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Polymer model with long-range interactions: Analysis and applications to the chromatin structure
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Chromatin inside the cell nucleus consists of the DNA and its hierarchy of interacting molecules, which
can be modeled as a complex polymer. To describe the chromatin dynamic, we develop and analyze here a
polymer model that accounts for long-range interactions and not just those between the closest neighbors as
in the Rouse polymer model. Our construction of the polymer model allows us to recover the local interaction
between monomers from the anomalous diffusion exponent, which can be directly measured experimentally. We
compute asymptotically for this polymer model the cross-correlation function for a given monomer and the mean
time for a loop to be formed. Finally, we discuss some possible applications for interpretation of chromosome
capture data.
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I. INTRODUCTION

Chromatin inside a cell nucleus consists of a DNA molecule
and its hierarchy of interacting molecules. In spite of the
recent progress in live cell microscopy, chromatin dynamics is
still unclear. For example, a single locus on DNA bacteria
or yeast chromosomes performs a motion that has been
characterized as anomalous [1,2]. Anomalous diffusion is
identified experimentally by calculating the mean square
displacement (MSD) from a time lapse of the locus position.
When the MSD grows as a power law in time such that
〈(R(t) − R(0))2〉 ∝ tα , with exponent α �= 1, the underlying
stochastic motion differs from normal diffusion. For α < 1 the
process is called subdiffusion. The origin of this behavior is
not clear, although the motion of a tagged monomer which
is part of a long Rouse polymer chain is anomalous and
a direct computation (see Eq. 4.56 in [3]) shows that the
exponent α = 1/2. Other polymer models can exhibit different
exponents. The Zimm model, for example, which takes into
account hydrodynamical interaction, gives α = 2/3 [4], and
for a polymer performing reptation α = 1/4 [5]. Interestingly,
empirical data on a locus on the chromatin reveals an exponent
α = 0.33 [6]. What are the properties of a polymer model that
would give this exponent?

Our goal here is to construct a generic polymer model
for which the anomalous exponent of a locus would be
prescribed. Phenomenological models [1] based on the frac-
tional Langevin equation lead to an MSD that exhibits a
power law. The construction of the associated polymer model
is based on modified Langevin equations convoluted by a
kernel which decays algebraically. This kernel accounts for
the motion of the loci in a viscoelastic fluid, which slows
done the loci dynamics, resulting in a subdiffusion regime.
However, the large variability of the anomalous exponent for
the dynamics of a chromatin locus cannot be accounted for
by the viscoelasticity alone. Subdiffusion with an exponent
α > 0.5 can also appear in some polymer models [7], a case
that is not considered here.

We develop here a general method to construct a polymer
model with long-range interactions with a prescribed anoma-
lous exponent. For a given measured anomalous exponent, we
can reconstruct the local interaction rather than attributing the

anomalous behavior to the surrounding medium. Starting with
the classical Rouse polymer model, we construct the long-
range interaction in the Fourier space of the polymer. We then
compute the cross-correlation function and obtain an explicit
expression of the anomalous exponent as a function of the
polymer properties. We derive a novel asymptotic expression
for the mean first looping time for a polymer that has a given
anomalous exponent. Finally, we discuss how such a long
correlated polymer model can be used to analyze experimental
data such as chromosome capture experimental data [8].

II. POLYMER DYNAMICS

A. General properties of a Rouse chain

A polymer is modeled as a collection of monomers
positioned at Rn (n = 1,2, . . . ,N), moving under the influence
of a random Brownian motion coupled to a force originating
from the potential energy φ(R1, . . . ,RN ). In the Rouse model,
only neighboring monomers interact via harmonic springs,
ignoring both non–covalently bound interactions between
monomers (such as hydrodynamics forces) and self-avoiding
interactions.

