the mechanism suggested in Ref. [19]. We give analytical
theory of the increase of mean fitness both for the HGT and
recombination with two-point crossing.

Here we consider the genome of length L as a collection
of L nucleotides of two types: +1 and −1 [3], and there are
2L different sequences, labeled by Si with 0 � i � 2L − 1.
Si has the probability pi(t) to appear at time t , and the
reproduction rate ri which is independent of time. In the Crow-
Kimura (CK) model [1,4], pi(t) satisfy coupled differential
equations in which the mutation and the reproduction appear
in different terms, and the CK model belongs to the parallel
mutation-selection scheme. One can subtract a constant from
ri without changing the coupled differential equations for
the CK model [4]. In the Eigen model [2], pi(t) satisfy
coupled differential equations in which the mutation and the
reproduction appear in the same term, and the Eigen model
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belongs to the coupled mutation-selection scheme. The CK
model [1,4] and the Eigen model [2] were first studied with the
single-peak fitness function (also called landscape), in which
one sequence, say S0, has higher reproduction rate, and other
sequences have small reproduction rate. For the CK model
with the single peak fitness function, one can simply choose
r0 of S0 to be A > 0, and ri of other Si with i �= 0 to be 0.

This paper is organized as follows. In Sec. II, we define
three models from the CK model [1,4] with the neutral fitness
landscape. The first one is a simple microscopic model of
infinite population, with neutral fitness landscape and one-
nucleotide exchange during recombination. Models of hori-
zontal gene transfer (HGT) without neutrality were suggested
recently [5,6] and some exact results were derived [6,8]. In
the second model, there is an exchange of l alleles during
one recombination event. The third model corresponds to
two-point crossover. For the first and second models, we derive
rigorous analytical solutions which are exact in the limit of
large genome length L. For the third model we derive a reason-
able analytical approximation for the increase of mean fitness
due to recombination. We perform numerical calculations for
the finite- and infinite-population version of the first model,
and finite-population version of the third model to check the
reliability of our analytical results. We find that our analytic
results are consistent with numerical results. In Sec. III, we
consider the dynamics of recombination. In Sec. IV, we
summarize and discuss our results. In Appendixes A, B, and
C, we give detail derivations for some results of Sec. III.

II. MODEL SYSTEMS

A. HGT model with neutrality

The Crow-Kimura (CK) model with single-peak fitness
landscape has been solved in [4]. In the single-peak fitness
landscape the 0th sequence has a fitness A and the rest have
a fitness 0. Different versions of neutral fitness landscapes
have been considered in [9]. Here we consider the simple
recombination in an infinite population in the case of the
specific neutral fitness landscape: the peak (0th) sequence with
only +1 nucleotides and its d ≡ νL neighbors (0 < ν � 1)
with single mutations have a Malthusian fitness A; other
sequences have a fitness 0. Due to neutrality, even without
recombination, the population is grouped around the sequence
with a large number of neutral neighbors (0th sequence in our
case) [27].

Now we first consider the case ν = 1. The infinite-
population version of the HGT model could be described via
the following system of equations for pn: total probabilities
of sequences in the nth Hamming class (collection of genome
types having the same number n of mutations) [5,6,8] with
0 � n � L,

dpn

dt
= pn(rn − R) + μ

L
[(L − n + 1)pn−1 + (n + 1)pn+1]

−μpn + c

[(
1 − n̄

L

) (
1 − n

L

)
+ n̄

L

n

L

]
pn − cpn

+ c

[(
1 − n̄

L

)
n + 1

L
pn+1 + n̄

L

(
1 − n − 1

L

)
pn−1

]
,

(1)

where c and μ are the per genome recombination and mutation
rates, rn is the fitness of the sequences from the nth Hamming
class, n̄ = ∑L

n=0 npn, and R = ∑
n rnpn is the mean fitness.

This system of equations is well known and was explained
in details in [6,8]. The probability of choosing a −1 spin in
the given sequence from the (n + 1)th class is (n + 1)/L. This
spin could be replaced by a +1 spin from the sequence pool;
the probability of such a choice is (1 − n̄

L
). Thus we obtain

the term c(1 − n̄
L

) n+1
L

pn+1 in Eq. (1). The other c proportional
terms in Eq. (1) are derived in a similar way.

