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Long-time mean-square displacements in proteins
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We propose a method for obtaining the intrinsic, long-time mean square displacement (MSD) of atoms and
molecules in proteins from finite-time molecular dynamics (MD) simulations. Typical data from simulations are
limited to times of 1 to 10 ns, and over this time period the calculated MSD continues to increase without a clear
limiting value. The proposed method consists of fitting a model to MD simulation-derived values of the incoherent
intermediate neutron scattering function, Iinc(Q,t), for finite times. The infinite-time MSD, 〈r2〉, appears as a
parameter in the model and is determined by fits of the model to the finite-time Iinc(Q,t). Specifically, the 〈r2〉 is
defined in the usual way in terms of the Debye-Waller factor as I (Q,t = ∞) = exp(−Q2〈r2〉/3). The method is
illustrated by obtaining the intrinsic MSD 〈r2〉 of hydrated lysozyme powder (h = 0.4 g water/g protein) over
a wide temperature range. The intrinsic 〈r2〉 obtained from data out to 1 and to 10 ns is found to be the same.
The intrinsic 〈r2〉 is approximately twice the value of the MSD that is reached in simulations after times of 1 ns
which correspond to those observed using neutron instruments that have an energy resolution width of 1 μeV.
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I. INTRODUCTION

The mean-square displacement (MSD) of an atom is a
fundamental dynamical quantity. In proteins the temperature
dependence of the average MSD has been widely used to
characterize the internal flexibility of the protein [1–11].
The MSD can be extracted from dynamic neutron scattering
experiments. Since the incoherent neutron scattering cross
section of the hydrogen (H) nucleus is large, the observed
MSD is dominated by the MSD of H in the protein. As a result,
the MSD of H in proteins has been extensively investigated
by neutron scattering [1–5,12] and the results compared with
molecular dynamics (MD) simulation, a technique particularly
complementary to dynamic neutron scattering [13]. These
studies have been performed as a function of temperature,
pressure, and hydration and in a variety of solvents [14].

Most neutron and MD studies to date have investigated
the MSD on a picosecond–nanosecond (ps-ns) time scale
[1,5,15–28]. At low temperatures (T < 100 K), a protein is
essentially harmonic. As the temperature is increased beyond
the harmonic regime, proline puckering transitions and methyl
rotations are activated [29]. These onsets are independent of
protein hydration. At temperatures T � 160–220 K, jumps of
nonexchangeable H in the nonproline methylene groups and
aromatic phenyl rings dominate the MSD on the time scale of
10−9 seconds. For T � 220 K protein flexibility arises chiefly
from the hydrophobic and aromatic residues. In contrast,
motion of the hydrophilic residues remains suppressed due
to stable H-bonding interactions with the neighboring protein
residues and hydration water. As T is further increased, at
TD ∼ 180–220 K, a strongly hydration-dependent increase is
found in the localized diffusion of protein nonexchangeable
H atoms and in jumps in the hydrophilic side chains. The
resulting increase in MSD is denoted the dynamical transition
(DT). The jumps in hydrophilic side chains are strongly
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coupled to the relaxation rates of the H bonds formed with
hydration water [29].

MD has also been used to probe the pressure dependence
of protein MSDs [24,25,30,31]. These MD studies revealed
a qualitative change in the internal protein motions at p ∼
4 kb and the existence of two linear regimes in the MSD.
The qualitative change is a loss with increasing pressure of
high-amplitude, collective protein modes below 2 THz in
effective frequency, accompanied by restriction of large-scale
solvent translational motion [30]. The DT was found to be
pressure independent, indicating that the effective energy bar-
riers separating conformational substates are not significantly
influenced by pressure. In contrast, vibrations within substates
stiffen with pressure, due to increased curvature of the local
harmonic potential in which the atoms vibrate [31].

Given the extensive interest in MSDs, both observed and
simulated, it is useful to clarify in detail what is measured
and calculated and the possible relation to equilibrium ther-
modynamics. A global incoherent dynamic structure factor,
S(Q,ω), dominated by H, is observed in neutron scattering
measurements. A first consideration is that the H atoms in
a protein occupy a spectrum of sites and the fluctuation of
H in these sites follows a wide distribution, which can be
modeled using a Weibull form [32]. This heterogeneity in
the distribution of MSDs leads to dynamic structure factors,
S(Q,ω), that deviate from Gaussian behavior in the scattering
wave vector Q. The heterogeneity introduces a correction to
fourth order in Q that can be used to extract the variance of
the distribution of MSDs [33,34].

Similarly, the global MSD obtained from neutron scattering
measurements depends on the energy resolution employed.
The MSD is obtained from the elastic (ω = 0) component of
the resolution-broadened dynamic structure factor, SR(Q,ω =
0), as

〈r2〉R = −3
d ln SR(Q,ω = 0)

dQ2
. (1)
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The 〈r2〉R extracted in this way is the MSD after it has had
time to develop over a limited time, 0 < t < τR , only. The
time τR is set by the width of the energy resolution of the
neutron instrument, τR � h̄/W , where W is the full width
at half-maximum (FWHM) of the resolution function. Typical
instrument energy resolutions lie in the range 100 μeV > W >

1 μeV, which corresponds to evolution times 10 ps < τR <

1 ns. Over this time range the extracted 〈r2〉R is still increasing
with decreasing W (increasing τR), indicating that the intrinsic,
long-time (τR → ∞) value of 〈r2〉 has not been observed
[12,17,18,35].

In an earlier paper [36], we proposed a method to extract
the intrinsic, long-time MSD 〈r2〉 from resolution-dependent
data. In the method, the intrinsic 〈r2〉 was defined in terms
of the t = ∞ limit of the incoherent intermediate scattering
function (ISF), I (Q,t), as

I∞ = I (Q,t = ∞) = exp
(− 1

3Q2〈r2〉) . (2)

The method consists of constructing a model I (Q,t) that
includes I∞ and 〈r2〉, calculating the corresponding SR(Q,ω =
0) including the resolution width, W , and fitting the model to
the observed SR(Q,ω = 0). The intrinsic 〈r2〉 is obtained from
the fit as a fitting parameter. In this way an intrinsic, long time
〈r2〉 was obtained from resolution dependent data.

