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Protein structure prediction (PSP) is a classical NP-hard problem in computational biology. The energy-
landscape paving (ELP) method is a class of heuristic global optimization algorithm, and has been successfully
applied to solving many optimization problems with complex energy landscapes in the continuous space. By
putting forward a new update mechanism of the histogram function in ELP and incorporating the generation of
initial conformation based on the greedy strategy and the neighborhood search strategy based on pull moves into
ELP, an improved energy-landscape paving (ELP+ ) method is put forward. Twelve general benchmark instances
are first tested on both two-dimensional and three-dimensional (3D) face-centered-cubic (fcc) hydrophobic-
hydrophilic (HP) lattice models. The lowest energies by ELP+ are as good as or better than those of other
methods in the literature for all instances. Then, five sets of larger-scale instances, denoted by S, R, F90, F180,
and CASP target instances on the 3D FCC HP lattice model are tested. The proposed algorithm finds lower
energies than those by the five other methods in literature. Not unexpectedly, this is particularly pronounced for
the longer sequences considered. Computational results show that ELP+ is an effective method for PSP on the
fcc HP lattice model.
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I. INTRODUCTION

Protein engineering is a frontier in modern biotechnology
and the prediction of protein structure is crucial to pharma-
cology and medical science. There are some experimental
methods to find the native state of a protein, e.g., nuclear
magnetic resonance (NMR), x-ray crystal diffraction, etc.
However, these methods are costly, time consuming, and labor
intensive. So using a computer to simulate the protein structure
has been an important method to solve the protein structure
prediction (PSP) problem.

According to Anfinsen’s thermodynamic hypothesis, states
of minimum free energies and the tertiary structures of proteins
can be predicted from the linear sequences of their amino acids
[1]. However, even for the simplest hydrophobic-hydrophilic
(HP) lattice model [2,3], PSP has been proven to be “NP-
complete” [4,5]. Since deterministic approaches are not help-
ful in identifying minimum energy conformations [6], to find
a nondeterministic heuristic approach that can extract minimal
energy conformations efficiently is of great importance [7]. In
addition, an appropriate energy function which can generally
distinguish the native state from non-native states of a protein
molecule is another vital factor to predict protein structure
successfully. The greatest difficulty lies in the huge search
space, as well as the complexity of the energy surface, which
contains a lot of local minima and a few global minima.

To simplify many of the required calculations, we choose
the lattice model which captures the main features of the PSP.
In this paper, we focus on the face-centered-cubic (fcc) HP
lattice model which is shown to yield very good approxi-
mations of real protein structures [8–10]. Some outstanding
heuristic approaches, such as tabu search (TS) [11] with pull
moves [6], evolutionary algorithm (EA) with lattice rotation for
crossover and K-site move for mutation [12], tabu-based local

search method (LS-Tabu) [13,14], tabu-based spiral search
algorithm (SS-Tabu) [14], simple genetic algorithm (SGA)
[7,15], and its variations [simple genetic algorithm with twin
removal (SGA + TR) [15], hybrid genetic algorithm (HGA)
[7,15,16] which combines generalized short pull moves and
improved crossover and mutation operations, hybrid genetic
algorithm with twin removal (HGA + TR) [11,15,16], genetic
algorithm with elite-based reproduction strategy (ERS-GA)
[9], hybrid of hill-climbing and genetic algorithm (HHGA) [9]
based on ERS-GA, memetic algorithm (MA) [17], and large
neighborhood search (LNS) [18], were applied to a fcc HP
lattice model. All of these methods cannot guarantee one to
obtain optimal results in polynomial time. Later, a constraint-
based protein structure prediction (CPSP) approach [19] was
put forward. Once the corresponding H core [19] is given, the
approach can ensure that all predicted structures are globally
optimal.

The ELP [20] method is a class of global optimization
methods. ELP was originally proposed by Hansmann and
Wille [20] to simulate protein structure of all-atom proteins,
such as pentapeptide Met-enkephalin and 36-residue peptide
(HP-36) modeled by the ECEPP/2 force field, and hereafter
was introduced for the off-lattice model proteins [21–23]
and the circular packing problems [24,25]. In this paper,
an ELP+ method which incorporates the generation of
initial conformation based on the greedy strategy and the
neighborhood search strategy based on pull moves [6] into
the ELP method is proposed for PSP. In addition, an update
mechanism of the histogram function is put forward. To the
best of our knowledge, few researchers have applied ELP to
the discrete optimization problem. In our current work, to
demonstrate the efficiency of ELP in discrete space, we further
improve the ELP method and use it as a tool to fold up given
sequences on a fcc lattice model. Numerical results show that
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FIG. 1. (Color online) A unit of the 3D fcc HP lattice model. An
amino acid at layer 2 has 12 neighbors, three of which are from the
top layer, six are from the middle layer, and the other three are from
the bottom layer.

ELP+ is an effective algorithm for solving PSP in a fcc HP
lattice model.