In the limit of infinite genome length, the mean fitness
of the HGT model with the single-peak fitness [6] coincides
with the mean fitness Rsp of the Crow-Kimura model without
recombination [4]

Rsp = A − μ. (2)

Finite genome length corrections for the single-peak model
and the general fitness landscapes with the HGT have been
calculated in [8]. In Appendix B we investigate Eq. (1) for the
ν = 1 neutral case, r0 = A,r1 = A, and calculate the mean
fitness.

Now we consider the more general case: 0 < ν � 1. For
both single-peak and neutral-fitness-like fitness landscape with
νL neutral neighbors, the population is concentrated near the
0th Hamming class, and thus n̄/L � 1. The peak sequence
and neutral neighbor sequences have a fitness A, while other
sequences have a fitness 0. Neglecting n̄/L terms and the
terms from the higher classes, in Appendix A we get following
equations for p0 of the peak sequence and p1 of νL neutral
neighbors,

dp0

dt
= p0((A − μ) − R) + (μ + c)

L
p1,

(3)
dp1

dt
= p1((A − μ) − R) + p0μν,

up to O ∼ 1/
√

L relative accuracy.

B. The model of recombination with exchange of l alleles

In the second model (HGT-l), l spins (a genome part) are
exchanged during each recombination event. This is supported
by experimental data [23]. If we assume that cl � L, the
majority of the population is near the 0th Hamming class; we
can again write the equations for class probabilities. In the
steady state, extending Eq. (3) for l spin exchange, we have

p0(R − (A − μ)) = (μ + cl)

L
p1,

(4)
p1(R − (A − μ)) = p0μν.

During the recombination event, there is an exchange of l

nucleotides. The backflow to the wild sequence (first equation)
due to recombination is clp1/L. There is also a backflow
due to mutations μp1/L. The neutral neighbor sequence can
be obtained from the 0th sequence only via point mutations,
each one with a probability μ/L. As only νL mutations are
neutral, we get the multiply factor μν in the second equation
of Eq. (4). The details of the derivation of Eq. (4) are given in
Appendix B.
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FIG. 1. (Color online)
√

L(R − Rsp) ≡ √
L�R as a function of

the per genome recombination rate c for an infinite population HGT
model with l = 1,ν = 1,μ = 1, r0 = r1 = 2, and ri = 0 for i � 2.
Rsp = r0 − μ is the mean fitness of the single-peak fitness model;
see Eq. (2) and [4]. (a) The dashed line is the theoretical result for
L = 10 000 by Eq. (5), and the solid line is the numerical result.
(b) Infinite-population result (solid line) versus finite-population
result for L = 100 and population size N = 10 000 (dashed line); the
solid line was obtained by solving Eq. (1) with a numerical method.

We denote �R = (R − Rsp) the increase of the mean
fitness due to finite genome length, neutrality, and recombina-
tion. Equation (4) implies that

�R = μ

√
ν(1 + cl

μ
)

√
L

. (5)

This is the main result of our work. It demonstrates the
collective character of the common action of recombination
and neutrality.

For the fitness landscape with isolated peaks (ν = 0) with
high fitness A, the mean fitness is Rsp + O(1/L). The 1/

√
L

corrections in our model by Eq. (5) arises due to neutrality,
which we define as a collective phenomenon (a result of an
interaction of neutral neighbor sequences with high fitness).
Equation (5) shows that the effect could become very strong
in case of large l.

Our formula Eq. (5) is an accurate analytical estimate for
cl � L as shown in Fig. 1(a) for the case l = 1, ν = 1, and
L = 10 000. Figure 1(b) shows that the infinite population
case (solid line) obtained by solving Eq. (1) with a numerical
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FIG. 2. (Color online) �R ≡ R − Rsp versus the recombination
rate c for the infinite-population HGT model with L = 800,r0 =
2,r1 = 2, ri = 0,i > 1,ν = 1,μ = 1. The solid line corresponds to
the direct numerics. The upper dashed line is by Eq. (5); the lower
dashed line is given by higher accuracy formula Eq. (B15).

method is consistent very well with the finite-population case
when L = 100 and population size is N = 10 000 (dashed
line).