The incoherent ISF, Iinc(Q,t), that is observed in neutron
measurements can also be calculated directly from simulations
[13]. A comparison between the simulation-derived and the
observed MSD can be made by calculating the simulation-
derived MSD in exactly the same way that it is obtained
from experiments [6,21,35,37]. That is, from the simulated
Iinc(Q,t), the incoherent dynamic structure factor S(Q,ω) is
calculated including the instrument resolution width, W . The
MSD is obtained from the slope of the calculated resolution-
broadened SR(Q,ω) at small Q using Eq. (1). This effectively
compares the MSD after it has evolved for a specific time τ

set by W . In this way excellent agreement between simulated
and observed MSDs has been achieved. This also opens the
question: Could the simulated intrinsic, long-time 〈r2〉 be
obtained by fitting a model to finite-time values of a calculated
Iinc(Q,t)?

To explicitly recognize the time dependence of 〈r2〉R , the
concept of neutron time windows was introduced, a concept
in which the effects arising from the finite energy resolution
are fully integrated [33,38]. The concept has also been
incorporated into the formalism that describes the dynamics
accompanying the glass transition in molecular systems. When
the protein relaxation time decreases with temperature, as it
usually does, it has been shown that measurement of 〈r2〉R over
a finite time window can introduce an apparent DT when there
is no actual change in the elastic incoherent dynamic structure
factor, S(Q,ω = 0) [33,38]. To avoid this issue, identification
and use of an intrinsic, long-time MSD 〈r2〉 would be helpful.

Several MD studies have been performed aimed at under-
standing the origin of elastic neutron scattering from proteins
[20–22,29,32–34,38]. These studies have characterized in
detail the contributions of time dependence, of non-Gaussian
behavior, and of dynamical heterogeneity to elastic scattering
on the ps-ns time scale. The strong time dependence of
〈r2〉R revealed in these studies further opens the question

whether an intrinsic long-time, time-independent MSD can
be obtained from simulations. Given that folded proteins
have well-defined three-dimensional structures, a well-defined
long-time, intrinsic MSD would seem to be reasonable and
should exist. That is, the internal MSD arising from internal
motions in proteins should converge to a plateau as a function
of time and a parallel in proteins of the Debye-Waller and x-ray
B factors found in the crystalline state should exist. Given this
assumption, the question focuses on developing a method to
extract the intrinsic 〈r2〉 from finite-time simulations.

In addition to the ISF Iinc(Q,t), an MSD can be calculated
directly from simulations. This MSD is

�2(t) = 〈[r(t) − r(0)]2〉 ≡ 1

N

N∑
i=1

〈[ri(t) − ri(0)]2〉, (3)

where ri(t) is the position of nucleus i in the protein at time
t . After long times t → ∞, when the positions ri(t) and ri(0)
are no longer correlated, [〈r(∞)r(0)〉 = 0], the �2(t) reduces
to

�2(t → ∞) = 〈r2(∞)〉 + 〈r2(0)〉 = 2〈r2〉MD. (4)

In this way an 〈r2〉MD = �2(t → ∞)/2 for H in proteins can
be defined and calculated. However, we emphasize that this
〈r2〉MD is not the same as the intrinsic 〈r2〉 defined in terms
of I (Q,t) in Eq. (2). First, the average over the nuclei in the
protein made when the full Iinc(Q,t) is represented by a global
I (Q,t) is not the same as the average over the nuclei made
in Eq. (3). Also, the �2(t) does not converge to a constant,
infinite-time value within accessible simulation times of 1 to
100 ns [20,23,24]. Thus the correlations 〈r(t)r(0)〉 have not
vanished and Eq. (4) is not obviously valid within accessible
simulation times. Essentially, an 〈r2〉 = �2(t → ∞)/2 cannot
be calculated within currently accessible simulation times.
Keeping these differences in mind, �2(t)/2 is a physically in-
teresting, time-dependent quantity to calculate. It is especially
useful in determining the time scales needed for �2(t)/2 to
converge toward a fixed value. However, even the converged
value may differ from 〈r2〉 in Eq. (2).

In this context, the goal of the present paper is to propose
a method for obtaining an intrinsic, long-time, t → ∞, value
of the MSD from finite-time simulations. We seek an intrinsic
MSD from simulation that is defined exactly as in neutron
scattering measurements, i.e., in terms of the global I (Q,t)
in Eq. (2). The procedure is to construct a model of the
global I (Q,t) which contains 〈r2〉 and fit the model to
finite-time simulations of Iinc(Q,t). Explicitly, the Iinc(Q,t)
observed in neutron scattering experiments and calculated
from simulations is [39]

Iinc(Q,t) = 1

N

N∑
i=1

b2
i 〈e−iQ·ri (t)eiQ·ri (0)〉. (5)

In Eq. (5), bi is the incoherent scattering length of nucleus i

in the protein. As indicated above, the bi of H is more than
20 times larger than the bi of other nuclei typically found in
proteins. For this reason the scattering from H, which is also
almost entirely incoherent, dominates the ISF. In the analysis
of neutron scattering experiments it is usual to represent the
ISF in Eq. (5) summed over all nuclei by a global I (Q,t) which
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represents the whole protein:

I (Q,t) = 〈exp (−iQ.r(t)) exp (iQ.r(0))〉. (6)

Following the same procedure we construct a model of
I (Q,t). The model I (Q,t) is separated into a time-independent
part, I (Q,t = ∞), and a time-dependent part, I ′(Q,t). The
time-independent part, in the Gaussian approximation, is I∞ =
I (Q,t = ∞) given by Eq. (2). I∞ is the familiar Debye-Waller
factor. We define the intrinsic MSD as the 〈r2〉 that appears
in I∞.

