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Two-dimensional system of hard ellipses: A molecular dynamics study
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We have simulated the dynamics of a two-dimensional system of hard ellipses by event-oriented molecular
dynamics in microcanonical NVE ensemble. Various quantities, namely longitudinal and transverse velocity auto-
correlation functions, translational and rotational diffusion mean-squared displacements, pressure, intermediate
self-scattering function, radial distribution function, and angular spatial correlation, have been obtained and
their dependence on packing fraction is characterized. Despite absence of prominent positional ordering, the
orientational degree of freedom behaves nontrivially and exhibits interesting features. Slowing down is observed
in the angular part of the motion near isotropic-nematic phase transition. It is shown that above a certain packing
fraction the rotational mean-squared displacement exhibits a three-stage temporal regime including a plateau.
Comparison to 2D system of hard needles is made and it is shown that from positional viewpoint, the ellipse
system is more ordered.
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I. INTRODUCTION

Molecular dynamics (MD) simulation of anisotropic hard
objects such as ellipsoids and spherocylinders has been the
subject of interest and exploration and has led to much
advances in the field of molecular fluids since the pioneering
works of Alder and Wainwright [1,2]. For a detailed review,
see Ref. [3]. The hard potential is proposed as a simplification
of short-range repulsive potential between macro molecules.
The proposed model systems have served us as test ground
to deepen our understanding on the basic properties of liq-
uids, colloidal suspensions, concentrated polymeric systems,
granular systems, and, most importantly, liquid crystalline
phases of matter on a molecular level [3–5]. It has been
shown that the alignment of nonspherical molecules can lead
to a diversity of phases, mainly orientational in nature, in
liquid crystals [4,6]. Despite the profound insight obtained
via tremendous Monte Carlo (MC) simulations of the static
phases [7–9], many dynamical, transportational, and structural
properties, namely kinetic arrest and glassy behaviors, have
only been poorly understood. In spite of employment of
other simulation techniques, like Brownian dynamics [10–12],
and theoretical approaches, such as kinetic theory [13,14],
density functional [15–17], and hydrodynamics equations
approach [18], event-oriented molecular dynamics remains as
an efficient tool for probing the dynamical spatial-temporal
aspects of hard gases of nonspherical objects. The interplay
of positional and orientational degrees of freedom has shown
novel aspects in these investigations. Among elongated and
anisotropic hard bodies, ellipsoid and ellipses have received
quite notable attention [3]. Much progress in our understanding
of the behavior of realistic systems can thus be expected
from the study of such hardcore model systems. The first
simulation attempt, in MC framework, was carried out for
a three-dimensional gas of hard ellipsoids by Frenkel and
Mulder [19–21]. Shortly afterwards, the first MD simulation
was done for a three-dimensional system of hard ellipsoids
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by Allen and Frenkel [22]. Their simulation confirmed that
the isotropic-nematic transition is first order. Further investi-
gations revealed many interesting dynamical properties in hard
ellipsoidal systems in 3D such as increase of diffusion coeffi-
cient component D‖ (parallel to director) with density [23] and
glassy dynamics [7,8,24,25]. For many practical purposes, we
need to know the behavior of a thin film of liquid-crystalline
substance. These systems can be effectively considered as 2D.
Aside from practical applications, investigation of 2D model
systems is interesting from a purely theoretical viewpoint.
Villard-Baron did the first pioneering study on a system of
ellipses in 2D [26] by MC simulation. The next attempts to
study a 2D gas of hard ellipses were theoretical. Boublik [27]
implemented the scaled particle theory. Ward and Lado nu-
merically solved the Percus-Yevick equation [28]. Cuesta and
Tejero implemented density functional approach to describe
a 2D system of hard ellipses [29] as a simplified model for
the study of mesophases formed by nonspherical molecules
absorbed on a smooth surface [30]. Ferreira et al. applied
hypernetted chain (HNC) equations to the problem [31].
One of the most important findings of Cuesta is that the
nature of isotropic-nematic transition is drastically different
in 2D and 3D. In a three-dimensional hard ellipsoids system,
this transition is first order, while in 2D ellipses gas it is
continuous. One year later, Cuesta and Frenkel studied other
aspects of the 2D ellipses system via MC simulation [32].
Besides monodisperse hard ellipses system, the properties of
its binary fluid mixture has also been investigated [33]. Another
interesting system that has been quite extensively studied in
2D and 3D is the needle system [21,34,35]. A needle can be
regarded as an extremely elongated ellipse. It has been shown
that this simple system exhibits rich behavior [13,36–43]. To
the best of our knowledge, MD simulation of a 2D system
of ellipses is still lacking in the literature. It allows us to
study dynamical properties that cannot be investigated by the
mentioned techniques, especially MC simulations. Moreover,
our study illuminates the geometrical and entropical features
of 2D anisotropic hard systems and provides us with a deeper
understanding on the interplay of translational and rotational
degrees of freedom in these systems [44].
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II. DESCRIPTION OF THE PROBLEM