In Appendix B 3, we calculate �R up to the 1/L accuracy
as Eq. (B15) for the case l = 1 and ν = 1. Figure 2 shows that
Eq. (B15) is consistent with numerical data better than Eq. (5).

For the HGT model, how the neutral sequences distribute
among the nearest neighbors of the peak sequence influences
very little the value of �R.

C. Two-point crossover recombination

The third model corresponds to the two-point crossovers
recombination (2CR): during the recombination event one
generates two random points along the genome, and there is
an exchange of the piece of genome between such two points.

We first consider the case of full neutrality for the nearest
neighbor sequences of the peak sequence S0: ν = 1. Assuming
that the crossover points are randomly chosen along the
genome, for the two-point crossover case we get as an effective
length l = L/6, which is derived in Appendix C. From Eq. (5),
at ν = 1 we get an estimate

�R

μ
∼

√
c

6μ
. (6)

Let us assume that both the total mutation rate μ and the
recombination rate c are proportional to the genome length L:
μ = μ0L, c = c0L. According to the HIV data in [22] and its
analysis [26], we take μ0 = 0.0001 and c0 = 0.002 according
to [24]. Thus we have for L = 10 000 the total mutation rate

μ ∼ 1. (7)

While Eq. (5) has been confirmed by Fig. 1 for the case l = 1,
Eq. (6) is a qualitative estimates for the 2CR model. We can
write a more general version of Eq. (6) for the mean fitness
increase due to recombination in the 2CR model at the limit
of the large L:

�R

μ
= φ

(
c

μ

)
, (8)

where φ is some function.
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FIG. 3. (Color online) (�R)/μ versus the genome length L for
the 2CR model and the infinite population HGT. (a) For the model
with parameters c/μ = 20,r0 = 2,r1 = 2, and ri = 0 for i > 1,
ν = 1, and L � 1000. The solid line corresponds to the infinite
population HGT. The dashed line corresponds to the 2CR model
with the population size 104. (b) For the HGT model with the infinite
population and same parameters as (a), but with L up to 10 000.

Figure 3 shows �R/μ ≡ (R − Rsp)/μ as a function of
the genome length L for the infinite population HGT (solid
line) and the finite population N = 104 2CR model obtained
by numerical calculations. Figure 3(a) shows that the dashed
line is larger than the solid line for L > 400. Our computer
facilities do not allow us to perform direct numerics for
recombination with L = 10 000. We calculate the �R/μ for
different values of L, and extrapolate our results for the
realistic case with L = 10 000. The maximal genome length
of our numerics is L = 2000, where �R/μ ≈ 0.2 for 2CR and
0.084 for infinite population HGT. Our results indicate that for
L = 104 and c = 20, we have

�R/μ = 0.2, (9)

while the numerics of HGT gives �R/μ = 0.042. Thus �R/μ

of the 2CR model is about 5 times larger than that due to HGT
for L = 10 000. For c = 1, HGT gives only 0.0145, which is
about 10 times smaller than that in the 2CR model. Peck and
Waxman [28] claimed that the recombination can change the
error threshold.
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FIG. 4. (Color online) �R/μ ≡ (R − Rsp)/μ versus the degree
of neutrality ν for the finite-population 2CR model with population
size N = 104,L = 1000,c/μ = 20, and A = 2. The solid line corre-
sponds to the 2CR model. At ν = 1, the upper dashed line corresponds
to the HGT-2 model and the lower dashed line corresponds to the
HGT model. (a) All the neutral sequences correspond to the 1 point
mutations in the adjacent sites in one part of the genome; (b) the
neutral sequences are randomly distributed in the first Hamming
class.