To implement the method, we first calculate Iinc(Q,t)
from MD simulations of a hydrated protein (lysozyme) using
Eq. (5). We then fit the model of the global I (Q,t) in Eq. (6),
which contains I∞ and 〈r2〉, to the simulated Iinc(Q,t). We
treat the 〈r2〉 in the model as a free fitting parameter. In this
way we obtain an infinite-time value of the MSD 〈r2〉 from fits
to simulation data at finite t .

We test the present method using simulations of lysozyme at
several temperatures and of two simulation lengths, t = 100 ns
and 1 μs. From the simulations, we calculate Iinc(Q,t) given by
Eq. (5) out to 1 and 10 ns, respectively. From fits of the model
I (Q,t) to the calculated Iinc(Q,t), we obtain corresponding
fitted values of 〈r2〉. We find that 〈r2〉 is the same for
the two simulation times, consistent with 〈r2〉 representing
a time-independent, long-time MSD. The intrinsic 〈r2〉 is
approximately twice 〈r2〉R , the MSD calculated for motions
out to 1.5 ns. A plot of 〈r2〉 versus temperature shows a break
in the slope at 140 K and a second DT at TD = 220 K, as
has been observed and calculated for proteins experimentally.
According to this model, then, the DTs are intrinsic properties
of proteins. While the appearance of the DT and transition
temperature, TD , may be modified by experimental time
windows (see Sec. V C), the transitions exist independently
of finite experimental time windows.

II. MOLECULAR DYNAMICS SIMULATION

Two lysozyme molecules (1AKI [40]) were arbitrarily
oriented as shown in Fig. 1 and placed in a simulation
box of dimensions 6.5 nm × 3.4 nm × 3.6 nm. The lysozyme
molecules inside the simulation box were surrounded by
636 water molecules, corresponding to the hydration level
h = 0.4 g water/g protein. The box was replicated using
periodic boundary conditions to mimic the environment of
an experimental powder sample. Similar simulation systems
are discussed in the literature [8,26,41–44].

FIG. 1. (Color online) Two lysozyme molecules of random
relative orientation selected by GROMACS.

The system was simulated using GROMACS 4.5.1 [45].
The OPLS-AA force field [46] was used for the protein, and
the TIP4P force field [47] for the water. The van der Waals
interaction was truncated at 1.4 nm, and the electrostatic
interaction was represented using the particle mesh Ewald
method [48] with a real-space cutoff of 0.9 nm. All bonds
including H bonds were constrained with a linear constraints
solver algorithm (LINCS) [49]. The energy of the system was
first minimized using 50 000 steepest descent steps. The system
was then equilibrated in the NVT (mole-volume-temperature)
ensemble at each temperature investigated for 10 ns and in
the NPT (mole-pressure-temperature) ensemble at 1 bar for
10 ns. The Nose-Hoover algorithm [50] with a coupling time
τ = 1 ps and the Parrinello-Rahman algorithm [51] with a
coupling time τ = 3 ps were used for the temperature coupling
and pressure coupling, respectively.

Simulations of 100-ns length were performed at 18 temper-
atures between 80 and 300 K. Simulations of 1 μs were made
at five temperatures, at 100 K and then in steps of 50 K to
300 K. Data were collected every 10 ps at each temperature
for both simulations.

III. THE ISF AND MODEL I(Q,t)

To obtain the intrinsic MSD, 〈r2〉, following the procedure
outlined in Sec. I, we first calculated the intermediate ISF,
Iinc(Q,t), defined in Eq. (5). The positions ri(t) of each nucleus
i in the protein were generated in the two MD simulations
described above, one of length 100 ns and the other 1 μs.
Using the ri(t), the Iinc(Q,t) is calculated directly for times
out to 100 ns and 1 μs, respectively. To improve the statistics,
each simulation was divided into at least 100 segments and
Iinc(Q,t) recalculated as an average over these segments. In
this way Iinc(Q,t) was calculated to 1 ns from the 100-ns MD
data and to 10 ns from the 1-μs simulation.

Next we developed a model for the global I (Q,t) defined
in Eq. (6) which contains the intrinsic MSD, 〈r2〉, defined in
Eq. (2). The model is obtained by first separating I (Q,t) into
a time-independent, t = ∞, part [I∞ = I (Q,t = ∞)] and a
time-dependent part [I (Q,t) − I∞],

I (Q,t) = I∞ + (I (Q,t) − I∞). (7)

From Eq. (6),

I∞ = I (Q,t = ∞) = 〈exp (−iQ.r(∞)) exp (iQ.r(0))〉,
= exp

(− 1
3Q2〈r2〉 + O(Q4)

)
(8)

is the infinite time limit [36]. To obtain the last expression
we assume (i) that r(∞) and r(0) are completely uncorrelated
so that the averages of them are independent, (ii) that the
system is translationally invariant in time [no center-of-mass
(CM) motion] so that r(∞) = r(0), and (iii) that in a cumulant
expansion of 〈exp(−iQ.r)〉, cumulants beyond the second are
negligible. The last assumption is valid if Q is small or if the
distribution over r is approximately a Gaussian distribution.
The cumulants beyond the second vanish exactly for all Q if
the distribution over r is exactly Gaussian.
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The time-dependent part of I (Q,t) has the limits

I ′(Q,t) = I (Q,t) − I∞ =
{

1 − I∞, t = 0,

0, t = ∞.