The potential in the Rouse model [3] is given explicitly by

φ(R1, . . . ,RN )Rouse = κ

2

N∑
n=1

(Rn − Rn−1)2 , (1)

where the spring constant κ = dkBT /b2 is related to the stan-
dard deviation b of the distance between adjacent monomers
[3], where kB is the Boltzmann coefficient, T the temperature,
and d the dimensionality. We work in units of kBT ; thus
κ = d/b2 and D = 1/γ , where γ is the friction coefficient.
In the Smoluchowskis limit of the Langevin equation [9], the
dynamics of monomer Rn in the potential φRouse is described
by the stochastic equation

d Rn

dt
= −D∇RnφRouse +

√
2D

dwn

dt
, (2)

for n = 1, . . . ,N , and each wn is an independent d-
dimensional white Gaussian noise with mean 0 and
variance 1.
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Using the normal (Rouse) modes [3] allows diagonalization
of the stochastic equations. Indeed the new coordinates are

u p =
N∑

n=1

Rnα
n
p, (3)

where

αn
p =

⎧⎨⎩
√

1
N

, p = 0;√
2
N

cos
(
(n − 1/2)pπ

N

)
otherwise.

(4)

In these new coordinates, called Rouse coordinates, u0

represents the location of the center of mass and the potential
φRouse defined in Eq. (1) reads

φ(u1, . . . ,uN−1) = 1

2

N−1∑
p=1

κpu2
p, (5)

where

κp = 4κ sin

(
pπ

2N

)2

. (6)

The stochastic equations for the polymer, (2), are

dup

dt
= −Dpκpup +√

2Dp

dw̃ p

dt
, (7)

where Dp = D and p = 0, . . . ,N − 1.
Equations (7) are of the Ornstein-Uhlenbeck type and can

thus be solved directly: the probability density functions of the
variable up are Gaussians with a time-dependent mean and a
variance given by

σ 2
p(t) = kBT

κp

(1 − e−2t/τp ) for p � 1,

σ 2
0 (t) = 2Dcmt .

(8)

The equilibration (relaxation) times of the internal modes are

τp = 1

Dκp

, (9)

while the diffusion constant is Dcm = D/N . There is a
hierarchy of relaxation times: the shortest time scale is τN−1 ≈
1/(4Dκ), which is half of the time τs = 1/(2Dκ) during
which a free monomer would diffuse a mean squared distance
between the adjacent monomers (b2 = 1/κ). For the center
of mass, the characteristic time is τ0 ≡ b2N/Dcm = N2/(Dκ)
associated with diffusing over the size of the polymer. This
time is of the same order as the longest internal relaxation
time τ1. For long polymers τ0/τ1 ≈ π2.

By inverting Eq. (3), we obtain the position of a specific
monomer:

Rc =
N−1∑
p=0

αc
pup. (10)

Since each term in the above sum is (independently) Gaussian
distributed, so is Rc, and the variance is

var(Rc) = d
(
αc

0

)2
σ 2

0 (t) + d

N−1∑
p=1

(
αc

p

)2
σ 2

p(t). (11)

Utilizing Eq. (8), we distinguish three regimes:
(1) For short times, t 	 τN−1, we can expand the exponen-

tial in Eq. (8) and obtain σ 2
p ≈ Dt independent of p. The sum

in Eq. (11) then leads to var(Rc) ≈ 2dDt .
(2) For very long times, t 
 τ1, all the internal modes

saturate to a variance that is independent of t . In this regime
the additional time dependence comes from the first term in
Eq. (11), corresponding to the slow diffusion of the center of
mass.

(3) For intermediate times, τN−1 	 t 	 τ1, the terms
2t/τp > 1 contribute significantly to Eq. (11). Focusing on
the corresponding modes, we see that

var(Rc) ≈ 2
∫ N−1

pmin

(
αc

p

)2

κp

dp, (12)

where pmin is such that τpmin = 2t . We see that var(Rc) ∼
t1/2. We conclude that during this intermediate time interval,
the dynamics is described as anomalous diffusion, due to the
collective behavior of the modes. The size of this interval can
be made arbitrarily large for N large.

B. Dynamics of a monomer in an extended interacting
Rouse chain (β model)

We propose in this section to derive a general polymer
model based on Rouse such that the behavior of the cross-
correlation function for intermediate times behave like tα ,
where the exponent α is given and related to the intrinsic
property of the polymer. We specifically consider the case of
an anomalous exponent different from 1/2. The main idea of
the model is to extend the monomer interaction beyond the
closest neighbors in the Rouse polymer.