II. fcc HP LATTICE MODEL

The HP lattice model [2,3] is the most frequently used
model, which is based on the observation that the hydrophobic
interaction between amino acids is the main driving force
for protein folding, i.e., the development of native states in
proteins [2]. In this model, amino acids are represented as a
reduced set of H (hydrophobic or nonpolar) and P (hydrophilic
or polar) according to the hydrophobicity of a single amino
acid. Despite the fact that two-dimensional (2D) square and
three-dimensional (3D) cube models [2,3,26] have been used
mostly among HP lattice models, there exists a significant
drawback that if two amino acids are at any even distance in
the primary sequence, they cannot be neighbors in the lattices.
To address this issue, Hart et al. [10] introduced a fcc HP
lattice model which is parity problem free, that is to say, an
odd indexed amino acid in the sequence can be the neighbor
of both odd and even indexed amino acids in the sequence and
vice versa. In addition, the famous Kepler conjecture [27,28]
implies that fcc is the densest sphere-packing model, where
an amino acid can have 12 neighbors in the 3D fcc lattice (see
Fig. 1) and six neighbors in the 2D fcc lattice which form a
hexagon (see Fig. 2).

A folding of a protein in the HP lattice model means that
amino acids are embedded in the lattice such that adjacent
amino acids in the sequence occupy adjacent grid points in the
lattice and no grid point in the lattice is occupied by more than
one amino acid. This is also called self-avoiding walk (SAW).
In fact, the 2D fcc lattice is the infinite graph G = (V ,L), where

FIG. 2. A unit of the 2D fcc HP lattice model. Each amino acid
has at most six neighbors.

FIG. 3. 12 basis vectors of the 3D fcc HP lattice model.

the vertex set V = (
√

3ZZ) ∪ [(
√

3Z + √
3/2)(Z + 1/2)],

and the edge set L = {(x,x ′)|x,x ′ ∈V,‖x − x ′‖ = 1}. Here Z

denotes the integer set and ‖x − x ′‖ denotes the Euclidean
distance between x and x ′. The 3D fcc grids can be described
as a stack of 2D fcc grids, where every individual 2D grid is
slightly offset with respect to the grids above and below it [11].
The basis vectors are (1, −1,0), ( −1,1,0), ( −1, −1,0), (1,1,0),
(0, −1,1), (0, −1, −1), (1,0,1), (1,0, −1), (0,1,1), ( −1,0,1),
(0,1, −1), and ( −1,0, −1), denoted by forward-left (FL),
backward-right (BR), backward-left (BL), forward-right (FR),
left-up (LU), left-down (LD), forward-up (FU), forward-down
(FD), right-up (RU), backward-up (BU), right-down (RD),
and backward-down (BD) (see Fig. 3), respectively. Two 3D
fcc points Pi(xi ,yi ,zi) and Pj (xj ,yj ,zj ) are adjacent if and
only if (xi − xj )2 + (yi − yj )2 + (zi − zj )2 = 2. The
energy E(c) of a given conformation c is defined as the number
of topological neighboring (TN) contacts between those Hs,
which are not sequential with respect to the sequence. In other
words, if a conformation denoted as c = l1l2 · · · ln, where li is
H if the ith amino acid in the sequence is hydrophobic and P
if it is hydrophilic, has exactly m such H-H TN contacts, its
energy E(c) = m( −1). Figure 4 shows a conformation with
the energy of −15 in the 2D fcc HP lattice model. Since each
amino acid has two covalent neighbors, except the first and the
last amino acids, a nonterminal and a terminal amino acid can
have a maximum of four TNs and five TNs, respectively.

PSP can be formally defined as follows: Given an HP
sequence s = s1s2 · · · sn, we try to find a conformation with
minimum energy of s, that is, to find c∗ ∈ C(s) such that
E(c∗) = min{E(c)|c ∈ C(s)}, where C(s) is the set of all valid
conformations (i.e., SAW) of s.

FIG. 4. A conformation with the energy of −15. “•” (“�”)
and “◦” indicate the hydrophobic and hydrophilic amino acids,
respectively. “–” denotes the binding edge and “····” is the topological
neighboring contact edge. “�” is the first amino acid of the sequence.
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III. METHODS

A. ELP method

The ELP method [20–25], which merges ideas from tabu
search [29] with energy-landscape deformation [30], is a class
of heuristic global optimization algorithm and a generation of
Monte Carlo (MC) method. Simple canonical MC is easily
get trapped in local minima. To avoid the search entrapping in
local minima while exploring minimal energy conformations,
it redefines the energy function so that there is little chance
for ELP to search the regions that have been explored. This
means if a conformation c is hit at a MC sweep t , the
energy E(c,t) is increased by a “penalty” and replaced by
energy˜E(c,t) = E(c,t) + f (H (q,t)). Here, the penalty term
f (H (q,t)) is a function of the histogram H (q,t) in prechosen
“order parameter” q. In this paper, we set q = E and choose
kH (E(c,t),t) as the replacement for f (H (q,t)). Here, k is a
constant and H (E(c,t),t) is the histogram function in energy
at a MC sweep t . In fact, the histogram function H (E(c,t),t)
from all previously visited energies helps the simulation escape
local entrapments and surpass the high-energy barrier more
easily. If E(c,t) falls into a certain bin, the corresponding
bin is increased by 1, where a “bin” denotes an entry of the
histogram and all bins in the histogram are the same at the
beginning of the algorithm. We set the size of every bin as 1
in the fcc HP lattice model. The sampling weight is defined
as ω(˜E(c,t)) = exp[−˜E(c,t)/kBT], where kBT is the thermal
energy at the low temperature T and kB is the Boltzmann
constant. The more time the system stays in a local minimum,
the less the sampling weight of a local minimum state.