We model this by the function

I ′(Q,t) = (1 − I∞)C(t), (9)

where C(t) has the limits C(t = 0) = 1, C(t = ∞) = 0. An
example is the stretched exponential function,

C(t) = exp (−(λt)β), (10)

where λ and β are constants. The C(t) represents the decay of
correlations in the protein. Collecting, the model is

I (Q,t) = I∞(Q) + (1 − I∞(Q))C(t), (11)

which is constructed to have the correct limits at t = 0 and t =
∞ and to have a plausible representation of several motional
decay processes at intermediate times described by C(t). We
fit the model I (Q,t) in Eq. (11) to the calculated Iinc(Q,t) to
determine 〈r2〉, λ, and β. The model I (Q,t) is the same one
we used previously [36] to fit neutron data except that C(t) is a
stretched exponential rather than the simple exponential used
previously. In fits to neutron data we found [36] that the data
were not sufficiently precise to distinguish between a stretched
and a simple exponential. In contrast, a simulation-derived
Iinc(Q,t) is more discriminating.

IV. RESULTS

In this section, we present the fits of the model I (Q,t) given
by Eq. (11) to the calculated ISF data for lysozyme. The model
of I (Q,t) includes three fitting parameters: the intrinsic MSD,
〈r2〉, defined in Eq. (2), the relaxation parameter λ, and the
stretched exponential parameter β defined in Eq. (10). The
goal is to determine the intrinsic MSD 〈r2〉 of H in lysozyme
and to obtain values for the relaxation parameters λ and β.

A. Intrinsic MSD

1. 100-ns MD simulation

Figure 2 shows the intermediate scattering function,
Iinc(Q,t), for times 0 < t < 1 ns calculated from Eq. (5)

using the 100-ns simulation data. Although Iinc(Q,t) was
calculated at 18 temperatures, only 3 temperatures are shown
in Fig. 2. The solid lines are fits of the model I (Q,t) to the
calculated Iinc(Q,t). The fits are better at higher temperatures
than at lower temperatures. Particularly, at temperatures below
approximately 170 K, the parameters λ and β that appear in
the relaxation function C(t) are not well determined, as we
discuss below.

Figures 3 and 4 show the best-fit values of the fitting
parameters 〈r2〉, λ, and β. From Fig. 3(a), we see that 〈r2〉 is Q

dependent and is larger and approximately independent of Q

at low Q. This Q dependence is similar to that obtained from
fits to observed data [to S(Q,ω = 0)]. The 〈r2〉 is determined
chiefly by the value of I (Q,t) at long t , i.e., by how far I (Q,∞)
lies below I (Q,t = 0) = 1.

From Fig. 3(b), we see that λ is also Q dependent, with
λ ∝ Q2 approximately, as found in other simulations [8,9]. We
found β to be only weakly dependent on Q and we used an
average over several Q values with some adjustments to obtain
smooth behavior as a function of temperature. The resulting
temperature dependence of β is shown in Fig. 4(b). The λ and β

are not well determined at temperatures below approximately
170 K. Essentially, at low temperatures Iinc(Q,t) decreases
rapidly over a short time t and thereafter it changes slowly. This
time dependence is consistent with harmonic motion as shown
by Smith et al. [19,52] and can be approximately reproduced
by a range of λ and β values. The 〈r2〉 remains well determined
at low temperatures since it is determined chiefly by Iinc(Q,t)
at long times.

The decrease in the best-fit value of 〈r2〉 with increasing Q

can have two origins. First, at low Q we are sampling longer-
range phenomena. Long-range motions could contribute fully
to 〈r2〉 at low Q, whereas they could be limited or cut off at high
Q, leading to a smaller or limited 〈r2〉 at high Q. Since this is
a real physical effect, values of 〈r2〉 obtained from data [e.g.,
S(Q,ω = 0)] at low Q (0 < Q < 0.4Å−1) are usually selected.
Second, and most importantly, Yi et al. [34] have shown
that I (Q,t) departs from a Gaussian approximation because
of dynamical heterogeneity. The heterogeneity apparently
introduces a Q4 term in Eq. (8) which becomes significant
at larger Q. This means that an 〈r2〉 obtained from data at
small Q must be selected.

FIG. 2. (Color online) Intermediate scattering function (ISF), Iinc(Q,t), for 0 < t < 1 ns of hydrated lysozyme (h = 0.4) obtained from a
100 -ns MD simulation [open (red) circles] and fits of the model ISF I (Q,t) in Eq. (11) [solid (blue) lines] to the Iinc(Q,t) at 100, 200, and
300 K. From top to bottom, Q = 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1, 1.2, 1.4, and 1.6 Å−1. The error in the ISF is approximately the diameter of the
open circles.
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FIG. 3. (Color online) Parameters of the model ISF I (Q,t) of
Eq. (11) obtained from fits of the model to the simulations shown in
Fig. 2: (a) Intrinsic MSD, 〈r2〉, and (b) relaxation parameter, λ, versus
Q at temperatures of 100 to 300 K. Error bars on 〈r2〉 and λ at 300 K
and Q = 0.2, 1.0, and 1.6 Å−1 are indicated.

Figure 5 shows the intrinsic MSD 〈r2〉 obtained from fits to
Iinc(Q,t) at Q = 0.2 Å−1. The plot of 〈r2〉 versus temperature
shows a break in the slope at around T = 140 K. This has been
seen previously in simulations and arises from the activation of
the dynamics of hydrophobic groups, i.e., the onset of proline
puckering and the rotation of methyl groups at around 140 K
[6,29]. A break in slope of 〈r2〉 versus T near 140 K has also
been observed in several proteins [1,6,17,35]. A second break
in slope is seen at the well-documented DT, at TD � 220 K,
associated with the onset of new higher-amplitude motions
of hydrophilic groups in which the hydration water plays a
determining role. The intrinsic, long-time 〈r2〉 shows the onset
of both hydrophobic and hydrophilic (DT) motions.

The error bars of I (Q,t) are approximately the size of the
open circles in Fig. 2. Using these error bars, the corresponding
error bar in the fitting parameters is shown in Fig. 3. The error
bar is calculated using the fitting program. The corresponding
error bar in β is approximately ±0.01. In the fit, we assumed
a constant value of β = 0.24 at all temperatures.