We start with the classical Rouse model described in normal
modes by Eq. (7). To define our new model, we modify in the
Ornstein-Uhlenbeck equations

dup

dt
= −Dpκ̃pup +√

2Dp

dw̃ p

dt
, (13)

the coefficients κ̃p, and we now take

κ̃p = 4κ sinβ

(
pπ

2N

)
, (14)

with β > 1, D0 = Dcm, and Dp = D for p > 0. For β = 2,
we recover the classical Rouse model. By using the reciprocal
transformation of the one given by Eq. (3) between the
original space and the Fourier space (the coefficients αn

p are
unchanged), it is possible to write the novel stochastic equation
for the polymer dynamics in real space. This procedure defines
a unique potential, and as we see, it contains long-range
interactions. At this stage, we have defined a polymer model
in the Fourier space and we use the Rouse transformation to
study its properties.

C. Intermonomer interactions in the β model

In the β model presented above, modifying the eigenvalues
results in a long-range monomer-monomer interaction, leading
to a potential different from the one of Eq. (1). Using the
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inverse Fourier transform of the new diagonalized potential,

φ̃ = 1

2

∑
p

κ̃pu2
p. (15)

We obtain the structure of the novel potential. Indeed, using
Rouse transformation in Eq. (4), we get

φ̃(R1, . . . ,RN ) = 1

2

∑
p

κ̃p

(
N∑

n=1

Rnα
n
p

)2

= 1

2

∑
l,m

Rl Rm

∑
p

κ̃pαl
pαm

p

= 1

2

∑
l,m

Rl RmAl,m, (16)

where the coefficients are

Al,m =
N−1∑
p=1

κ̃pαl
pαm

p

= 4κ
2

N

N−1∑
p=1

sinβ

(
pπ

2N

)
cos

((
l − 1

2

)
pπ

N

)

× cos
((

m − 1

2

)
pπ

N

)
. (17)

For β �= 2, all monomers are coupled and the strength of the
interaction decays with the distance along the chain [Fig. 3(a)].
We compare the coefficient A50,m as a function of m for a
polymer of length N = 100 [Fig. 1(b)] of the β model and
the classical Rouse chain. Within the β model, all monomers
are coupled and the strength of the interaction decays with the
distance along the chain. We have summarized in Table I the
An,m coefficients obtained for various values of β.

We now briefly mention that the β model can further
be directly related to long-range interactions between the
monomers as follows: For a quadratic potential where
monomers interact by pairs, we use the following interaction

TABLE I. Values of the coefficients Al,m (in units of κ) for the
middle monomer in a polymer chain of length N = 101, for different
values of β.

β A51,51 A51,50 A51,49 A51,48 A51,40 A51,30

2 2 −1 0 0 0 0
1.5 2.22 −0.95 −0.087 −0.029 −1.07 × 10−3 −2.2 × 10−3

1.2 2.40 −0.90 −0.14 −0.054 −3.05 × 10−3 −7.9 × 10−3

1 2.55 −0.85 −0.17 −0.073 −5.48 × 10−3 −16.68 × 10−3

energy:

ψ(R1, . . . ,RN ) = 1

2

∑
ij ; i>j

ai,j (Ri − Rj )2

=
N∑

i=1

R2
i

∑
j �=i

ai,j

2
−
∑

ij ; i>j

aij Ri Rj . (18)

Thus the interaction coefficients ai,j are related to that of the
β polymer Al,m [see Eq. (16)] by the following formula:

al,m =
{∑

j �=l Ajl, l = m;

− 1
2Al,m otherwise.

(19)

In this way it is possible to reconstruct the amplitude of the
interaction from the coefficient of the β model.

D. Time cross-correlation function of a single monomer
position in the β model

In this section, we compute the cross-correlation function of
monomer Rc using Eq. (10). Because the correlation function
of each mode up decays exponentially, (8), with a specific
coefficient, we show here that the sum of exponentials can be
approximated by a decaying power law. Using (15), for any
time t0 and t , a direct computation from Eqs. (7) and (10),

A5,1=0.024

A5,3=0.092

A5,2=0.036

A5,4=0.96
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FIG. 1. (Color online) The β polymer. (a) Schematic of a β polymer, where all monomers are connected with a strength that decays with the
distance along the chain. We show the interactions of the central monomer [lighter (blue) circle] with all other monomers in a chain of length
N = 9 for β = 1.5. Interaction units are κ = 3/b2. (b) Monomer-monomer interactions in the modified Rouse polymer model (β model). The
value of the coefficient Alm (in units of κ) represents the strength of the interaction between two monomers. The value of Alm in the Rouse
model (β = 2), where the monomer l = 50 is a part of a long polymer, N = 100 [dashed (blue) line]. In this case only the nearest neighbors
are coupled. Also shown are the coefficients Alm for a polymer with β = 1.1, where the monomer l = 50 is a part of a long polymer, N = 100.
In this case all monomers interact with each other and the strength of the interaction decays with the distance along the chain.

