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Cellular senescence in the Penna model of aging
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Cellular senescence is thought to play a major role in age-related diseases, which cause nearly 67% of all
human deaths worldwide. Recent research in mice showed that exercising mice had higher levels of telomerase,
an enzyme that helps maintain telomere length, than nonexercising mice. A commonly used model for biological
aging was proposed by Penna. I propose a modification of the Penna model that incorporates cellular senescence
and find an analytical steady-state solution following Coe, Mao, and Cates [Phys. Rev. Lett. 89, 288103 (2002)].
I find that models corresponding to delayed cellular senescence have younger populations that live longer. I fit
the model to the United Kingdom’s death distribution, which the original Penna model cannot do.
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I. INTRODUCTION

From early alchemists looking for the elixir of life, to
modern-day researchers, humans have always wanted to
understand aging. As people age, their cells go through
replication cycles. Each replication reduces the length of the
telomeres in the cells. If a cell’s telomeres are too short, it
may not be able to replicate [1]. Cells that can no longer
replicate are termed senescent. Cellular senescence is thought
to play a major role in age-related diseases, which cause nearly
67% of all human deaths worldwide [2]. Recent research
in mice showed that exercising mice had higher levels of
telomerase, an enzyme that helps maintain telomere length,
than nonexercising mice [3]. In humans, runners had longer
telomeres than nonrunners [3]. Since shortened telomeres are
thought to be related to death, this research would seem to
indicate that people who exercise live longer lives. Population
studies do indeed show this; however, most studies show that
only the mean lifespan increases in exercising populations, not
maximum lifespan [4,5].

A commonly used model for biological aging was proposed
by Penna in 1995 [6,7]. The model looks at death from a
mutation accumulation standpoint. In the past 10 years, papers
have been published describing methods for finding the age
distributions created by the Penna model without actually
simulating the model [8–10]. However, the research on cellular
senescence indicates that age-related death is not caused by
mutation accumulation but rather by an inability to reproduce
after a number of cycles . I propose a modification of the
Penna model that uses this mechanism instead of mutation
accumulation and show that a mean lifespan can increase
without affecting the maximum lifespan, which cannot be
done by changing parameters in the original Penna model.
Furthermore, I show that this modification allows the Penna
model to fit actual data.

II. MODEL

The Penna model assigns a bit string to each individual
in the population. Each bit corresponds to a timestep of the
simulation. A 1 in the string represents a mutation, and a
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0 means no mutation. If an individual has gone through T

1s, then it dies. Each individual can have offspring, with
probability b. The child’s bit string is derived from the bit
string of the parent, where each 0 has probability (1 − e−β ) of
becoming a 1. The Penna model ignores positive mutations,
because they are rare. The length of the bit string provides a
hard limit for lifespan.

In the proposed modification, which we will call the
senescent Penna (SP) model, each individual can only get
one disease, which is essentially the beginning of aging. After
the individual starts to age, it has probability p of staying
alive to reproduce at each time step. The maximum number
of replication cycles is M , so an individual can stay alive to
reproduce for up to M future cycles. People who exercise
generally have longer telomeres, so once cellular senescence
starts, they have a smaller probability of dying. Higher values
of p could represent exercising populations.

The first 1 in an individual’s bit string is the age, l, at which
cellular senescence begins. The number of people alive at time
j , with age x, is nj (x,l,m) = pnj−1(x − 1,l,m − 1) if x > l,
where p is the probability of living after cellular senescence,
and m is the time since the inception of cellular senescence.
If x � l, then nj (x,l) = nj−1(x − 1,l). If b is the probability
of birth, and e−β is the probability of an individual going
unmutated, then the number of children born in the next time
step with disease acquisition time l, nj+1(0,l,0) is given by

nj+1(0,l,0) = be−βl
∑

x

∑

m

nj (x,l,m)

+ (1 − e−β )be−βl
∑

l′>l

∑

x

∑

m

nj (x,l′,m). (1)

Since m is just the maximum of 0 and x − l,

∑

x

∑

m

nj (x,l,m) =
l−1∑

x=0

nj (x,l) +
M+l−1∑

x=l

nj (x,l), (2)

where M is the maximum number of replication cycles allowed
after disease. Assuming a steady state, nj+1(x,l) = nj (x,l) ≡
n(x,l). Therefore,

l−1∑

x=0

n(x,l,0) = l · n(0,l,0), (3)
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FIG. 1. The possible paths until death, after reaching l, in the SP.

since each x has the same number of people. Since nj (x,l) =
pnj−1(x − 1,l) for x > l, and since nj+1(x,l) = nj (x,l) in a
steady state,

M+l−1∑

x=l

n(x,l) = n(0,l)
M∑

x=1

px = p
1 − pM

1 − p
n(0,l). (4)

Defining ql as

ql = l + p
1 − pM

1 − p
, (5)

and n(l) = n(0,l), Eq. (1) can be simplified to

0 = be−βln(l) − n(l)

ql

+ (1 − e−β )be−βl
∑

l′>l+1

n(l′). (6)

Writing the same equation for l + 1, some algebra leads to

n(l + 1) = n(l)
be−βl − 1/ql

be−β(l+1) − eβ/ql+1
. (7)

This equation leads to some limiting cases, in order
to maintain a steady state. Neither the numerator nor the
denominator should vanish in Eq. (7).

qmax <
1

1 − e−β
, (8)

FIG. 2. Higher values of p result in earlier times of cellular
senescence in the SP. In this picture, M = 5. Age in constant birthrate
units (CBRU).