Consider a system comprising hard ellipses with mass
m, major axis length 2a, and minor axis length 2b, which
are restricted to move in a two-dimensional x-y plane. The
aspect ratio of an ellipse is defined as κ = a

b
. In this paper,

we consider only κ = 2. The interaction between ellipses is
assumed to be hardcore; i.e., it is nonzero only when two
ellipses are in contact. For simplicity, we work in reduced
units such that m and a are taken as one. The moment of
inertia tensor I of an ellipse is diagonal and we have Ixx = mb2

4

Iyy = ma2

4 and Izz = m(a2+b2)
4 . Upon a collision between two

ellipses, the center of mass (CM) velocity and the angular
velocity around the z axis through the CM will change, in
general. We assume that collisions are elastic and frictionless,
therefore the energy (entirely kinetic) is conserved after a
collision. If the coordinates of the collision point are known,
one can find the postcollision velocities in terms of precollision
ones by employing the conservation laws of energy, linear
and angular momenta. This issue is explained, in details,
in Appendix A. Moreover, in Appendix B we discuss how
to find the coordinates of the collision point, provided the
configuration and velocities of two separate ellipses are given.
Determination of the postcollision quantities in terms of the
precollision ones enables us to study the dynamics of this
2D ellipse gas within collision-oriented molecular dynamics
framework. This approach was first utilized by Alder and
Wainwright in the late 1950s to study the dynamic properties
of liquids [1,2]. In the event-oriented MD, the evolution of
system takes place from collision to collision. The basic
task is to find the time of the next collision. We remark
that between impulsive collisions, free flight occurs. For an
excellent review on the event-oriented molecular dynamics,
see Refs. [45] and [46]. In our 2D problem, the free flight of
an ellipse consists of a uniform motion of its center of mass
plus a free rotation along the z axis with constant angular
velocity ω. When two ellipses collide with each other, we
refer to one of them as the collider ellipse and to the other one
as the partner. The letters “c” and “p” refer to collider and
partner, respectively. See Fig. 1 for illustration of the collision
geometry.

We now turn to the molecular dynamics of this two-
dimensional fluid. Crucial to the MD of hard objects is the
task of finding the collision time between two separate objects.
For simple geometry of objects, such as disk or sphere, it is
possible to analytically find the collision time and hence the
coordinates of the collision point once the initial positions
and the velocities (both translational and angular) of the two
separate objects is given [47]. However, this task cannot be
fulfilled, in principle, when the shape of objects becomes
anisotropic like ellipses. Alternatively, we devise a numerical
scheme to find the collision time. This scheme has been
originally introduced in Refs. [48–50]. The method is based
on finding a geometrical condition for overlapping between
objects. By overlap we mean a condition when the distance
between objects becomes negative. We define the distance
between any two rigid objects A and B as the minimum
distance between xA and xB in which xA (xB) is a point on the
surface of object A (B) [7]. For ellipses, the overlap condition
is explained in Ref. [26]. Let û1 and û2 be the unit vectors along

FIG. 1. (Color online) Geometry of an elastic collision between
two ellipses. The impulsive forces are exerted along the unit normal
vectors at the collision point. The fix frame of reference x-y is shown
in the figure.

the major axes of ellipses one and two and r denotes the vector
joining the center of ellipse one to the center of ellipse two.
Also, let û′

1 and û′
2 denote unit vectors along the perpendicular

directions to û1 and û2, respectively, and θ show the angle
between û1 and û2. Next, a contact function �(r,û1,û2,a,b) is
introduced as follows [26]:

� = 4
(
f 2

1 − 3f2
)(

f 2
2 − 3f1

) − (9 − f1f2)2, (1)

in which

fα = 1 + G −
(

r.ûα

a

)2

−
(

r.û′
α

b

)2

α = 1,2, (2)

with G = 2 + ( a
b

− b
a

)2 sin2 θ . The necessary and sufficient
condition for two ellipses to be in contact is that � = 0. More-
over, the necessary and sufficient conditions for not having an
overlap between ellipses is twofold: first, the function � should
be positive, and second, at least one of the functions f1 or f2

should be negative. Figure 2 illustrates the situation.
The algorithm for finding the next collision time is

straightforward. We move all the ellipses in time steps of
length τ (0) until an overlap between two ellipses is detected.
Suppose this occurs in timestep s (note there is no overlap
after time step s − 1), therefore we bring back all the ellipses
one timestep backward in time. From this time origin, i.e.,
t = (s − 1)τ (0), we move the system with a shorter time step
τ (1) = τ (0)

λ
(λ > 1). We proceed with τ (1) until we encounter an

overlap. We repeat this procedure in a while loop until the time
step becomes less than a given tolerance. Consequently, the
ellipses become very close to each other and can be regarded
in touch [48]. Then we update the velocity and angular velocity
of the colliding ellipses and proceed to the next collision event.
Before closing this section, we would like to mention that for
ellipses the distance of closest approach has been analytically
evaluated and may be used as an alternative scheme for finding
the collision time [51].
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FIG. 2. (Color online) Overlap between two ellipses.

III. MOLECULAR DYNAMICS SIMULATION

A. Static properties

We have simulated the dynamics of a 2D hard ellipses
fluid in NVE ensemble with the method explained in Sec. II.
Periodic boundary condition is imposed. The sizes of our
rectangular simulation box are Lx = 30 and Ly = 45. The
packing fraction (total area covered by the ellipses) is defined
as η = Nπab

LxLy
, where N is the number of ellipses. Note πab

is the area of an ellipse. The total energy of the system E

(entirely kinetic) is divided into two segments of translational
Etrs and rotational Erot. After a sufficient time, the system
reaches to a thermal equilibrium in which the ratio Etrs

Erot
becomes

steady around two according to the classical equipartitioning
of energy among degrees of freedom (two translational and
one rotational). We remark that due to lack of any energy scale
in the potential energy between ellipses, the temperature T

appears as an overall multiplicative factor in thermodynamic
quantities such as pressure and free energy. Thus, the state of
the system trivially depends on temperature and hence energy.
Nevertheless, E determines the time scale τ . In the thermal
unit we have τ = a

√
m

kBT
. We have taken the initial energy

per particle E
N

= 1.5 in our simulations, which corresponds
to kBT = 1. Figure 3 depicts the time evolution of Etrs

Erot
for a

densely packed case with η = 0.83.
The distribution of linear and angular velocities are exhib-

ited in Fig. 4. According to the equipartition theorem, P (v) is
Maxwell-Boltzmannian, whereas P (ω) is Gaussian in the limit
where the particle numbers become large. Despite the limited
number of ellipses, the computed distributions considerably
resemble the theoretical ones.

A useful quantity to explore is the average number of
collisions per unit time � that an ellipse experiences. In
Refs. [34] and [35] it is argued that � has a linear dependence
on number density ρ in a 3D gas of hard needles (κ → ∞).
We have computed the dependence of � on η in Fig. 5. In
fact, � shows a highly nonlinear behavior and drastically
increases when η exceeds beyond 0.5. An exponential fit gives
� = 0.127e6.6η, whereas a power law fit yields � = 47.4η3.47.
In our previous work [43], in which a 2D gas of hard needles
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FIG. 3. (Color online) Time series (for a limited window of time)
of the ratio between translational and rotational kinetic energies Etrs

Erot
at packing fraction η = 0.83.

is investigated (κ → ∞), it is found that � increases linearly
when number density is increased.

The system equation of state, i.e., dependence of pressure P

on the η is sketched in Fig. 6. More precisely, we have sketched
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FIG. 4. (Color online) Distribution functions P (v) and P (ω). For
linear velocity the distributions is Maxwellian. P (ω) is Gaussian and
centered at ω = 0.
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FIG. 5. (Color online) Collision frequency � vs. η for aspect ratio
κ = 2. The dependence is nonlinear in contrary to the 3D gas of hard
needles investigated in Refs. [34] and [35] and 2D hard needles gas
investigated in Ref. [43]. Line is for eye help.