2. 1-μs MD simulation

We turn now to the Iinc(Q,t) calculated from the ri(t)
generated in the 1-μs simulations. Five temperatures from 100
to 300 K were simulated. As before, the simulation data were

FIG. 4. (Color online) As Fig. 3, for (a) the relaxation parameter
λ and (b) the stretched exponential parameter β versus temperature.
From bottom to top, Q = 0.4, 0.6, 0.8, 1, 1.2, 1.4, and 1.6 Å−1.

divided into at least 100 segments (time slices), each spanning
a time t , 0 < t < 10 ns, and Iinc(Q,t) was calculated as the
average over the time slices. The resulting I (Q,t) values are
shown in Fig. 6 at three temperatures. The solid line in Fig. 6
is, again, a fit of the model I (Q,t) given by Eq. (11) with 〈r2〉,
λ, and β treated as free fitting parameters. As in Fig. 2, the fits
are better at the higher temperatures, although the fit is better
at 200 K than at 300 K for times out to 10 ns.

FIG. 5. (Color online) Intrinsic MSD, 〈r2〉, defined in Eq. (2),
obtained from fits of the model ISF, Eq. (11), to simulations of
Iinc(Q,t) at Q = 0.2 Å−1. The intrinsic 〈r2〉 shows a break in slope at
T � 140 K and T � 220 K.
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FIG. 6. (Color online) Calculated Iinc(Q,t), for 0 < t < 10 ns, of hydrated lysozyme obtained from a 1-μs MD simulation (open circles)
and fits of the model ISF I (Q,t) in Eq. (11) to the data (solid lines) at 100, 200, and 300 K. From top to bottom, Q = 0.1, 0.2, 0.3, 0.4, 0.6,
0.8, 1, 1.2, 1.4, and 1.6 Å−1.

The best-fit values of the intrinsic MSD 〈r2〉, λ, and β are
shown in Fig. 7. The 〈r2〉 decreases with increasing Q, as found
for the shorter simulation. The absolute values of 〈r2〉 are also
consistent with those obtained from the shorter simulation
except, possibly, at 100 K. λ2 is approximately proportional
to Q2, as found in the shorter simulation. The absolute values
of λ obtained from fits to Iinc(Q,t) over larger times (10 ns)
are significantly smaller than those obtained from fits over a
shorter time (1 ns) [compare Figs. 3(b) and 7(b)]. The values
of β are similar for the two simulation times.

Figure 8 compares the values of 〈r2〉 obtained from fits to
Iinc(Q,t) for times t out to 1 and 10 ns. The agreement of the
two is good and excellent at higher temperatures. This suggests
that 〈r2〉 is, indeed, a long-time (t → ∞) intrinsic value of 〈r2〉
that is independent of the time interval of the data from which
it is obtained. It also indicates that no new motional process
enters the simulations between 100 ns and 1 μs.

B. Simulated MSD �2(t)

In this section we present values of �2(t) defined by Eq. (3)
and calculated directly using the ri(t) generated in simulations.
The sum in Eq. (3) is taken over the nonexchangeable H
nuclei only in the lysozyme. That is, all other nuclei in the
protein, the H in the hydration water, and the H in the protein
that can exchange positions with H in the hydration water
(the exchangeable H) are excluded from the sum. The time
dependence of �2(t) and estimated values of �2(t = ∞) are
compared the intrinsic MSD 〈r2〉 defined in Eq. (2). The 〈r2〉
and �2(∞)/2 will be the same only if all H are in identical
environments in the protein. Specifically, the two will differ
when there is dynamical heterogeniety.

Figure 9 shows �2(t)/2 obtained from the 1-μs simulation
calculated out to t = 10 ns. At T = 100 K the �2(t) appears
to have converged after 10 ns and �2(t = 10 ns) and 〈r2〉 are
quite similar. The 〈r2〉 values shown are those from the 100-ns
simulations. The 〈r2〉 from the 1-μs simulations are slightly
larger at 100 and 150 K (see Fig. 8). In contrast, at higher
temperatures, �2(t) has clearly not reached its terminal (t =
∞) value after 10 ns. For example, at T = 300 K, the intrinsic
〈r2〉 is approximately 30%–40% larger than �2(t = 10 ns)/2.
This comparison between �2(t)/2 and 〈r2〉 is consistent with
〈r2〉 representing the intrinsic (t = ∞) MSD.

Figure 10 further compares the intrinsic MSD 〈r2〉 at Q =
0.2 Å−1 and the �2(t)/2 at different times t obtained from the
100-ns [Fig. 10(a)] and 1-μs [Fig. 10(b)] simulations. From
Fig. 10 we see again that �2(t) has not converged to a long-
time value after t = 10 ns except possibly at 100 K. This is
especially true at higher temperature. For example, at 300 K the
increase in �2(t)/2 between 1 and 10 ns is approximately the
same as that between 0.1 and 1 ns, suggesting that convergence
is very slow. The �2(t)/2 lie well below the intrinsic 〈r2〉,
especially at high temperatures.

Figure 11 shows the �2(t) at 200 and 300 K over the time
range 0 < t < 1 ns as calculated from the 100-ns simulation
and the 1-μs simulation. The �2(t) obtained from data taken
out to 1 μs is somewhat smaller than that from the 100-ns
simulation. This suggests that there may be a structural change
in the time scale between 100 ns and 1 μs. However, these
small differences do not appear to affect Iinc(Q,t) or the fitted
intrinsic 〈r2〉 significantly. Values of �2(t) obtained from the
1-μs simulation with and without the CM motion subtracted
are also shown. The contribution of the CM motion to �2(t)
is small. Values of ri(t) corrected for CM motion were used to
calculate Iinc(Q,t).