052604-3



A. AMITAI AND D. HOLCMAN PHYSICAL REVIEW E 88, 052604 (2013)

and the correlation function of up, which is 〈|up(t0 + t) −
up(t0)|2〉 = 2

κ̃p
(1 − e−t/τp ), we get

〈(Rc(t0 + t) − Rc(t0))2〉

= d

κN

N−1∑
p=1

cos2
( (2c−1)pπ

2N

)
sinβ

(
pπ

2N

) (1 − e−t/τp ) + 2dDcmt, (20)

where τp = 1/Dκ̃p. For large N , we use the Euler-Maclaurin
formula to approximate the sum by an integral,

N−1∑
p=1

f (p,N,β) ≈
∫ N−1

1
f (p,N,β)dp

+ f (1,N,β) + f (N − 1,N,β)

2

+ 1

12
(f ′(N − 1,N,β) − f ′(1,N,β)), (21)

where

f (p,N,β) = cos2
(

apπ

2N

)
sinβ

(
pπ

2N

) (1 − e−t/τp ) (22)

and a = 2c − 1. The detailed computations are given in the
Appendix and we find that, for N 
 1, the cross-correlation
function behaves for intermediate times, τN−1 � t � τ1,
as

〈(Rc(t0 + t) − Rc(t0))2〉 ∝ t
1− 1

β . (23)

During that time regime, the center-of-mass diffusion is
negligible. We plot in Fig. 2 the cross-correlation func-
tion of a monomer computed from Brownian simulations
of a polymer of length N = 128 and compare the cross-

FIG. 2. (Color online) Cross-correlation of a specific monomer.
Brownian simulations for a polymer of length N = 128 for different
values of β. The time cross-correlation function is calculated from the
polymer trajectory. For β = 3/2 (green line), the anomalous exponent
α = 0.33 computed at intermediate times [Eq. (23)]. The trend line
(cyan line) is also plotted. For β = 2 (blue line), we obtain the Rouse
model with anomalous exponent α = 0.5. Also plotted is the trend
(red) line according to Eq. (23).
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FIG. 3. (Color online) Monomer encounter in a β polymer.
(a) Encounter between the two ends of a polymer at the activation
radius ε. (b) The MFET was found by Brownian simulation in a free
domain for a β polymer with β = 1.5 (solid line) for an activation
radius ε = 0.01b. Simulations are compared to the analytical formula,
(39) (dashed line). Also shown is the MFET for the Rouse model
(points) for which β = 2. (c) Normalized encounter probability for
the polymer ends for a Rouse polymer for which β = 2 (points) and
a β polymer for which β = 1.5 (dashed line).

correlation function for β = 3/2 with that of the regular Rouse
model (β = 2).

E. Mean first encounter time (MFET) between
two monomers of a β polymer

The MFET between two monomers is the mean time it takes
for two monomers to reach a proximity of ε to one another, at
which they interact to create a chemical bond between them
[Fig. 3(a)] [10–18]. This time is key in the regulation of many
reactions in the cell. In [17], we have shown that the MFET is
related to the inverse of the first eigenvalue of the associated
Fokker Planck operator:

〈
τβ
ε

〉 ≈ 1

Dλε
0

. (24)

The eigenvalue λε
0 can be calculated to the first order in ε using

the equation [17]

λε
0 = 4πε

∫
C-P e−φ(x)dxg

|�̃| + O(ε2). (25)

This is the ratio of the closed polymer (C-P) ensemble to the
whole polymer configuration space. We now calculate integral
(25). A direct computation using Gaussian integrals and the β

potential, (15), gives

|�̃| =
∫

e−φ(x)dVx = (2π )(N−1)d/2

⎛⎝N−1∏
p=1

κ̃p

⎞⎠−3/2

. (26)

052604-4



POLYMER MODEL WITH LONG-RANGE INTERACTIONS: . . . PHYSICAL REVIEW E 88, 052604 (2013)