In the next step, we consider the partial neutrality for
the nearest neighbors of the peak sequences S0; i.e., ν < 1.
According to the experimental data, ν = 0.27 for some RNA
viruses [29]. Contrary to the result of Fig. 3(a) for ν = 1, now
�R decreases with the L for the 2CR model.

Some results of our numerical calculations are given
in Fig. 4(a) for the case, when all the neutral sequences
correspond to the mutations at the adjacent sites. Below
some critical value of neutrality μc [νc ≈ 0.25 in Fig. 4(a)],
�R/μ ≡ (R − Rsp)/μ < 0. Let us try to explain qualitatively
this phenomenon.

Equation (24) in [8] implies that for the single peak
fitness landscape, there is a decrease of fitness due to the
recombination,

�R1 = − c

A(A − 1)L
. (10)

To calculate the change due to neutrality, we should consider
both Eq. (5) and (10). For ν < νc, the decrease of Eq. (10) is
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FIG. 5. (Color online) The mean fitness R versus recombination
rate c for the model of [26] with L = 100 and ν = 1.

larger than the increase due to neutrality given by Eq. (5) and
�R/μ is negative; for ν > νc, the contribution of Eq. (5) to
�R/μ is larger than that of (10) and �R/μ is positive.

The |�R1| for the 2CR model is larger than that for the HGT
model because the effective c for the 2CR model is larger. Thus
the critical value ν, νc, of the 2CR model is larger than those
of the HGT models. We also study the case that the neutral
sequences are randomly distributed in the first Hamming class
and show our calculated results in Fig. 4(b), which is similar
to Fig. 4(a).

We perform the numerics for the 2CR model with different
values of L and c. We find that νc slightly changes with c, but it
is strongly affected by L. At L = 500, νc = 0.2; at L = 1000,
νc = 0.25; and at L = 2000, νc is about 0.36.

D. The HIV case with fitness from [26]

The realistic fitness landscape of HIV is too complicated,
and simple microscopic models have been introduced recently
[24,26]. Based on the experimental data of [22], Vijay et al.
[26] suggested the following fitness landscape:

rn = 1 − 0.731
n3

n3 + (L/2)3
, n > 1. (11)

Although in [22] it has been reported that there is a positive
epistasis, the fitness in Eq. (11) does not have a definite
epistasis [the sign of the curvature of the function r(n) ≡ rn]:
the epistasis is negative for n < nc and positive for n > nc,
where nc = L/24/3.

Figure 5 shows the results for the model of [26] with
fitness of Eq. (11). We see that recombination gives a slight
advantage in the infinite population limit. Thus, contrary to that
reported in Ref. [22] there is no discrepancy between theory
and experimental data.

III. THE DYNAMICS OF RECOMBINATION

Consider now the dynamics in case of HGT with a
narrow and symmetric original distribution [26]. For the real
biological applications, one needs to investigate how the
population moves on a Hamming distance much smaller than

FIG. 6. The dynamics for the model of [26] with the biological
motivated values of parameters from [19] with L = 100, N = 10 000,
f (m) = 2m + 0.04(1 − m)2. Originally the population is located at
L/10 Hamming distance from the reference sequence. The time scale
is chosen to have L mutations during the unit period of time. The mean
fitness as a function of t/100, t is the time, for μ = 1,c = 0, upper
line; μ = 1,c = 1, middle line; μ = 2,c = 0, lower line.

the genome length. The virologists measure the diversity and
the divergence. Consider Pi as the fraction of population with
the ith sequence, 0 � i � 2L − 1. The divergence is defined
as α = ∑

i Pidi0/L, where di0 is the number of mutations
(Hamming distance) between sequences 0 and i. We define
m = 1 − 2α. The diversity is defined as π = ∑

i,j PiPjdij /L,
where dij is the Hamming distance between sequences i and
j . For the HIV case the nucleotide diversity after the evolution
in the patient is π ≈ 0.03–0.04 [30].

In Ref. [8] the dynamics of recombination has been in-
vestigated using the Hamilton-Jacobi-Equation (HJE) [31,32].
In the selection-free case it has been found that m(t) is
independent of the recombination rate. We performed a similar
analysis and found that for the symmetric fitness function and
original distribution, the recombination does not change the
dynamics for a rather large periods of time.