P ∗ = πabP
kT

versus η. In fact, P ∗ shows a rapid increase when
η becomes large. Our results are in accordance with those
obtained via Monte Carlo simulation [26,32] and density
functional approach [29]. An exponential fit gives P ∗ =
0.056e7.74η, whereas a power law fit yields P ∗ = 58.63η4.08.
We see substantial difference between 2D needles system and
2D ellipses systems. In Ref. [43], the pressure P for the 2D
needles fluid shows a linear behavior with a slope in and
intermediate number density.

B. Dynamics in positional and rotational degrees of freedom

It would be illustrative to look at some temporal autocor-
relation functions both in position and rotation degrees of
freedom. In Fig. 7 we exhibit the velocity autocorrelation
function. Similar to two- and three-dimensional gas of hard
needles [34,35,38,43], velocity auto correlation of 2D ellipse
fluid decreases quickly in time. The denser the fluid, the slower
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FIG. 6. (Color online) System pressure P ∗ vs. η. Line is for eye
help.
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FIG. 7. (Color online) Temporal velocity auto correlation func-
tion for various values of η. Two time scales are identified for large
packing fractions.

the decrease will be. This slowing down can be attributed to
the onset of isotropic-nematic phase transition. The interesting
point is that for the dense fluid, the temporal autocorrelation
becomes negative.

Figure 8 exhibits the angular velocity autocorrelation
function for various values of η. Analogous to linear velocity,
the angular velocity temporal autocorrelation undergoes a
sharper decrease when η increases. Similar to linear velocity,
for large η and large enough time the temporal correlation
becomes negative. To gain more insight into the nature of
angular temporal organization of the system, we explore the
autocorrelation between longitudinal and transverse decompo-
sition of CM velocity. These quantities are defined as follows:

C||(t) = 1

〈v2(0)〉 〈	v(t) · û(0)	v(0) · û(0)〉, (3)

C⊥(t) = 1

〈v2(0)〉 〈	v(t)P 	v(0)〉. (4)
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FIG. 8. (Color online) Temporal angular velocity auto correlation
function for various values of η.
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FIG. 9. (Color online) Temporal dependence of longitudinal and
transverse components of velocity ACF. Longitudinal component
exhibits a slower decay, which is due to direction of impulsive force
between needles.

û denotes the unit vector along the ellipse major axis
and the matrix P = 1 − û(0)ût (0) is the projection operator.
We remark that C||(t) and C⊥(t) are such normalized that
their sums gives Cv . In Fig. 9 we exhibit the temporal
dependence of C||(t) and C⊥(t) for various densities. The
observation of negative value for the correlation at long times,
especially in C||(t), has been observed for the 3D ellipsoids or
revolution [23].

Now let us consider the single particle temporal autocorre-
lation of the second-order angular-order parameter C2(t). This
quantity is defined as follows [22]:

C2(t) = 〈P2(û(t) · û(0))〉, (5)

in which P2 is the second-order Legendre polynomial. Decay
of this function implies that relaxation of orientational degrees
of freedom has taken place. Figure 10 shows the temporal
dependence of C2(t).

In low packing fractions we see a fast decay, which can be
attributed to the fluid-like behavior. By increasing η we observe
that the temporal behavior becomes slow and two characteristic
time scales emerge. This confirms the nontrivial role played
by the angular degree of freedom and can be associated to
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FIG. 10. (Color online) Temporal dependence of C2 at various
packing fractions η (semilog scale).

the onset of isotropic-nematic transition. Our results show
clear evidence of slowing down of molecular rotation. We
emphasize that simulation on larger system is needed to ensure
the persistence of such large temporal correlations. The last
temporal quantity we discuss in Fig. 11 is the intermediate
self-scattering function Fs(q,t).

Decay of Fs(q,t) indicates that structural relaxation has
occurred on the length scale set by q. Here also we observe that
by increasing η the intermediate scattering function Fs(q,t)
persists longer in time. It seems that for a large enough packing
fraction, a plateau region emerges on intermediate time scales,
which could be indicative of glassy dynamics. The existence
of plateau regions and the associated two-step decay in Fs(q,t)
has been verified by MC and MD simulations for 3D ellipsoidal
system [8].