ELP deforms the energy landscape locally until the local
minimum is no longer favored and the system will explore
higher energies. It will then either fall in a new local
minimum or walk through this high-energy region until the
corresponding histogram entries all have similar frequencies
and the system again has a bias toward low energies.
However, there is a technical flaw in ELP [24,25]. After new
conformation c2 generates from the current conformation c1 by
the conformation update mechanism, the algorithm accepts c2

only by satisfying the condition expression random(0,1) <

exp{˜E(c1,t) − ˜E(c2,t)]/kBT }, where random(0,1) is the
random number between 0 and 1. However, by this ac-
ceptability condition, ELP may miss some lower-energy
conformations near c1. To avoid it, Liu et al. [24,25] give
an alternative version of ELP. Now the acceptability of c2

is determined by a comparison between E(c1,t) and E(c2,t),
where two cases are possible: (a) E(c2,t) < E(c1,t) and
(b) E(c2,t) � E(c1,t). For case (a), c2 is accepted uncondi-
tionally and a new round of iteration starts; for case (b), if c2

satisfies the condition expression random(0,1) < exp{[˜E(c1,t)
− ˜E(c2,t)]/kBT}, then c2 is still accepted and another round of
iteration starts; otherwise c2 is not accepted and c1 is restored
as the current conformation.

We note that, in the original version of ELP by Hansmann
and Wille [20] and its alternative version by Liu et al.
[24,25], once a new conformation is generated, the histogram
function is updated no matter whether the new conformation
is accepted. This will cause some newly generated and
unaccepted conformations which locate at the surrounding
energy barriers of the minima to still not be accepted in

FIG. 5. An example of the forward pull move on the 2D fcc HP
lattice model. “•” and “◦” indicate the hydrophobic and hydrophilic
amino acids, respectively. If position A is free, then amino acid 4 can
be placed at A, and a forward pull move in (a) can be executed, where
amino acid 5 is moved to the position of amino acid 4, 6 to 5, 7 to 6,
and 8 to 7, then a valid conformation [indicated in (b)] is obtained.

subsequent simulations because the accumulated histogram
function H (E(c,t),t) gradually modifies their surrounding
energy barriers. Thus it will be hard for the simulation to escape
from the minima, especially from those located at narrow
and deep valleys of energy landscape. To overcome this, we
further improve ELP and propose an update mechanism of
the histogram function, i.e., we update the histogram only
when the newly generated conformation is accepted by the
above-mentioned acceptability criteria.

B. Greedy strategy for the initial conformation

The improved ELP algorithm must start with a valid initial
conformation, differently from the original version [20] and
the alternative version of ELP [24,25], where the initial
conformations can be invalid. To reduce the cost of the
generation of a valid initial conformation and enhance the
efficiency of the search of the improved ELP method, we
use the greedy strategy to get the initial conformation for
a given protein sequence with length n. The detailed steps
are as follows: We put the first amino acid and the second
one at two adjacent fixed positions, respectively, for example,
at (0,0) and (0,1) for two dimensions, and at (0,0,0) and
(0,1,1) for three dimensions. Subsequently we pseudoplace
the ith (3 � i� n) amino acid at every position that is
adjacent to the (i − 1)th amino acid and not occupied by
other amino acids, where “pseudoplace” means that the ith
amino acid is placed temporarily and will be removed from
the corresponding position after computing the energy of the
partial conformation, which consists of the previous i − 1
amino acids and the ith amino acid. If such positions exist,
we put formally the ith amino acid at the position where the
energy of the corresponding partial conformation is lowest;
otherwise we remove the (i − 1) amino acid and continue to
grow the partial conformation from the (i − 2) amino acid.
This process is repeated until a conformation with n amino
acids is produced.

C. Neighborhood search strategy with pull moves

In ELP, each MC step must update the current confor-
mation. We use the neighborhood search strategy with pull
moves [6] to update the conformation. The neighborhood of a
conformation c is a set of valid conformations that are obtained
by applying a specific set of perturbations to c. The pull move,
originally introduced by Lesh et al. [6] for square and cube
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lattices, has been proven to be very efficient in the HP model
under a variety of local search methods [6,31]. The set of pull
moves is complete and reversible [6,11] for square, cube, and
fcc HP lattice models, which makes it efficient for updating
the conformation and essential to guarantee reachability of
the global minimum. As the parity problem is absent in fcc
HP lattice models, the pull move does not need to be moved
diagonally to start as an ordinary pull move in square and cube
lattices.