The integral in (25) involves the integration over the C-P
ensemble

|S|λε
0
= |�̃|−1

∫
C-P

e−φ̃(x)dxg, (27)

where dxg is the induced metric of the configuration space
onto the set C-P. Direct integration of Eq. (27) gives [17]

|S|λε
0
= |�̃|−1

⎡⎣ (2π )(N−2)∑
p odd w2

p(∑
p odd

ω2
p

κ̃p

)∏
p κ̃p

⎤⎦d/2

= |�̃|−1

[
(2π )(N−2)S1(N )

1
4κ

S2(N )
∏

p κ̃p

]d/2

, (28)

where ωp = cos (pπ/2N ) and the series

S1(N ) =
m∑

i=0

cos2

(
(2i + 1)π

2N

)
= m + 1

2
+ sin (2m+2)π

N

4 sin π
N

,

m =
{

N−2
2 , N even,

N−3
2 , N odd,

(29)

and

S2(N ) =
N−1∑
p odd

cos2
(

pπ

2N

)
sinβ

(
pπ

2N

) . (30)

We approximate S2(N ) [Eq. (30)] by

S2(N ) ≈
∫ N−1

2

0
g(q,N,β)dq + g

(
N−1

2 ,N,β
)+ g(0,N,β)

2

+ 1

12

(
g′
(

N − 1

2
,N,β

)
− g′(0,N,β)

)
, (31)

where

g(p,N,β) = cos2
( (2p+1)π

2N

)
sinβ

( (2p+1)π
2N

) . (32)

The integral was evaluated with Mathematica and we obtain∫ (N−1)/2

0
g(s,N,β)ds

= N

3π
cos

(
π

2N

)3

2F1

(
3

2
,
1 + β

2
,
5

2
, cos

(
π

2N

)2)
, (33)

where 2F1 is the Gaussian hypergeometric function [19]. The
terms

g(0,N,β) = cos2
(

π
2N

)
sinβ

(
π

2N

) (34)

and

g′(0,N,β) = − βπ cos
(

π
2N

)3

2N sin
(

π
2N

)1+β
(35)

in (31) are of order O(Nβ). Thus, the series S2(N ) is
approximated by

S2(N ) ≈ N

3π
cos

(
π

2N

)3

2F1

(
3

2
,
1 + β

2
,
5

2
, cos

(
π

2N

)2)

+ 1

2

cos2
(

π
2N

)
sinβ

(
π

2N

) + π

24N

β cos
(

π
2N

)3

sin
(

π
2N

)1+β
. (36)

Thus, substituting into (26), (28), (29), and (36) into Eq. (25),
we get, for large N ,

λε
0 ≈ 4εκ−3/2

[
2

3
cos

(
π

2N

)3

2F1

(
3

2
,
1 + β

2
,
5

2
, cos

(
π

2N

)2)

+ π

N

cos2
(

π
2N

)
sinβ

(
π

2N

) + π2

12N2

βπ cos
(

π
2N

)3

2 sin
(

π
2N

)1+β

]−3/2

. (37)

For large N

2F1

(
3

2
,
1 + β

2
,
5

2
, cos

(
π

2N

)2)

= 3π3/2−β2−(1+β)Nβ−1 + O(1) + O(N−2), (38)

while the two other terms in the parentheses scale as Nβ−1.
Finally, the mean encounter time for the two end monomers is〈

τβ
ε

〉 = 1

Dε(2κ)3/2

×
[

2

3
cos

(
π

2N

)3

2F1

(
3

2
,
1 + β

2
,
5

2
, cos

(
π

2N

)2)

+ π

N

cos2
(

π
2N

)
sinβ

(
π

2N

) + π2

12N2

βπ cos
(

π
2N

)3

2 sin
(

π
2N

)1+β

]3/2

+ O(1).

(39)

The asymptotics for the MFET are quite different for the Rouse
and the β polymer: For the Rouse polymer, the asymptotic
scales with N3/2 [the O(ε) term], while for a β polymer, for
N 
 1, the MFET scales as N

3
2 (β−1). In Fig. 3(b) we compare a

Brownian simulation for the MFET of a polymer with β = 1.5
to the analytical formula, (39). We find that the first order in ε

is enough to capture the process for small ε, over a large range
of polymer lengths.