V. DISCUSSION

The aim of the present paper is to propose a method to
obtain the intrinsic, long-time MSD in proteins from finite-
time simulations. The intrinsic MSD 〈r2〉 is defined as the
〈r2〉 that appears in the infinite time limit of the incoherent
ISF given by Eq. (2), often referred to as the Debye-Waller
factor. The method consists of calculating the ISF Iinc(Q,t)
from a simulation and fitting a model I (Q,t) which contains
〈r2〉 to the calculated Iinc(Q,t). The resulting intrinsic 〈r2〉
exhibits two interesting features: (i) the 〈r2〉 is independent of
the simulation time used to calculate Iinc(Q,t), at least up to
1 μs, and (ii) the 〈r2〉 shows a clear break in the slope of 〈r2〉
vs T at the DT and a second break at a lower temperature, T �
140 K. The intrinsic 〈r2〉 shows the same breaks in slope that
are found in time-limited MSD and observed in experiments.
This suggests that a DT is an intrinsic property of proteins, not
simply an artifact of finite instrument resolution and limited
time windows.
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FIG. 7. (Color online) Parameters of the model ISF, Eq. (11),
obtained from the fits of I (Q,t) to the calculated Iinc(Q,t), for
0 < t < 10 ns, shown in Fig. (6): (a) intrinsic MSD, 〈r2〉, (b)
relaxation parameter, λ, and (c) stretched exponential parameter, β,
at five temperatures: 100, 150, 200, 250, and 300 K.

A. Comparison with existing MSD for lysozyme

To place the present intrinsic 〈r2〉 in context with the
existing MSD, first, we compare 〈r2〉 with the resolution-
broadened MSD 〈r2〉R , both calculated from the present
simulations of lysozyme. A resolution-broadened 〈r2〉R is an
MSD that has developed over a finite time only. This time, τR , is
determined by the resolution width as τR = (8 ln 2)1/2h̄/W for
a Gaussian resolution function. The smallest FWHM readily
available today is W = 1 μeV (τR = 1.5 ns). By using the
same simulation for both 〈r2〉 and 〈r2〉R , we can isolate the
impact of a finite resolution width.

FIG. 8. (Color online) Intrinsic MSD 〈r2〉 versus temperature
obtained from fits to the Iinc(Q,t) at Q = 0.2 Å−1 obtained from (i)
100 ns (filled circles) and (ii) 1-μs MD simulations (filled squares).
The 〈r2〉 is largely independent of the simulation time fitted.

Simulated and observed MSDs are usually compared
by comparing resolution-broadened, 〈r2〉R , MSDs that have
developed over the same time period [6,35,37]. Excellent
agreement between simulated and observed MSD has been
obtained in this way. Specifically, the resolution-broadened
MSD, 〈r2〉R , is obtained from Eq. (1) in which SR(Q,ω) is the
observed, resolution-broadened dynamic structure factor,

SR(Q,ω) = 1

2π

∫
dt exp(iωt)I (Q,t)R(t), (12)

and R(t) is the Fourier transform of the instrumental reso-
lution function in time. R(t) is typically a Gaussian, R(t) =
exp(− t2

2τ 2
R

). The resolution function cuts off I (Q,t) after a

time τR = (8 ln 2)1/2h̄/W . In experiments, the observed 〈r2〉R
is obtained by inserting the observed SR(Q,ω = 0) in Eq. (1).
In simulations the calculated ISF is inserted in Eq. (12) to
obtain SR(Q,ω = 0) and then 〈r2〉R is again obtained using
Eq. (1). In this way an 〈r2〉R that has evolved over a time τR is
compared. We follow exactly this procedure to calculate 〈r2〉R
from the present simulations by substituting our model I (Q,t)
into Eq. (12).

FIG. 9. (Color online) MSD �2(t)/2 defined in Eq. (3) of
nonexchangeable hydrogen versus time at five temperatures, from
100 to 300 K. Filled circles are the corresponding intrinsic MSDs
〈r2〉 at each temperature.
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FIG. 10. (Color online) Comparison of the intrinsic MSD 〈r2〉 at
Q = 0.2 Å−1 and the MSD �2(t)/2; (a) out to times 0.01, 0.1, 0.5,

and 1 ns obtained from the 100-ns MD simulation and (b) out to times
0.1, 1, 5, and 10 ns, obtained from the 1-μs MD simulation.

The intrinsic 〈r2〉 and the resolution-broadened 〈r2〉R of
lysozyme are compared in Fig. 12. The 〈r2〉 is found to be
approximately twice the 〈r2〉R for a resolution width W =
1 μeV (τR = 1.5 ns). The ratio 〈r2〉/〈r2〉R is approximately
independent of temperature for T > 150 K. The 〈r2〉 remains
well above 〈r2〉R for W = 0.1 μeV (τR = 15 ns), a resolution
approximately 10 times higher than that available today. Phys-
ically, we expect resolution broadening to reduce 〈r2〉R below
〈r2〉 if τR is less than or comparable to the longest relaxation
time τ = λ−1 of the protein. From Figs. 3 and 7 we see that,
at low Q and temperatures above 170 K, τ = λ−1 � 1 ns. The
τ is somewhat longer at low temperatures. On this basis we
expect resolution broadening to be important at W = 1 μeV.
The degree of broadening depends sensitively on the functional
form of C(t) in the model I (Q,t), as discussed below.

Second, we compare the present simulated 〈r2〉R with previ-
ous simulated values of 〈r2〉R for lysozyme. Roh et al. [6] have
calculated 〈r2〉R at low Q and W = 1 μeV from their simula-
tions of lysozyme hydrated to h = 0.43. The Roh et al. 〈r2〉R
and the present 〈r2〉R at low Q (Q = 0.2 Å−1) and W = 1 μeV
for h = 0.40 are compared in Fig. 13. The agreement is ex-
cellent since the present 〈r2〉R is somewhat lower as expected
since the present h is lower and the MSD is very sensitive
to h.