First, we briefly describe the main idea of the pull move
on the 2D fcc lattice. We choose randomly a vertex from the
chain with length n such that there exists a free position in the
grid adjacent to both this vertex and either its predecessor or
successor in the chain and then move it to this free position
[see Fig. 5(a)]. This might break the chain, so we need to
repair the chain. This repairing is done via pulling the chain,
i.e., the old position of the moved vertex will be occupied by
its successor (or predecessor), again leaving a free position
where the next vertex of the chain is moved, and so on, until a
valid conformation is reached.

The pull move of an amino acid can be performed only
when there exists at least one free position of its neighbors.
During the process of the pull move, if the ith amino acid is
moved first, we define the pull move as the pull move of the
ith amino acid. Consider the pull move of the ith amino acid,
whose position is (xi ,yi). We define two kinds of moves. One
is the direct move, and the other is the forward-backward pull
move. The detailed description of pull moves is as follows. If
there exists an index i ∈{2,. . .,n − 1} and a vertex A which is
empty and adjacent to both the ith and (i − 1) amino acid, we
can perform a forward pull move. If A is also adjacent to the
(i + 1) amino acid, we move directly amino acid i to A. Thus
a new legal conformation is reached. We call this pull move
the direct move. Otherwise, we move amino acid i to A, i + 1
to i, i + 2 to i + 1, and so on, until a valid conformation
is reached. An example of the forward pull move is shown
in Fig. 5, where i = 4 and n = 9. If i = 1, we call the pull
move front-end pull move which is a special case of forward
pull move. Backward and back-end pull moves can be defined
similarly.

In the improved ELP method, for a conformation c, we
randomly choose the ith (1 � I � n) amino acid and first
“pseudomove” it to its every legal adjacent position. Then

we complete remaining moves by pull-move rules until new
legal conformations are reached. After computing the energies
of the corresponding conformations for all legal positions,
we move formally the ith amino acid to the position where
the energy of the conformation obtained by pull moves is
lowest. This process is repeated until a new conformation is
accepted or pull moves on all n amino acids are executed but
no conformation is accepted. If the latter happens, we restore
the previous conformation c̄ of the current conformation c as
the new current conformation and continue a new round of
iteration of ELP.

The pull move on a 3D fcc lattice can be similarly defined
as above. Differently, in a 2D fcc lattice, the ith (1 � i � n)
amino acid may at most be moved to six adjacent positions
(see Fig. 2), but in a 3D fcc lattice it may be moved at most to
12 adjacent positions (see Fig. 1).

D. Description of algorithm

By putting forward a new update mechanism of the
histogram function in ELP and incorporating the generation
of an initial conformation based on the greedy strategy and
the neighborhood search strategy with pull moves into ELP,
an ELP+ algorithm is proposed. The calculating procedure is
presented as follows.

(1) Generate a valid initial conformation c based on the
greedy strategy. Let c̄ = c, cmin = c. Initialize k, T , and the
largest iterative step number l. Let t = 1 and compute E(c,t).
Initialize the histogram function H (E(c,t),t), i.e., if the energy
E(c,t) of conformation c falls into a certain bin, then let the
frequency of the corresponding bin be 1, and those of other
bins be 0. Let Ẽ (c,t) = E(c,t) + kH (E(c,t),t).

(2) Choose randomly an integer i from N = {1,2,. . .,n}.
(3) Execute pull moves for all legal move positions of the

ith amino acid of the current conformation c. If at least a pull
move is executed successfully, we compute the energies of the
corresponding legal conformations obtained by pull moves,
and pick out the conformation with the lowest energy as an
updated conformation of c, denoted as c′, and go to step (4);
otherwise go to step (7).

(4) Compute E(c′,t). If E(c′,t) < E(cmin,t), then let cmin =
c′, E(cmin,t) = E(c′,t).

TABLE I. Twelve sequences for fcc HP lattice model.

Instance Length Sequence

1 20 HPHP2H2PHP2HPH2P2HPH
2 24 H2P2(HP2)6H2

3 25 P2HP2(H2P4)3H2

4 36 P3H2P2H2P5H7P2H2P4H2P2HP2

5 48 P2H(PH3)2P5H10P6(H2P2)2HP2H5

6 50 H2(PH)3PH4P(HP3)3P(HP3)2HPH4(PH)4H
7 54 H2(PH)3PH4P(HP3)4P(HP3)2HPH4(PH)4H
8 60 P(PH3)2H5P3H10PHP3H12P4H6PH2PHP
9 64 H12(PH)2 [(P2H2)2P2H]3(PH)2H11

10 85 H4P4H12P6(H12P3)3HP2(H2P2)2HPH
11 100a P3H2P2H4P2H3(PH2)3H2P8H6P2H6P9HPH2PH11P2H3PH2PHP2HPH3P6H3

12 100b P6HPH2P5H3PH5PH2P2(P2H2)2PH5PH10PH2PH7P11H7P2HPH3P6HPH2
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TABLE II. The step number l of iterations and the time number t of runs by ELP+ in different cases.