F. Application to chromosome capture experiments,
discussion, and conclusion

We have presented here a method for construction of a
polymer model with long-range interactions and for which
the anomalous exponent is given. Interestingly, the analytical
expression for the MFET leads to a novel scaling exponent
[Eq. (39)] that depends on the anomalous exponent. We now
discuss some applications of the β model to the chromatin
structure in the cell nucleus.

Long-range interactions introduced by the β model can be
generated by condensin proteins, part of the Structural Main-
tenance of Chromosomes (SMC) protein family [20]. Indeed,
these proteins are capable of generating large hoops that tie
together sites far apart along the chromosome. During mitosis,
the concentration of the condensin increases, resulting in an
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increased young modulus of the chromosome [21]. Another
application of the β model is to reinterpret the interactions
map of the human genome [22]. Indeed, chromosome capture
data represent frequencies at which two sites encounter each
other [8]. The encounter frequency has been fitted by the
N−1 power law (N is the distance along the chain), which
is not the one expected from the Rouse polymer model (where
the scaling would be N−3/2). This result is attributed to
the hypothetical fractal organization of the chromatin [23].
However, we present in Fig. 3(c) the graph for the encounter
probability Penc computed from relations (24) and (25) and the
sums (29) and (30), which we normalized to

Penc(N ) =
〈
τβ
ε

〉−1
(N )∑Nmax

N ′=Nmin

〈
τ

β
ε

〉−1
(N ′)

, (40)

where we choose Nmin = 4 and Nmax = 80. Thus we propose
a different interpretation for the decay of Penc, which is neither
N−3/2 nor N−1 but N−3/2(β−1), where β has to be identified by
a fitting procedure that should be applied to experimental data
[22]. We conclude that with the β model, it would be possible
to link the empirical decay rate to the intrinsic properties of
the chromatin, which is incorporated in the value of β.

Another example we discuss is the search for an homolo-
gous sequence in the nucleus as the template for repair [24]
during homologous recombination in yeast. It is characterized
by a higher anomalous exponent α, close to 0.5 [25], while
α = 0.2 for a locus dynamics in the absence of a break. We
can now use these differences in α to estimate the effects
on the MFET. To perform these computations, we model
the chromatin fiber as a chain composed of N monomers
with a standard deviation of the bond length b = 30 nm,
representing a 30-nm fiber (we neglected the strand bending
elasticity). Each monomer represents 3.2 kbps along the
chromosome [26] and the diffusion coefficient of a monomer
is D = 10 × 103 nm2/s [27]. Choosing an absorbing radius
of ε = 5 nm and using formula (39), for a polymer of length
N = 60 (equivalent to 190 kbp) and α = 0.2 (β = 1.25), we
find that the MFET is 0.87 s for the two ends, while for α = 0.5
(β = 2), it is 29.5 s. We conclude that modifying β from a
normal nucleus to the homologous recombination situation is
accompanied by drastic changes in the dynamics of encounters
between sites. While the search is much faster compared to the
resting situation, the looping time is drastically increased.

Finally, the β model can be used to interpret data obtained
from single-particle trajectory experiments on a chromatin
locus. The appropriate polymer model to explain the char-
acteristics dynamics of such a locus is still under debate.
Recently, it has been suggested [28] that yeast chromatin
can be well approximated as a Rouse polymer because the
anomalous exponent, computed from MSD averaging over
a cell population, is approximately 0.5. However, in many
cases and for different chromatin loci, lower anomalous
exponents are measured [6,28]. In that context, the β model can
account for the behavior of different loci. The heterogeneity
of the anomalous exponent reveals that the chromatin can be
remodeled constantly over a cell population or along the DNA
strand.