Third, we compare the present intrinsic 〈r2〉 with the
〈r2〉R observed experimentally in lysozyme using an energy
resolution width W = 1 μeV. The observed 〈r2〉R of lysozyme

FIG. 11. (Color online) MSD �2(t)/2 of nonexchangeable hy-
drogen versus time up to 1 ns as calculated from MD simulations of
100 ns [(black) squares] and 1 μs with [(red) circles] and without
[(blue) triangles] CM motion subtracted at (a) 300 K and (b) 200 K.

at four hydration levels and the present 〈r2〉 are shown in
Fig. 14. The observed 〈r2〉R values are very sensitive to the
hydration level for T > TD . In Fig. 14 the present intrinsic
〈r2〉 for h = 0.4 lies above but close to the observed 〈r2〉R
for h = 0.45 and significantly higher than the observed 〈r2〉R
for lower hydrations, as expected. Comparing the calculated
〈r2〉R in Fig. 13 with the observed 〈r2〉R in Fig. 14, we see
that the calculated 〈r2〉R lie somewhat below but close to the

FIG. 12. (Color online) Present intrinsic MSD 〈r2〉 at Q =
0.2 Å−1 and resolution-broadened MSD 〈r2〉R calculated from the
same model for the energy resolution widths, W = 0.1, 0.3, 1, 10,

and 100 μeV.

052706-8



LONG-TIME MEAN-SQUARE DISPLACEMENTS IN PROTEINS PHYSICAL REVIEW E 88, 052706 (2013)

FIG. 13. (Color online) Present intrinsic MSD 〈r2〉 at Q =
0.2 Å−1 and present resolution-broadened MSD 〈r2〉R (W = 1 μeV)
(open triangles) for lysozyme at h = 0.40 compared with the
simulated 〈r2〉R at W = 1 μeV of Roh et al. [6] for lysozyme at
h = 0.43 (filled triangles).

experimental values for similar levels of hydration. Broadly
the agreement between the simulated and the observed 〈r2〉R
values is very good, in terms of both the absolute value and
the temperature dependence.

B. Sensitivity of 〈r2〉 to the model C(t)

The difference between the intrinsic 〈r2〉 and the resolution-
broadened 〈r2〉R , such as shown in Fig. 13, is sensitive to
the functional form of C(t) used to describe the dynamic
correlations in the protein in the model I (Q,t). Four forms
of C(t) are compared in Fig. 15. The stretched exponential
function for C(t) given by Eq. (10) that we have used here
provides a reasonable fit of the model I (Q,t) to the calculated
Iinc(Q,t) provided the parameter β is small, i.e., β = 0.23. In
Fig. 15 we see that the stretched exponential for a small β and
the Mittag-Leffler function [24] have long-range tails reaching
out to times a factor of 10 beyond t = λ−1. This means that
correlations persist for times well beyond τ = λ−1. For this
reason when a stretched exponential with a small β is used we

FIG. 14. (Color online) Present intrinsic MSD 〈r2〉 at Q =
0.2 Å−1 for lysozyme (h = 0.4), as in Fig. 13, compared with the
experimental resolution-broadened MSD 〈r2〉R for W = 1 μeV for
lysozyme at different hydration levels (h) observed by Roh et al. [6].

FIG. 15. (Color online) Comparison of relaxation functions: a
simple exponential [dashed-dotted (blue) line], a stretched exponen-
tial with β = 0.5 [dashed (green) line], a stretched exponential with
β = 0.21 [dotted (black) line], and the Mittag-Leffler function [solid
(red) line].

expect 〈r2〉 to lie above 〈r2〉R even when λ−1 � τR , as found
here in Fig. 13. In contrast, if C(t) is represented by a simple
exponential or a stretched exponential with a large value of β,
the correlations die out rapidly on a time scale τ = λ−1. It was
not possible to obtain a good fit to Iinc(Q,t) using a simple
exponential or a large β. Thus correlations that persist to long
times, t = 10λ−1, appear to be a feature of lysozyme.

In an earlier study [36], we proposed a method to obtain
the intrinsic MSD in proteins from fits to experiment, to ob-
served resolution-broadened SR(Q,ω = 0). The model I (Q,t)
employed was the same as that used here in Eq. (11). The
model I (Q,t) was Fourier transformed [see Eq. (12)] to obtain
SR(Q,ω = 0). However, C(t) was represented by a simple
exponential, chosen because the experimental data were not
very discriminating and fits using a simple exponential and a
stretched exponential could not be distinguished. The ratio
〈r2〉/〈r2〉R obtained from fits to data at W = 1 μeV was
approximately 1.0–1.2 rather than a factor of two as found here.
MD simulation-derived Iinc(Q,t) are more discriminating. We
believe that the present C(t) and ratio 〈r2〉/〈r2〉R are more
accurate because the C(t) obtained from simulations is more
accurate. Hence, the method proposed in Ref. [36] to obtain
〈r2〉 from experiment needs to be upgraded by replacing the
exponential C(t) with a stretched exponential, with β set at
approximately 0.23.

The model could conceivably be further refined by using
more sophisticated expressions for C(t) that combine vibra-
tional motion at short times and diffusion at longer times. Also,
the expression for the time-dependent part of I (Q,t) in Eq. (9)
may be too simple.

C. Dynamical transition and impact of instrument resolution

Despite decades of experimental and theoretical studies, the
physical origin of the DT remains debated. It has been ascribed
[53] to a sudden change of effective elasticity in proteins [2], to
the onset of motions of specific side groups, e.g., methyl group
rotations [54], and to a glass transition or a phase transition in
the hydration water [4,55] and interpreted as an apparent effect
arising because the MSD is observed with a finite instrument
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resolution width [38,56–58]. In this section we discuss the
impact of observing the DT using an instrument having a
finite energy resolution width, W, within the present model.
First, the intrinsic MSD 〈r2〉 that we have found in this paper
for lysozyme, shown in Figs. 5 and 8, displays a clear DT at a
transition temperature, TD , of 220 K. This result suggests that,
within the rigor of simulations, the DT is an intrinsic property
of a protein. The DT is not simply an artifact of observing the
MSD with an instrument having a finite W and a limited time
window. However, the change of slope of the MSD at TD can
be modified and TD shifted to a higher temperature when the
DT is observed with a finite W [12,17,18,35] as emphasized
recently [59].