2D fcc 3D fcc

Model instance 1–4 5–9 10–12 1–4 5–12 S R F_90 F_180 CASP targets

l 5 × 105 3 × 106 3 × 107 5 × 105 5 × 106 3 × 107 3 × 107 5 × 106 3 × 107 3 × 107

t 50 50 30 30 30 20 20 30 20 20

(5) If E(c′,t) < E(c,t), then let c̄ = c, c = c′, and update
H (E(c′,t),t), and let Ẽ (c′,t) = E(c′,t) + kH (E(c′,t),t), and
go to step (8); otherwise go to step (6).

(6) If random(0,1) < exp{[Ẽ (c,t) − Ẽ (c′,t)]/kBT }, then
let c̄ = c, c = c′, and update H (E(c′,t),t), and let Ẽ(c′,t) =
E(c′,t) + kH (E(c′,t),t), go to step (8); otherwise go to
step (7).

(7) If all integer numbers between 1 and n are chosen, then
let c = c̄, and go to step (8); otherwise let N = N − {i} and
choose randomly another integer j from N . Let i = j , and go
to step (3).

(8) If t > l, then output the lowest energy conformation cmin

and stop; otherwise let t = t + 1, and go to step (2).

IV. NUMERICAL RESULTS

We test the ELP+ algorithm on both 2D and 3D fcc
HP lattice models. The tested instances include 12 general
instances listed in Table I which have been partly used
in literature [11,12,16–18] and the five sets of longer se-
quences denoted by the S, R, F90, F180, and CASP target
instances. The S, R, F90, and F180 instances are taken
from Ref. [20] and six CASP target instances from the
CASP website http://predictioncenter.org/casp9/targetlist.cgi.
The corresponding CASP target IDs for proteins 3mse, 3mr7,
3mqz, 3no6, 3no3, and 3on7 are T0521, T0520, T0525, T0516,
T0570, and T0563. To fit in the HP model, the CASP targets
are converted to HP sequences based on the hydrophobic
properties. The 20 constituent amino acids of proteins are

broadly divided into two categories: (a) hydrophobic amino
acids denoted as H (Gly, Ala, Pro, Val, Leu, Ile, Met, Phe, Tyr,
and Trp); and (b) hydrophilic or polar amino acids denoted as
P (Ser, Thr, Cys, Asn, Gln, Lys, His, Arg, Asp, and Glu). To
make the ELP+ algorithm perform well, we do a parameter
study in the same way as we have done in Ref. [25]. In this
paper, we set k = 0.1 and T = 5. For every instance, the step
number l of iterations and the time number t of runs by ELP+
are shown in Table II. Since our algorithm is a stochastic
algorithm, we cannot guarantee the algorithm can obtain the
optimal result in each run within given step numbers. So, we
give the lowest energy and the corresponding average value in
all runs for each instance. We implement the algorithm in Java
language and run it on a desktop computer with an Intel Core
2 Duo, 1.6 GHz processor and 2.0 GB of RAM.

A. Numerical results on 2D HP fcc lattice model

First, we test the ELP+ algorithm on the 2D fcc HP lattice
model and compare our results with those from SGA [7],
HGA [7] which combines generalized short pull moves and
improved crossover and mutation operations, HGA + TR [11],
ERS-GA [9], HHGA [9] based on ERS-GA, and TS [11]. The
lowest energies found by ELP+ and the other methods on 12
general instances listed in Table I are shown in Table III.
From Table III, we can see that our algorithm can reach
lowest energies so far for four short sequences and find new
lower free energies than the other six methods for five larger
instances. For instances 1–4, TS and ELP+ can easily obtain
the lowest energies presented in literature. For instances 5–9, it

TABLE III. Comparison of computational results by different methods on the 2D fcc lattice model.

Instancea SGA HGA HGA + TR ERS-GA HHGA TS ELP ELP+ E-eval.c CPU time(s)d

1 −11 −15 −15 −15 −15 −15 −15(−15)b −15(−15) 796 0.001d

2 −10 −13 −13 −13 −17 −17 −17(−17) −17(−17) 12120 0.189
3 −10 −10 −10 −12 −12 −12 −12(−12) −12(−12) 7384 0.051
4 −16 −19 −19 −20 −23 −24 −24(−24) −24(−24) 114162 0.049
5 −32 −32 −41 −40 −43(−43) −44(−43.3) 2205135 21.33
6 −30 −38 −36(−34.4) −42(−40.1) 1889451 45.01
7 −21 −23 −23 −31 −41(−38.1) −44(−41.9) 2444678 20.12
8 −40 −46 −46 −55 −66 −70 −70(−67.5) −71(−70.1) 2886590 91.02
9 −33 −46 −46 −47 −63 −50 −72(−67.7) −75(−74.1) 2689831 119.94
10 −100(−97.8) −101(−100.2) 7457973 4009.5
11 −89(−87.8) −94(−93) 11434980 12556.97
12 −92(−90.4) −94(−93.2) 25652309 13012.06