We performed numerical simulations for both positive
and negative epistasis for the biological motivated values
of parameters from [19] with a finite population. Figure 6
illustrates that involving recombination with the same rate as
the mutation only slightly affects the divergence [α is defined
through the equation f (1 − 2α(t)) = R], while the doubling of
the mutation rate affects the divergence strongly. On the other
hand, we have found that the variance does not distinguish the
mutation and recombination; rather they affect the variance
similarly. For the population size N = 10 000, the dynamics
becomes smoother than in the case when N = 1000. In [26]
it has also been realized from the numerical simulation that
the recombination strongly influences the diversity and less on
divergence.

One should distinguish the mean-field-like divergence,
mean fitness, haplotype frequency, and fluctuation-like (di-
versity, mean-fitness variance, diploid genotype frequency)
quantities in evolution; see Table I. In this article we found the
results (different behavior under mutation and recombination)
for the divergence and diversity; the character of the rest of the
evolution factors was already known.
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TABLE I. Mean-field-like and fluctuation-like evolution quantities.

Mean-field-like evolution Fluctuation-like
quantities quantities

Divergence Diversity
Mean fitness Mean fitness variance
Haplotype frequency Diploid genotype frequency

Linkage disequilibrium

IV. DISCUSSION

The robustness of fitness landscapes is very common for
many viruses [33]. We derived some analytical results for
infinite population models with neutral fitness landscape and
recombination. Our numerics confirms that our analytical
results work well even for the finite populations. The result
of common action of neutrality and recombination depends
on the concrete version of neutrality and recombination. We
considered a simple HGT model with an exchange of a
single nucleotide during the recombination event, the HGT
with the exchange of l-adjacent nucleotides (HGT-l), and
recombination model with two crossover points 2CR. We
considered several version of of neutrality, considering neutral
networks: the case (a) with complete neutrality at the first
Hamming class; the case (b) when all the neutral sequences
at the first Hamming class correspond to the mutations at the
adjacent sites; in case (c), the neutral sequences are randomly
distributed in the first Hamming class.

We found that for the case (a) of complete neutrality in the
first Hamming class, the recombination with two crossover
points can have much stronger affect on the mean fitness than
the horizontal gene transfer. Two point recombination strongly
(10 times for L = 1000 and certainly more for the real virus
genome lengths) increases the contribution of neutrality to the
mean fitness.

If only ν fraction of 1-point mutations are neutral, then
for ν < νc the two point recombination suppresses the mean
fitness, while HGT increases it. The νc slightly depend on
the recombination rate and strongly depends on the genome
length, for L = 1000 it is about 0.25, and for L = 2000, νc ≈
0.36. These results are derived for the J = 2 and it is better
to perform a numerics for a concrete version of neutral fitness
landscape.

In the dynamics the recombination distinguishes the mean-
field-like and fluctuation-like variables. The recombination
just acts heavily on the second part, while it only slightly affects
the mean-field-like characteristics. In contrast, the mutation is
active in both cases. From the evolutionary perspective, it is a
serious advantage to have both robust (mainly mean-field-like)
and fragile (connected with fluctuations) features.
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APPENDIX A: RECOMBINATION IN A
TWO-DIMENSIONAL FITNESS LANDSCAPE

To describe the recombination with the νL neutral neigh-
bors, we consider 2-dimensional (two-block) evolution model
with recombination [8,34]. In the two-block evolution model
with the block lengths L1 ≡ νL,L2 = L(1 − ν) and total
length L = L1 + L2, we identify L1 spins with neutral mu-
tations and L2 spins with non neutral mutations. We consider
the following system of equations [8] for the probabilities
pn,m,0 � n � L1,0 � m � L2:

dpn,m

dt
= (rn,m − R)pn,m − μpn,m

+ μ

L
[(L1 − n + 1)pn−1,m + (n + 1)pn+1,m

+ (L2 − m + 1)pn,m−1 + (m + 1)pn,m+1] − cpn,m

+ c

L

[(
1 − n̄

L1

)
(L1 − n) + n̄

L1
n

]
pn,m

+ c

L

[(
1 − m̄

L2

)
(L2 − m) + m̄

L2
m

]
pn,m

+ c

L

[(
1 − n̄

L1

)
(n + 1)pn+1,m

+ n̄

L1
(L1 − n + 1)pn−1,m

]