C. Static structural properties

We now wish to turn into the issue of structural character-
istics of the system. We have obtained and explored various
quantities, which are shown and discussed in order. First, we
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FIG. 11. (Color online) Time-dependence of the intermediate
self-scattering function Fs(q,t) at q = 3.
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FIG. 12. (Color online) Dependence of g(r) on r at a number of
packing fractions.

consider radial distribution function g(r) shown in Fig. 12 for
various packing fractions. For completeness we define g(r) as
follows:

g(r) = (1/ηN )

〈
N∑

i=1

N∑
j �=i

δ(	r − 	rij )

〉
. (6)

g(r) shows some oscillations in r and becomes almost
constant at r = 4, irrespective of η. The oscillations amplitudes
decrease in distance and can be attributed to the weak
degree of spatial order in the system. The needle gas, on
the contrary, does not show such oscillations and its g(r)
approaches to unity without showing any significant amplitude
fluctuations. The absence of such fluctuations and prominent
peaks demonstrates that from the positional point of view the
2D gas of hard needles has no ordering. This is expected
because there is no excluded volume in hard needles, which
forbids the formation of positional ordering. Contrary to hard
needles, in the hard-disk fluid one observes similar g(r),
especially near the freezing point [52].
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FIG. 13. (Color online) Dependence of g2(r) on r for various
packing fractions.

0 10 20
0

10

20

30

40

κ = 2 ΚΒΤ = 1 η = 0.81

FIG. 14. (Color online) A snapshot at η = 0.81.

However, the ellipse fluid seems to possess some degrees
of positional ordering. Simulations with larger number of
ellipses is necessary to confirm this conjecture. We note that
the existence of excluded volume effect distinguishes the
positional features of the ellipse gas to ideal gas in which there
is no excluded volume and correlations. Next we consider
the angular spatial correlation function g2(r). This quantity is
defined as follows [21]:

g2(r) = 〈cos(2[θ (r) − θ (0)])〉. (7)

The average is over all ellipses having CM-to-CM distance
r from each other. Angles are measured with respect to a fixed
axis, here Ox. Figure 13 plots the dependence of g2(r) versus r .

Similar to the radial distribution function g(r), we see
spatial oscillations with large amplitudes, which can be asso-
ciated to orientational ordering in the system. The amplitude
of oscillations become enhanced when η is increased. The
dependence of g2(r) is totally different in nature with needle
gas. In Ref. [43] we have shown, by MD simulations, that
in the needle fluid g2(r) decreases from one toward zero
without any noticeable fluctuations. For small number density
of needles, the decrease is faster than algebraic but for higher
densities g2(r) shows an algebraic decay. In our ellipses
case, even for large packing fractions the angular correlation
becomes negligible for η > 0.6. In contrast to needle gas, we
infer that absence of algebraic decay of g2(r) diminishes the
possibility of slow dynamics and angular structural arrest. The
fluctuations of g2(r) resembles the radial bond orientational
correlation function g6(r) in the hard disks problem [53].
Figures 14 and 15 exhibit two snapshots associated to η = 0.81
and η = 0.85, respectively.

IV. ORIENTATIONAL ORDERING

In order to explore the orientational ordering of the system,
we first computed the angular order parameter S, introduced
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FIG. 15. (Color online) A snapshot at η = 0.85.

in Ref. [26], which is defined as follows:

S = 1

N2

∑
i,j

〈cos 2(θi − θj )〉. (8)

Note θi denotes the angle of ellipse i major axis with respect
to x axis and 〈〉 means time averaging. Figure 16 exhibits the
time evolution S for the packing fraction η = 0.83. To see
higher packing of ellipses, see Ref. [54]. As you see after
sufficient time the average of S becomes zero, which means
there is no orientational ordering in the system.

The definition of the angular order parameter given in
Eq. (8) is quite specific. Another definition which is frequently
used in the literature is given below:

q = 1

N

〈
N∑

i=1

cos(2θi,n)

〉
. (9)
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FIG. 16. (Color online) Temporal evolution of angular order
parameter S at η = 0.83.
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FIG. 17. (Color online) Nematic order parameter q and Baron
order parameter S vs. packing fraction η.