aInstances are taken from Table I.
bNumbers in bold indicate the lowest energies so far and the numbers in parentheses denote the average energies found over the given run times
in Table II.
cAverage number of energy evaluation (E-eval.) before the lowest energy is found by ELP+ .
dAverage CPU time (second) needed to find the lowest energy by ELP+ over the given run times in Table II.
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FIG. 6. Conformations with the lowest energies found by the
ELP+ algorithm on the 2D fcc HP lattice model. “•” (“�”) and
“◦” (“�”) indicate the hydrophobic and hydrophilic amino acids,
respectively. “�” or “�” denotes the first amino acid of each
sequence.

FIG. 7. Conformations with the lowest energies found by the
ELP+ algorithm for instances 11 and 12 on the 3D fcc HP lattice
model. The black ball and the white ball indicate the hydrophobic
and hydrophilic amino acids, respectively.

is noteworthy that we find lower energies of −44, −42, −44,
−71, and −75, respectively, which are missed by the other
six methods. Three longer sequences with lengths from 85 to
100 taken from Ref. [17] are also tested for future comparison
with other methods.

To investigate the effects of the new update strategy of
histogram function, we further test the ELP+ method without
this update strategy (the following briefly describes ELP). The
parameters used for ELP and ELP+ are the same, so the

TABLE IV. Comparison of computational results by different methods on the 3D fcc lattice model for longer eight instances in Table I.

Instancea SGA SGA + TR HGA HGA + TR MA TS EA ELP+
5 −69 −74b −74 −74(−74)c

6 −55 −56 −59 −69 −73 −73(−72.6)
7 −59 −77 −77(−76.6)
8 −97 −112 −114 −117 −122 −130 −130 −130(−130)
9 −81 −90 −98 −103 −114 −132 −132 −132(−132)
10 −165 −189(−188.2)
11 −156 −186(−185)
12 −181(−180.2)

aInstances are taken from Table I.
bNumbers in bold indicate the lowest energies by the eight methods.
cThe numbers in parentheses are the average energies obtained by ELP+ .
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comparison will be more convincing. Table III shows that the
results by the ELP+ algorithm are as good as or better than the
ELP algorithm. This is reasonable because the ELP+ method
without this update strategy (ELP) is harder to escape the
minima located at narrow and deep valleys of energy landscape
than ELP+ , and may miss some lower-energy conformations
during limited CPU times. The average CPU time of the lowest
energy by ELP+ for every instance is also listed in Table III.
However, because the six methods in the literature do not
report their running times, we cannot compare the speed of
our algorithm with the other methods’ in detail. Considering
the differences in the performances of the running computers
and the programming languages, to detailedly compare the
effectiveness of ELP+ with other methods in the future, we
also give the average number of energy evaluation (i.e., the
number of valid conformations scanned) before the lowest
energy is found by ELP+ for each instance. Figure 6 shows
typical representatives of the lowest-energy conformations
obtained by ELP+ for instances 7–12. It is obvious that each
of these conformations possesses a compact hydrophobic core.

B. Numerical results on 3D HP fcc lattice model

Further, to verify the effectiveness of the ELP+ algorithm,
we apply it on the 3D fcc HP lattice model. First, we test 12
general instances listed in Table I. For four shorter sequences,
the ELP+ algorithm can easily obtain the optimal results in
literature, and for eight longer ones, the computational results
of our algorithm are listed in Table IV, in comparison with the
other seven algorithms, including SGA [15], SGA + TR [15],
HGA [15,16] which combines generalized short pull moves

and improved crossover and mutation operations, HGA + TR
[11,15,16], MA [17], TS [11], and EA [12] with lattice rotation
for crossover and K-site move for mutation. As seen from
Table IV, the results of our algorithm are as good as or
better than those of the other seven algorithms. The lowest
energies by the ELP+ algorithm for instances 5, 8, and 9 are
quite consistent with those of TS and EA, and are lower than
those by the other five algorithms. For instance 6, both our
algorithm and EA find the lowest energy which is missed
by SGA, SGA + TR, HGA, and MA. For instance 7, our
method also gets the optimal energy which is also obtained by
TS. Compared with the results by MA, the ELP+ algorithm
obtains much lower energies for instances 10 and 11. Instance
12 is also tested for future comparison with other methods.
Typical conformations with the lowest energies found by
ELP+ for instances 11 and 12 are shown in Fig. 7.