+ c

L

[(
1 − m̄

L2

)
(m + 1)pn,m+1

+ m̄

L2
(L2 − m + 1)pn,m−1

]
, (A1)

where n̄,m̄ are defined as

n̄ =
∑
n,m

pn,mn,

(A2)
m̄ =

∑
n,m

pn,mm.

We consider the following fitness landscape,

r0,0 = r1,0 = A, (A3)

and for all other sequences rn,m = 0. Denoting pn,0 =
pn,p0,1 = P1, we derive

dp0

dt
= p0((A − μ) − R) + (μ + c)

L
p1 + (μ + c)

L
P1,

dp1

dt
= p1((A − μ) − R) + p0μν, (A4)

R = A(p0 + p1),

and

dP1

dt
= P1(−A) + p0μ(1 − ν). (A5)

Let as first assume that

P1 � p1,p0 � p1. (A6)

We are interested in the steady state solutions. Dropping P1

term in the first equation of Eq. (A4), we derive from the first
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and second equations of Eq. (A4):

�R ≡ R − (A − μ) =
√

μν
(μ + c)

L
� 1. (A7)

We obtain from the second equation of Eq. (A4) and Eq. (A5):

p0 = p1
�R

μν
= p1

√
(μ + c)

μνL
,

(A8)

P1 = μ(1 − ν)

A
p0.

Since νL � 1, we have p0 � p1 thus Eq. (A6) is valid.
The third equation in Eq. (A4) gives an equation to define

p1

p1

(
1 + �R

νμ

)
= (A − μ)

A

(
1 + �R

A − μ

)
. (A9)

Thus we derive up to order �R:

p1 = (A − μ)

A

[
1 + �R

(
1

A − μ
− 1

μν

)]
. (A10)

From Eq. (A1) we derive

pn,0 = p1

(
νμ

A + �R

)n−1

,

(A11)
p1,1 = μ

A + �R

[νP1 + (1 − ν)p1].

The probabilities for the mixed classes pn,m are calculated
recursively,

pn,m = μ

A + �R

[νpn−1,m(1 − ν)pn,m−1]. (A12)

From what we have discussed above, we can neglect the P1

term in Eq. (A4) to get Eq. (3) of the main text:

dp0

dt
= p0((A − μ) − R) + (μ + c)

L
p1,

(A13)
dp1

dt
= p1((A − μ) − R) + p0μν.

APPENDIX B: THE DERIVATION OF EQ. (4)

1. The case ν = 1

Consider the case ν = 1, the proof can be easily generalized
to the case ν < 1. During the recombination there is an
exchange of l neighbor spins in the genome. The distribution
of pn for neutral fitness landscape has been investigated well
in [9].

We consider the equations near the equilibrium. If the
Hamming classes have high fitness A till the maximal distance
m, and zero fitness for the higher classes, then the highest
population is at the mth Hamming class, pm ≈ (1 − μ/A),
and decreases for the higher classes via degrees of μ/A; see
Eq. (B9) below. There is much smaller population for the
classes n < m, pm−1 ∼ 1/

√
L. In our case m = 1. Thus we

assume the following scaling for the solutions:

p0 ∼ 1/
√

L, (B1)

p1 ∼ L0, pn for n > 1 decreases quickly with n, and therefore

n̄ ≡
∑
n=0

npn � L. (B2)

Since pn for n � 3 are much smaller, we consider below
only p0, p1, and p2 and obtain the following system of
equations for them:

dp0

dt
=

[
p0((A − μ) − R) + (μ + cl)

L
p1

]
+ cl(l − 1)

L2
p2,

dp1

dt
= [p1((A − μ) − R) + p0μ] + ck1lp0 + 2cl

L
p2,

(B3)
dp2

dt
= [−(μ + R)p2 + p1μ] + ck2lp1 + 3cl

L
p3,

R = A(p0 + p1),

where k1,k2 are ∼ 1 to be derived below.
The terms in the first two equations outside the brackets

[. . . ] are suppressed via a coefficient 1/L. Ignoring them we
obtain Eq. (3) of the main text for the case ν = 1.