FIG. 3. The death curve in the SP is a shift of the cellular
senescence curve, with the amount shifted varying on p. Here, M = 5
and p = 0.8. Age in CBRU.

which means that the latest age a person can get a mutation,
lmax, is given by

lmax = qmax − p
1 − pM

1 − p
. (9)

Note that lmax is not the maximum age an individual can live to
but rather the latest age of senescence. The maximum lifespan
is given by lmax + M . This also sets the birthrate,

b = 1

qmaxe−βl
. (10)

However, Eq. (7) only gives the time of cellular senescence,
not the lifespan. In the original Penna model, at l the individual
dies, but here the individual has only a (1 − p) probability of
dying. The number of individuals who die at age t is just

D(t) = pMn(t − M) +
t∑

x=t−M+1

(1 − p)pt−xn(x), (11)

assuming t � M . The first term ensures that when t = l + M ,
all the remaining people alive with n(l) die (Fig. 1).

III. RESULTS

A. Model

Interestingly, in the SP model higher values of p show
a “younger population” (Fig. 2). With lower p values, an
individual with low l will not have as many opportunities to
reproduce, since chances are it will die out soon. This provides
an evolutionary pressure for higher values of l. However, if p

is high, then individuals with low l can still reproduce.
While cellular senescence begins later for populations

with lower p, death comes earlier once cellular senes-
cence is reached (Fig. 3). The average death time for
n(l) is l + (1 − p) + 2p(1 − p) + 3p2(1 − p) + · · · + (M +
1)pM , where the last term has no 1 − p factor, since everybody
left alive has to die. Higher values of p result in later deaths,
as would be expected. The later deaths are more apparent
after lmax, when any living members of the population are
undergoing cellular senescence. Figures 4 and 5 show the
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FIG. 4. Higher values of p have a higher proportion of their
population reach larger ages, but that proportion difference is
countered in the middle of the death distribution. This graph shows
the differences in the death distributions at each time unit for different
values of p and M = 5. Age in CBRU.

differences in percentages, which have to sum to 0. The
increased proportion of older individuals for higher values of
p has to be balanced by a reduced proportion of the population
at lower ages. The jump in the differences of death proportions
early in Figs. 4 and 5 is caused by M . For larger values of p,
the 1 − p term in Eq. (10) is small enough to make the pt−x

term negligible. However, once M is reached, the final term
has no (1 − p) factor, causing the jump.

The SP model does not show an increase in the mean for
higher values of p, but it does show that the probability of living
to a higher age is greater. Even though the probability of living
to a high age is greater, the maximum age for both populations
with higher and lower p is still lmax + M . Higher values of
M push the time of cellular senescence further forward, since
there is less evolutionary incentive for an individual to have a
higher l.

However, just like p, higher values of M also afford a longer
time until death, balancing out the earlier cellular senescence

FIG. 5. The jump in differences of the SP death distributions with
different values of p in Fig. 4 is also observed here, except M = 10.
The jump always occurs at position M . Age in CBRU.

FIG. 6. The death distributions for different values of p look
approximately the same, but there is a slightly higher proportion of
people alive at later times for higher values of p. Age in CBRU.

times (Fig. 6). Since higher values of M allow for a longer
life, the proportion of people alive at a higher age is greater
for higher values of M . The breaks in Fig. 7 are caused by
the same mechanism as the breaks in Figs. 4 and 5, except
instead of the deaths coming at one specific M , they come at
the values chosen for the simulations: M = 5 and M = 10.

B. Fitting the model

I will compare the SP model and the Penna model to
data from the United Kingdom, averaged from 1981 to 2011
[11]. Since the time step in the Penna model is completely
unspecified, the model should fit any constant birthrate data.
However, humans do not have a constant birth rate (see Fig. 8).
The number of deaths per unit time (Fig. 9), which in this case
is deaths per year, needs to be transformed into deaths per equal
birth rate unit. Years are an astronomical time unit that have
no significance in actual human life. We transform the death
distribution in years to a distribution in equal birthrate units.
To find an equal birthrate unit, the cumulative distribution
function of the birthrate should be split into equal intervals

FIG. 7. The differences in the death distribution curves of the SP
of M = 5 and M = 10, for different values of p. Age in CBRU.
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FIG. 8. The normalized birthrate (sums to 1) of the United
Kingdom averaged from 1981 to 2011. Age in years.

along the birthrate axis. This creates bins with an equal number
of births. Finding the birthrate adjusted death distribution
is then just a matter of integrating the nonadjusted death
distribution between the end points of the equal birth bins.
The number of bins is limited by the number of data points.