We also test the other five sets of larger-scale instances,
denoted as the S, R, F90, F180, and CASP target instances,
respectively. Table V summarizes the ELP+ algorithm’s
performance together with those by multiple sequence reopti-
mized LNS (LNS-MULT) [18], 3D structure reoptimized LNS
(LNS-3D) [18], tabu-based local search method (LS-Tabu)
[14], memory-based local search method (LS-Mem) [14],
and tabu-based spiral search algorithm (SS-Tabu) [14]. The
numerical results show that our algorithm wins over LNS-
MULT, LNS-3D, LS-Tabu, LS-Mem, and SS-Tabu over those
proteins with a significant margin on both the lowest energies
and average lowest energies.

From Table V, one can see that our algorithm gets the native
energies for all the F90 instances, and explore the conformation
surfaces more efficiently than LNS-MULT, LNS-3D, and

TABLE V. Comparison of computational results by different methods for the S, R, F90, F180, and CASP target instances on the 3D fcc HP
lattice model.

Instance Len. Native E.a LNS-MULT LNS-3D LS-Tabu LS-Mem SS-Tabu ELP+
S1 135 −357 −349(−332.37) −351(−336.74) −351(−341) −355(−347) −355(−354.23)b

S2 151 −360 −349(−328.98) −353(−334.17) −355(−343) −354(−347) −359(−356.84)
S3 161 −367 −351(−323.77) −353(−329.80) −355(−340) −359(−350) −364(−362.63)
S4 164 −370 −346(−323.98) −354(−334.22) −354(−343) −358(−350) −365(−362.63)

R1 200 −384 −313(−287.98) −330(−305.54) −332(−318) −353(−326) −359(−345) −369(−362.44)
R2 200 −383 −331(−289.83) −333(−308.31) −337(−324) −351(−330) −358(−346) −366(−362.60)
R3 200 −385 −325(−288.49) −334(−307.76) −339(−323) −352(−330) −365(−345) −370(−362.82)

F90_1 90 −168 −164(−156.83) −165(−157.39) −164(−160) −168(−166) −168(−166.23)
F90_2 90 −168 −163(−155.05) −163(−155.81) −165(−158) −168(−164) −168(−167.13)
F90_3 90 −167 −163(−156.23) −163(−157.20) −165(−159) −167(−165) −167(−166.00)
F90_4 90 −168 −164(−156.20) −163(−156.54) −165(−159) −168(−165) −168(−167.24)
F90_5 90 −167 −163(−155.77) −164(−157.46) −165(−159) −167(−165) −167(−166.18)

F180_1 180 −378 −289(−264.06) −293(−269.07) −338(−327) −360(−334) −357(−340) −363(−357.68)
F180_2 180 −381 −302(−280.84) −312(−287.21) −345(−334) −362(−340) −359(−345) −364(−362.83)
F180_3 180 −378 −306(−286.78) −313(−295.31) −352(−339) −357(−343) −362(−353) −368(−363.45)

3mse 179 −323 −266(−249) −278(−254) −289(−280) −291(−287.72)
3mr7 189 −355 −301(−287) −311(−292) −328(−313) −351(−347.42)
3mqz 215 −474 −401(−383) −415(−386) −420(−403) −439(−435.88)
3no6 229 −455 −390(−373) −400(−375) −411(−391) −415(−411.43)
3no3 258 −494 −388(−359) −397(−361) −412(−393) −462(−457.32)
3on7 279 ? −491(−461) −499(−463) −512(−485) −548(−546.85)

aNative E. is the optimal energy and is obtained by using HPSTRUCT [32].
bNumbers in bold indicate the lowest energies by the six methods. The numbers in parentheses are the average lowest energies.
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TABLE VI. Absolute walks of optimal conformations by ELP+ for three CASP target instances in the fcc lattice model.

Instance Structure sequence

3no6 LDFDBLBDRDRUFDFRBUBDBUFUFLFRRDRUBLBRRUFUFLLULDFRFLBUFLBLFULUBRLUFRFRBRRDFRFRBUBLFU
BLRUBDFRBRLDBUBDFDLUBULDBLFDFDRUFUBULUFDFUFDRDFUFDBDLUBDBDFRFRBDBURUBLLDFDFDLUFD
LUFDBLFLRUBUBDLUBLBRBDBLFDFRLUBURURDBDLUBDBDFRRDFRRURDFLFRFLFLLUFDLDLUBDRURDBULUL
ULDFDBDRUBRRUBDLURUFUFUBRLUBURDBLFDBLRDRDBDBUBUFRFDLUBLBDFDLUFRLUBLLDFDFRBDBLRDF
RBUBDFRBRLUFRRDFUBRBLFUFRRUFLBURUFRLDLUBULDFDFRRDRDFUBUFLLDFRFDFLLULUFLRUBLBDLUFLF