Neglecting high-order terms in Eq. (B3) and considering the
steady-state solution, one can get from the first two equations
in Eq. (B3)

�R ≡ R − A + μ =
√

μ(μ + cl)√
L

� 1. (B4)

First, ignoring the high-order terms in the second equation
in Eq. (B3), we get

p0

p1
= �R

μ
. (B5)

Then, using the last equation in Eq. (B3) and Eq. (B5), we get

Ap1

(
1 + �R

μ

)
= A − μ + �R. (B6)

Since �R � 1, one can neglect the term of order �2
R and

obtain from Eqs. (B4)–(B6) the following equations:

p1 = A − μ

A

[
1 +

√
μ(μ + cl)√

Lμ

(
μ

A − μ
− 1

)]
,

(B7)

p0 = A − μ

A

√
μ(μ + cl)

μ
√

L
.

Thus p0 is smaller than p1 by a factor of order 1/
√

L.
Consider the equations for pn with n � 2. The recombi-

nation does not change the bulk expression for pn for n � 2.
Thus we have the same expression for pn/p1 as before. For
n � 2

dpn

dt
= −(μ + R)pn + pn−1μ. (B8)

One can derive equations for pn with n � 2 and n̄ as follows:

pn = p1

(
μ

A + �R

)n−1

[1 + O(1/
√

L)],

(B9)

n̄ = A

A − μ
.

Let us give the details of derivation for higher order terms
in Eq. (B3). As the distribution of pn coincides with the case
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c = 0 with the accuracy 1/
√

L, we write simple, HGT-like
expressions for the recombination terms on the right-hand side
of Eq. (B3).

Now we first consider the second term in the right-hand side
of the first equation in Eq. (B3). There are L sequences with
only one −1 spin. For each such sequence, the probability that
a recombination of length l contains one −1 spin is l/L. Thus
we get a factor L × l/L = l. Multiplying this factor by the
rate of such events, c/L, we obtain factor cl/L. Adding to this
factor the rate of mutation μ/L, we get the factor (μ + cl)/L.

Consider the last term in the first equation of Eq. (B3).
There are L(L − 1)/2 sequences in the second Hamming
class. Among L(L − 1)/2 sequences in the second Hamming
class, there are (L − 1) sequences with the adjacent two −1
spins. During one recombination event with the conversion of
l adjacent spins, there are (l − 1) possibilities to covert two −1
spins into +1 spins. There are (L − 2) sequences with two −1
spins, at distance 2 from each other. We can convert them to
the +1 spins in (l − 2) ways. There are (L − l) sequences with
two −1 spins at the distance l from each other. We can convert
them to the +1 spins with one piece of l spins. Collection
all of these terms among L(L − 1)/2 sequences in the second
Hamming class, we obtain the factor:

2

L(L − 1)

l∑
n=1

(L − n)(l − n)

= 2

L(L − 1)

[
Ll2 − (L + l)l(l + 1)

2
+ l(l + 1)(l + 2)

6

]

≈ l(l − 1)

L
. (B10)

on the right-hand side of the first equation of Eq. (B3). That
is why a small factor 1/L arises (pl is the population of the
whole Hamming class). Another c/L coefficient arises as the
probability of exchange l allele and eventually we get the factor
cl(l − 1)/L2 as the coefficient of p2.

The recombination from the higher Hamming classes to
the lower is accompanied with the small coefficient c/L; see
the second and third equations in Eq. (B3). The origin of this
small coefficient is implicit: the probability of one sequence
in the (n + 1)th Hamming class is L times smaller than for the
sequence in the nth Hamming class, and equations are written
for the class probabilities in Eq. (B3).