Here, θi,n is the angle between ith ellipse and the nematic
direction. To compute the nematic direction a tensor order
parameter Q is defined:

Qα,β = 1

N

〈
N∑

i=1

[2uα(i)uβ(i) − δα,β ]

〉
. (10)

α and β take x,y and uα(i) represents the α Cartesian
component of the unit vector specifying the direction of ith
ellipse with x axis. The eigenvector corresponding to the
largest eigenvalue of matrix Q gives the nematic direction.
We remark that in the thermodynamic limit the eigenvalues
of tensor Q become ±q. In Fig. 17 the dependence of S and
q on η is shown. Our findings are in accordance with those
obtained via MC simulations done by Cuesta and Frenkel [32].
We observe that there is no orientational ordering in the vicinity
of solid phase, which indicates the absence of a nematic
phase. The absence of nematic phase for k = 2 hard ellipses
has been confirmed via the MC simulation of Cuesta and
Frenkel in Ref. [32]. In contrast to k = 2, the more elongated
ellipses having k = 4 and k = 6 were shown to posses nematic
phase. Moreover, the MC simulations show that nematic-solid
transition is first order for k = 6 but continuous for k = 4 [32].

V. TRANSPORT PROPERTIES

In this section we report our results for the transport
properties and orientational structure of the system. We begin
with translational diffusion coefficient Dtrs defined as follows:

Dtrs = lim
t→∞

1

2dNt

N∑
i=1

〈|	ri(t) − 	ri(0)|2〉. (11)

The term in the bracket is the translational mean-square
displacement (MSD) 〈(�	r)2〉. Here the spatial dimension d is
two and the average is doubly taken over trajectories of ellipses
CM and time origins. Figure 18 sketches the time dependence
of the translational MSD.

For small η < 0.7 and after a ballistic regime, one re-
covers normal diffusive behavior. This confirms that from a
translational viewpoint, the system resembles a structureless
gas. when η goes beyond 0.7, we observe the MSD exhibits
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FIG. 18. (Color online) Time dependence of 〈(�	r)2〉 at various
packing fractions. For the fluid case where η is small we see a two-
state behavior from ballistic to normal diffusion. When η is increased
we see three temporal regimes.

three-stage behavior in time and for large times the MSD is
deviated from the normal diffusion. This can be associated
to slow dynamics. Obviously, longer simulation with larger
number of ellipses is needed to confirm this picture. Figure 19
plots a CM trajectory of a typical ellipse at three packing
fractions η = 0.46, 0.77, and 0.83.

Three distinctive kinds of motion can be identified: diffu-
sion (isotropic fluid phase), entanglement among neighboring
ellipses (solid phase), and channeling (intermediate phase).
At low η the motion resembles a normal diffusion. At higher η

a channeling type of motion emerges during which an ellipse
moves along a path along its axis direction without much
deviation. From time to time the ellipse is entangled by its
adjacent ellipses. For higher η, the topological constraints in
two dimensions leads to the third type of motion, i.e., entangle-
ment. In this phase, the system becomes solid and each ellipse
only fluctuates, with a small amplitude, around its equilibrium
position. Let us now explore the rotational diffusion and
particularly its coefficient Drot. In contrast to positional,
rotational diffusion seems to be of a different nature. We have
computed the rotational diffusion coefficient by the following
definition:

Drot = lim
t→∞

1

2ζNt

N∑
i=1

〈|θi(t) − θi(0)|2〉. (12)

Analogously, the bracketed term denotes the angular mean-
square displacement 〈(�θ )2〉 and ζ is the number of angular
degrees of freedom (here, ζ = 1). Figure 20 exhibits the time
dependence of 〈(�θ )2〉.

We see a significant difference compared to the translational
diffusion. At high η, the rotational MSD exhibits a three-stage
regime in time, which can be attributed to an angular cage
effect similar to the cage effect in the translational dynamics
of simple liquids. The caging effect emerges when the density
becomes larger than a density around ηc = 0.83. Our findings
are supportive of the existence of slow dynamics in two
dimensions, even when the translational degree of freedom is
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FIG. 19. (Color online) CM trajectory of a typical ellipse at η =
0.46,0.77 and 0.83. Look at the scales.