DBDBDLUBLBDRDBRFDBDBRFRFDLULDFRFUBURDRUBLRURDFDRDBDa

3no3 LUBDLURUBDBDFRRDLDFDRDBLBULUFDBDBUFLFLLUFLBUBRRDBUFRFRFRFRFLBLFDBRRDBURDBUBDFLRDF
DBLFLFRBDFLFRLUBLFDFUBLLDBDRDBURDFRLUBRBLRUFLLUFUFRBRBLBLBLBLBLBDBLFDRDFUBRFUBURUF
DBRFRLDFURDRDFUFLBDRDLDFDLUFDBLLUFLLURUBRFUFUFUFULDBDFRLDBLFLBUBDFDFRBRLDBURULUFU
BRFUBUFRRDBDBLBLBLBUBRFDFRBRBUFRBRFRRDFULUBRRDFUBUFLLUBLLDRDBURUFDRUFRLUFDFRBDRUF
UBLFLLDFRBDFRBDFDFLLDBLFLFDBLFDBLFDBDLDBURDFDRUFURUBDBULULDBDRDLDBLBLFUBURUBULULU
FDRDLDBRRDBDRDFRFUFURUFLBUBRBDRDFLLUBULDBDFRFLLDFULULUFLRDRUBUFRBDBRLUFRFRRURUFLB

LBRFUFLLDBUBURDRULUBRRUFRBU

3on7 LUFDRUFDBRBRLUFUFDBRRURDFLRULUFDFLRURDRDFUFDLDLDLDBRBDFDRDFDLDBLBRBRBUFRLUFURDRU
BUBUFURUFLFULDFDLDRDRDFLLUFRRUBDLUFLLUFULUBUBDFLBDBDBDBLBRBDBDRUBDBUFRFDRDFLLDFU
BULDFLRUBLFLFDRDFRRUFLRUBUFLLDFRFRRDBDBUFRBUBRLURUBDFRBRBURUFLFDBLLUFRFRLUFLFLRDBL
LUFUBRBUBLFLBUBUBDFLFDFLBDLDRDBUBRBRBRLDFLBLLDBLRDFRFUFULDBDFRFLFDRDRUBRBUBRBRBRR
DFLFLFLRURDBRLUFUBLBRRUFUFLBDFLFDFULULUBDBUBUBUFLLDFRLDLUBDBLFDLUBDRDFDRUFLFDRUBU
FURURDFDBDBRFRBDBULDBLBDRULUBRFRFDRUFUFLRUFLRDFUFLFULULDBDLDLDBDFDBRFUFLFDBRFDBDF

RBRBDBRBRBLFULDBLFULURURUFUFUFDFUFDFRBDBDBDFRFLLUBLRULULUBDFLRDBRRDBRFU

aEvery two letters indicate a basis vector (see Fig. 3).

LS-Tabu. For the S instances, we also get lower energies
than those by LNS-MULT, LNS-3D, LS-Tabu, and SS-Tabu.
For all the R and F180 instances, it is noted that, we obtain
lower energies which are missed by the other five methods.
We also find different lower energies than LS-Tabu, LS-Mem,
and SS-Tabu for the six CASP target instances. Although we
cannot find the native energies for the S, R, F180, and six CASP
target instances, we get much better results than the other five
methods listed in Table V. In all cases, the native energy is
obtained by using HPSTRUCT [32] which is state-of-the-art
software and can exactly compute the native energy for the
fcc HP lattice if one has access to the precomputed H cores by
a different method. It is obvious that, HPSTRUCT outperforms
our method for all instances, except for the five F90 instances;
however, if an HP sequence has m H residues and there is no
m-residue H core [32], then HPSTRUCT cannot run and if not all
size m H cores are available, then HPSTRUCT may not converge.
Even if H cores are available, HPSTRUCT may not converge
within a prespecified time limit, in which case no answer is
returned [18]. With regard to average lowest energies, from
Table V, one can see that the energies by ELP+ are much
lower than those by LNS-MULT, LNS-3D, LS-Tabu, LS-Mem,
and SS-Tabu, especially for larger instances, for example,
3no3 and 3on7. Structure sequences of typical lowest-energy
conformations obtained by ELP+ for three CASP target
instances are listed in Table VI, where every two letters indicate
a basis vector (see Fig. 3).

V. CONCLUSION

Because of the huge search space and the roughness of
protein free-energy landscape, it is easy for the search method
to get trapped in local minima during the process of finding

the ground-state conformation of a protein. To address this
problem, a global optimization method ELP is proposed.
The Metropolis sampling and the accumulated histogram
function helps ELP escape local minima. The ELP method
has been applied successfully in continuous space, e.g., the
off-lattice protein-folding problems and the circular packing
problems. However, few researchers have applied ELP to
discrete space. To demonstrate the efficiency of the ELP
method in discrete space, in this paper we apply an improved
ELP method (ELP+ ) to solving the 2D and 3D fcc HP
lattice protein-folding problems. In ELP+ , we put forward an
update mechanism of the histogram function and incorporate
the generation of an initial conformation based on the greedy
strategy and the neighborhood search strategy based on pull
moves into ELP.

The numerical results show that ELP+ is a competitive
optimization method for both 2D and 3D FCC HP lattice
protein-folding problems. We get the optimal energies for most
of the tested instances. In the future, we would hope to find
a better combination between the global optimization method
and the local search method to reduce the cost to find the
minimal energy, as well as to apply our algorithm to predict
the structures of real proteins.
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