When W is finite, the MSD 〈r2〉R defined in Eqs. (1) and
(12), rather than 〈r2〉, is observed. In Eq. (12), motions in
the protein can contribute to the 〈r2〉R for a limited time,
τR � h̄/W , only. Since motions over a limited time window
τR are included, 〈r2〉R is always smaller than 〈r2〉 at a given
temperature. As a result, the TD in 〈r2〉R is shifted to a higher
temperature. Using the present model, this shift is illustrated
in Fig. 16, where the TD is explicitly identified. For example,
when observed with an instrument for which W = 100 μeV
(τr = 15ps for a Gaussian resolution function), the apparent
TD is shifted to 240 K.

The degree of impact of W on 〈r2〉R depends on the rate at
which correlations decay in the protein. In the present model,
the decay rate depends on the magnitude of the parameter
λ and on the functional form of C(t). The present stretched
exponential C(t) has a long-time tail (see Fig. 15). This means
that the reduction of 〈r2〉R below 〈r2〉 begins at small values
of W (long τR ). But the rate of change of 〈r2〉R with W is
gradual. In an earlier model [36], C(t) was described by a
simple exponential which falls rapidly with t (see Fig. 15).
For this C(t), the reduction of 〈r2〉R below 〈r2〉 begins at
a larger value of W and thereafter the reduction increases
rapidly with increasing W . We reproduce the 〈r2〉R obtained
for an exponential C(t) in Fig. 17. In Fig. 17, TD was identified
simply as the temperature at which the calculated 〈r2〉 begins
to increase rapidly with temperature, i.e., the temperature
at which the slope of 〈r2〉 vs T changes markedly. The TD

FIG. 16. (Color online) Intrinsic MSD (W = 0) and resolution-
broadened MSD 〈r2〉R for W = 1 μeV and W = 100 μeV obtained
from Eqs. (1) and (12) using the present model I (Q,t) (reproduced
from Fig. 12), with the dynamical transition temperature TD identi-
fied.

FIG. 17. (Color online) Intrinsic MSD (W = 0) and resolution-
broadened MSD 〈r2〉R for W = 1 μeV and W = 100 μeV with the
TD identified. MSDs are obtained from fits to experiment in Ref. [36]
using a model, I (Q,t), that has a simple exponential decay function
C(t) = exp[−λt].

increases rapidly with increasing W , which vividly illustrates
the dependence of TD on W . Using this simple model, the
increase in the apparent TD with increasing W can also be
readily understood. In the model, 〈r2〉R/〈r2〉 = [1 + W

I∞λ
]−1 �

[1 − W
I∞λ

+ · · ·]. The parameter λ increases with increasing
T . Thus for a given W , the ratio W/(I∞λ) decreases with
increasing temperature and 〈r2〉R/〈r2〉 is larger at higher
temperatures. Thus 〈r2〉R is decreased least by finite resolution
at the highest temperatures.

As illustrated by these models, a DT is readily observed
with an instrument having a finite resolution width. The chief
impact of a finite W is to shift the apparent TD to a higher
temperature.

D. MSD calculated from simulations

We have also evaluated the MSD �2(t) for H in lysozyme
defined in Eq. (3) from the present simulations. The �2(t)/2
will be the same as the intrinsic 〈r2〉 only (i) if the �2(t) has
reached its long-time, converged value so that the correlations
are 0 as discussed in Eq. (4), and (ii) if all the H’s in the
protein are in identical environments so that Iinc(Q,t) reduces
to the model I (Q,t). Also, in the present work, only the nonex-
changeable H nuclei are included in �2(t), while the intrinsic
〈r2〉 is obtained from a fit to an Iinc(Q,t) which includes all nu-
clei. We expect the latter difference to be minimal and it would
be straightforward to include only the H nuclei in Iinc(Q,t) if
desired. With these caveats, we have compared the �2(t)/2
with 〈r2〉 in Figs. 9 and 10. At low temperatures (e.g., 100 K)
where diffusion is expected to be less important, we find that
�2(t)/2 appears to have converged after 10 ns and approaches
〈r2〉 reasonably well. However, at higher temperatures (e.g.,
250 K), �2(t)/2 has not converged to a constant after 10 ns
and lies well below 〈r2〉. From these comparisons it would be
interesting to evaluate �2(t) out to longer times to determine
whether it converges and to reveal the dynamics contributing.
For example, at 300 K, nearly translational diffusion may be
possible for some H’s in the protein that are near the surface or
near hydration water. It would be interesting to exclude these
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FIG. 18. (Color online) MSD �2(t)/2, with and without the CM
motion subtracted after t = 1 ns (100-ns MD simulation) and t = 10
ns (1-μs MD simulation).

H’s from �2(t). In this regard it is also important to exclude the
CM motion, which becomes important at higher temperatures
and longer times as shown in Fig. 18.

VI. CONCLUSION

We have proposed a procedure to obtain the intrinsic,
long-time MSD in proteins from finite-time simulations. The

intrinsic MSD represents the equilibrium MSD, as would be
predicted by statistical mechanics and the energy landscape,
assuming that the protein does not go through major structural
changes. The specific MSD investigated is the one determined
in neutron scattering measurements. The intrinsic MSD is
calculated from simulations of 100 ns and 1 μs and found
to be independent of simulation time. The intrinsic, long-time
MSD in lysozyme is found to be approximately twice the MSD
that develops after a time of 1.5 ns, as would be observed
using neutron instruments with an energy resolution width of
W = 1 μeV. The intrinsic MSD shows the same breaks in
slope with temperature as does the finite-time MSD. The ratio
of the intrinsic to the finite-time MSD is sensitive to the model
functions (e.g., stretched exponentials) used to describe the
motions in the protein as well as to the decay times of the
motions themselves.
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