APPENDIX

In this Appendix, we compute the cross-correlation func-
tion of monomer Rc,

〈(Rc(t0 + t) − Rc(t0))2〉

= d

κN

N−1∑
p=1

cos2
( (2c−1)pπ

2N

)
sinβ

(
pπ

2N

) (1 − e−t/τp ) + 2dDcmt, (A1)

where τp = 1/Dκ̃p. For large N , we use the Euler-Maclaurin
formula, (21). The boundary terms for N 
 1 are approxi-
mated as

f (1,N,β) = cos2
(

aπ
2N

)
sinβ

(
π

2N

) (1 − e−t/τ1 ) ≈
(

2N

π

)β

(1 − e−t/τ1 )

(A2)

and

f (N − 1,N,β) = cos2
(

aπ(N−1)
2N

)
sinβ

( (N−1)π
2N

) (1 − e−t/τN−1 )

≈ cos2
(

aπ
2

)
sinβ

(
π
2

) (1 − e−t/τN−1 ) = 0. (A3)

Using the derivative of f ,

∂f

∂p
(p,N,β) = 2βDκπte−t/τp

N
cos2

(
apπ

2N

)
cot

(
pπ

2N

)
− aπ (1 − e−t/τp )

2N
sin

(
apπ

N

)
sin−β

(
pπ

2N

)
− βπ (1 − e−t/τp )

2N
cos

(
pπ

2N

)
cos2

(
apπ

2N

)
× sin−1−β

(
pπ

2N

)
. (A4)

Then for large N ,

f ′(1,N,β) ≈ 4βκDte−t/τ1 − β

(
2N

π

)β

(1 − e−t/τ1 )

− 2a2

(
2N

π

)β−2

(1 − e−t/τ1 ), (A5)

and

f ′(N − 1,N,β) ≈ −aπ (1 − e−t/τN−1 )

2N
. (A6)

We now estimate the integral in Eq. (21),

I =
∫ N−1

1
f (p,N,β)dp = I1 + I2, (A7)

where

I1 = −
∫ N−1

1

cos2
( (2c−1)pπ

2N

)
sinβ

(
pπ

2N

) e−t/τpdp

and I2 =
∫ N−1

1

cos2
( (2c−1)pπ

2N

)
sinβ

(
pπ

2N

) dp. (A8)
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We begin with I1. Using (9),

I1 = −
∫ N−1

1

cos2
( (c−1)pπ

N

)
sinβ

(
pπ

2N

) exp

[
−4κD sinβ

(
pπ

2N

)
t

]
dp.

(A9)

For large N , we can approximate the integral by

I1 ≈ −
(

2N

π

)β ∫ N−1

1
p−β exp

[
−4κD

(
pπ

2N

)β

t

]
dp.

(A10)

We perform a change of variables u = pβ t

τ1
with τ−1

1 =
4κD( π

2N
)β :

I1 = − 1

β

(
2N

π

)β (
t

τ1

)1− 1
β
∫ (N−1)β t/τ1

t
τ1

u
1
β
−1−1

e−udu.

(A11)

In the intermediate time where τN−1 	 t 	 τ1 ≈ NβτN−1

(anomalous regime), we further approximate the integral as

I1 ≈ − 1

β

(
2N

π

)β (
t

τ1

)1− 1
β
∫ ∞

0
u

1
β
−1−1

e−udu

= − 1

β

(
2N

π

)β (
t

τ1

)1− 1
β

�

(
1

β
− 1

)
. (A12)

The second integral is

I2 =
∫ N−1

p=1

cos2
( (2c−1)pπ

2N

)
sinβ

(
pπ

2N

) dp

≈
(

2N

π

)β ∫ ∞

p=1
p−βdp = 1

(β − 1)

(
2N

π

)β

. (A13)

Finally, substituting Eqs. (A12) and (A13) into Eq. (A7),
taking only terms of order O(Nβ) in Eqs. (A2) and (A5),
and substituting all of them into Eq. (A7), we get

〈(Rc(t0 + t) − Rc(t0))2〉

≈ d

κN (β − 1)

(
2N

π

)β

− d

κNβ

(
2N

π

)β (
t

τ1

)1− 1
β

�

(
1

β
− 1

)
+ d

κN

(
2N

π

)β (1

2
+ β

12

)
(1 − e−t/τ1 ) + 2Dcmt

= d

κN

(
2N

π

)β
[

1

β − 1
+
(

1

2
+ β

12

)
(1 − e−t/τ1 ) −

�
(

1
β

− 1
)

β

(
t

τ1

)1− 1
β

]
+ 2dDt

N
. (A14)

We conclude that for intermediate times (τN−1 � t � τ1), the center-of-mass diffusion does not contribute to the process and
thus the cross-correlation function scales with time as

〈(Rc(t0 + t) − Rc(t0))2〉 ∝ t
1− 1

β . (A15)
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