Notice that in Fig. 10, the number of deaths stays very
close to 0 before dramatically rising at the last point. This is
because the majority of deaths occur after the age of 50, while
nearly all births occur before 50. Since there are no births after
the age of 50, the majority of deaths are always placed in the
last birth bin, regardless of the number of bins. My simulations
confirmed this. The original Penna model cannot fit this sudden
jump.

For the first T time units, the original Penna model has no
deaths. The Penna model assumes a bit string, so individuals
cannot pick up two mutations at once. It therefore takes at
least T time units before an individual can die. The recursive
form for computing the death distribution of the Penna model

FIG. 9. The fraction of the population that died at a given age in
the United Kingdom, averaged from 1981 to 2011. Age in years.

FIG. 10. The United Kingdom’s death distribution, in 27 CBRU.

is given by

n(l + 1) = n(l)
(l + 1)(eβ(l−T +1) − bl)

l(eβ(l−T +1) − b(l + 1)(1 − T + T e−β)
(12)

in Ref. [10].
The best fits to the data using the original Penna model

come when T = lmax. This means that the best fit from the
Penna model predicts that every member of the population
dies at lmax. This is a trivial solution. There are no population
dynamics if everybody dies at the same time. If T < lmax,
then the Penna model fails to even come close to the actual
data.

The SP model is able to fit the observed data well. p ensures
that there are nonzero deaths for the first T − 1 time points,
while M ensures that the number of deaths jumps dramatically
at time T . The solutions that minimized the sum of the mean-
squared residuals had high values of p, and M = lmax − 1
(Fig. 11).

FIG. 11. A comparison of the SP and Penna models with data
from the United Kingdom. Parameters were chosen that minimized
the sum of the squared residuals. The sum for the SP model was
0.00014, and 0.95994 for the Penna model. Age in CBRU.
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IV. CONCLUSION

In this paper, I showed that simple modifications to the
Penna model allow for shifts in the lifespan distribution
without changing the maximum lifespan. Higher values of
p in the SP model result in younger populations, but they die
later.

Thinking about the original context for this modification,
higher values of p can represent exercising populations. The
maximum age of two populations with different p and the
same M is the same, but the exercising population has a higher
chance of reaching later ages. It is intriguing that this model
shows that the exercising populations have a longer period of
senescence, if higher p corresponds to exercising populations.
The average time of cellular senescence for high p is lower

than low p, yet the probability of reaching a high age is
greater.

The Penna model is a tool used to help us understand
population dynamics. My modifications of the Penna model
take into account cellular senescence of a population, which
is a critical part of the aging process, and help to explain the
changes in lifespan observed in exercising and nonexercising
populations. By adjusting e−β,p, and M , the SP model fits
observed data significantly better than the Penna model.
Further improvements to the models could take into account
recent research in autism which suggests that e−β is actually a
function of time [12], and also looking at positive mutations.
The birthrate reparametrization could be applied to exercising
and nonexercising populations, provided that birthrate data
was available.
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M. Hanhoun, J. Scharhag, N. Buechner, T. Meyer,
W. Kindermann, J. Haendeler, M. Boehm, and U. Laufs,
Circulation 120, 2438 (2009).

[4] J. Holloszy, J. Appl. Physiol. 82, 399 (1997).
[5] S. Sarna, T. Sahi, M. Koskenvuo, and J. Kaprio, Med. Sci. Sports

Exercise 25, 237 (1993).
[6] T. Penna, J. Stat. Phys. 78, 1629 (1995).
[7] D. Stauffer, Bioinformat. Biol. Insights 1, 91 (2007).
[8] J. B. Coe and Y. Mao, Phys. Rev. E 67, 061909 (2003).

[9] J. B. Coe and Y. Mao, Phys. Rev. E 69, 041907
(2004).

[10] J. B. Coe, Y. Mao, and M. E. Cates, Phys. Rev. Lett. 89, 288103
(2002).

[11] Office for National Statistics, Population Estimates for England
and Wales, Mid-2011 (2011 Census-based), Tech. Rep. (Gov-
ernment of the United Kingdom, 2012).

[12] A. Kong, M. L. Friggeand, G. Masson, S. Besenbacher, P. Sulem,
G. Magnusson, S. A. Gudjonsson, A. Sigurdsson, A. Jonasdottir,
A. Jonasdottir, W. S. W. Wong, G. Sigurdsson, G. B.
Walters, S. Steinberg, H. Helgason, G. Thorleifsson, D. F.
Gudbjartsson, A. Helgason, O. T. Magnusson, U. Thorsteins-
dottir, and K. Stefansson, Nature (London) 488, 471 (2012).

052702-5

http://dx.doi.org/10.1016/S1097-2765(04)00256-4
http://dx.doi.org/10.2202/1941-6008.1011
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.861005
http://dx.doi.org/10.1007/BF02180147
http://dx.doi.org/10.1103/PhysRevE.67.061909
http://dx.doi.org/10.1103/PhysRevE.69.041907
http://dx.doi.org/10.1103/PhysRevE.69.041907
http://dx.doi.org/10.1103/PhysRevLett.89.288103
http://dx.doi.org/10.1103/PhysRevLett.89.288103
http://dx.doi.org/10.1038/nature11396