Consider now the recombination terms to the higher classes
ck1l
L

p0 and ck2l
L

p1. The first term arises due to recombination
event changing one spin in the 0th class. The probability to
get a −1 spin due to exchange is n̄/L = (1 − μ/A)−1/L [see
the term ∼ n̄/L in the last line of Eq. (1) of the main text];
multiplying by l we get k1 = 1

(1−μ/A) . In the same way way we

get k2 = 1
(1−μ/A) .

What changes when during the recombination there is an
exchange by l alleles which are not adjacent neighbors? Now in
the first equation we have on the right-hand side K 2c

2L2 p2, K ∼
1 instead of K = l(l − 1)/2; the coefficients k1,k2 are also
modified. Therefore, again we can get Eq. (4) with accuracy
∼ 1/L. We proved that the contribution of p2 terms is ∼ 1/L

and can be ignored in Eq. (4). In the same way we found that

the contribution of pn,n � 3 also can be ignored in Eq. (4).
They are ∼ 1/Ln−1 even smaller than the contribution of p2.

2. The case ν < 1

We drop the P1 terms in the equation due to the scaling by
Eq. (A8). Now we have for p0,p1,p2:

dp0

dt
=

[
p0((A − μ) − R) + (μ + cl)

L
p1

]
+ 2cl(l − 1)

L2
p2,

dp1

dt
= [p1((A − μ) − R) + p0νμ] + cp0

L

+ cl

L
(2k1p2 + p1,1), (B11)

dp2

dt
= [p2(−μ − R) + p1νμ] + ck2p1

L
+ 3cl

L
p3,

R = A(p0 + p1).

We have one new term clp1,1/L in the second equation. As
we consider only ∼ 1/

√
L terms in the expression of p0, this

term can be ignored. Considering the steady-state solution
of Eq. (B11) without the third equation as in the previous
subsection, we derive Eq. (4) in the main text.

3. Higher order expression of �R for the case ν = 1 and l = 1

In this subsection, we consider the higher order, more
accurate expressions for p0 and p1 for the case ν = 1 and
l = 1. In such case, we can have Eq. (1) which implies that in
the steady state p1 and p0 satify the equations[

(A − R − 1)p0 + 1 + c

L
p1 − c

n̄

L
p0

]
− c

L

n̄

L
p1 = 0,

(B12)

[(A − R − 1)p1 + p0] + 2
1 + c

L
p2 − c

L
p1 = 0,

where we have set μ = 1. To take into account higher order
corrections for p1 and p0, we propose the ansatz

p1 = A − 1

A

[
1 +

√
(1 + c)√

L

(
1

A − 1
− 1

)
+ x

L

]
,

(B13)

p0 = A − 1

A

[√
(1 + c)√

L
+ y

L

]
,

and get the following system of equations:

(A − 1)3/2

A

√
(1 + c)(x + y) + A − 1

A

√
(1 + c)x

+ c
√

(1 + c)
A − 1

A
+ (1 + c)3/2 A − 2

A − 1
= 0,

A − 2

A
(1 + c) + (A − 1)2

A
(x + y) − (A − 1)

A
x

+ 2c
(A − 1)

A
+ 2(1 + c)

A − 1

A

(
A +

√
1 + c

L

)
= 0,

R = (A − 1) +
√

1 + c

L
+ (A − 1)(x + y)

L
. (B14)

The last equation of Eq. (B14) implies

�R =
√

1 + c

L
+ (A − 1)(x + y)

L
, (B15)
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The expressions for x and y can be obtained by solving the
first two equations of Eq. (B14).

APPENDIX C: FACTOR 1/6 IN THE THIRD MODEL

Consider a genome of length L labeled by integer i =
1,2, . . . ,L. One can randomly choose two integers M and

N between 1 and L with 1 � N < M � L. With L as the unit
of the length and for a large L, the average length l ≡ M − L

in unit of L is given by

l

L
=

∫ 1

0
dx

∫ x

0
(x − y)dy = 1

6
, (C1)

where 0 � y ≡ N/L < x ≡ M/L � 1. Thus l = L/6.
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