released. The orientational behavior of the ellipse gas is similar
to needle gas [43], where slow dynamics was observed in the
angular motion. However, the existence of a plateau region
is more apparent in the ellipse case in comparison to needle
system. From the positional point of view, the ellipse gas
seems to have more significant spatial organization. It should
be emphasized that further extensive simulation with a larger
system size is crucially needed to confirm these conclusions.
Unfortunately, the amount of computer time increases dramat-
ically with system size. Finally, we discuss the dependence
of translational and rotational diffusion constants on η. Let us
first discuss the translational motion. In Fig. 21 we show the
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FIG. 20. (Color online) Time dependence of 〈(�θ )2〉 for various
values of η. For small packing fractions we see a ballistic regime
followed by a diffusive one. When η is increased beyond 0.8 we see
three temporal regimes. The intermediate one corresponds to slow
dynamics in orientational behavior.

dependence of Dtrs on η. As you can see, Dtrs is a decreasing
function of η. In the needle system, Dtrs shows a sharper
decrease with number density and nicely fits to an exponential
function [43].

Eventually, Fig. 22 exhibits the dependence of the rotational
diffusion constant Drot on η. Drot is also a decreasing
function of η. The rate of decrease is sharper than the
positional diffusion constant Dtrs. A power law fit gives
Drot = 0.005η−5.01. It should be noted our data for large
packing fractions are less reliable than the small packing
ones. We are not aware of any analytical results for the
translational and rotational diffusion constants to compare our
findings with them. For the needle gas, however, there are
analytical results. In 3D and based on scaling arguments it can
be concluded that within the Doi-Edward theory Drot scales
as ρ−2. MD simulations for a 3D gas of hard needles gives
the dependence of Drot on density as Drot ∼ ρ−β with β ∈

η
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FIG. 21. (Color online) Dependence of Dtrs on the packing
fraction η.
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FIG. 22. (Color online) Dependence of Drot on the packing
fraction η.

[1.8,2.2] [34]. For a 2D needle system, MD simulations gives
Drot ∼ ρ−3.6 [43].

VI. SUMMARY AND CONCLUDING REMARKS

To summarize, we have simulated the dynamics of a two-
dimensional system of hard ellipses with aspect ratio κ = 2
by event-oriented molecular dynamics in NVE ensemble. The
dynamic properties of the system seem nontrivial. Analogous
to our previous findings in a 2D needle system, many of
the temporal autocorrelation functions, both translational and
rotational, exhibit a sort of slow dynamics and multistep
relaxation. The most interesting feature of the system, which
has not been explored earlier, is the existence of three
regimes in the temporal behavior of the angular mean-square
displacement. This can be attributed to slow dynamics and
possibly the angular glassy dynamics in the system. From the
spatial viewpoint, the ellipse system is much more organized
than the needle system, which seems almost structureless.
Our findings show that relaxation of the translational degrees
of freedom does not smear out angular slow dynamics.
The dependence of translational and rotational diffusion
coefficients on the packing fraction have been computed
and compared to existing results obtained by Monte Carlo
simulations.
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APPENDIX A: DYNAMICS OF COLLISION

In this Appendix we intend to obtain the post-collision
velocities (linear and angular) of two colliding ellipses in terms
of pre-collision ones provided the coordinates of the collision
point are known. We denote the coordinates of the collision
point between two identical ellipses by r∗ = (x∗,y∗). We
arbitrarily refer to one of the ellipses as collider and the to the
other one as partner. Centers of collider and partner ellipses are
shown by Rc = (Xc,Yc) and Rp = (Xp,Yp), respectively. The
pre-collision center of mass velocity and the angular velocity
(around z axis) of the collider ellipse is exhibited by vc and
ωc. Analogously, vp and ωp show the corresponding velocities
of the partner ellipse. The post-collision velocities are primed.
Moreover, let rc and rp denote the vectors connecting the
collision point to the centers of collider and partner ellipses,
respectively (see Fig. 1 for illustration). Conservation of linear
momentum implies

vc + vp = v′
c + v′

p. (A1)

Conservation of energy gives

mv2
c + Iω2

c + mv2
p + Iω2

p = mv′2
c + Iω′2

c + mv′2
p + Iω′2

p .

(A2)

Next we write the conservation of angular momentum with
respect to the z axis passing at the collision point:

m(rc × vc + rp × vp) + I (ωc + ωp)k̂

= m(rc × v′
c + rp × v′

p) + I (ω′
c + ω′

p)k̂. (A3)

Note we have six unknowns v′
cx, v

′
cy, v

′
px, v

′
py, ω

′
c, and ω′

p,
but so far we have only four equations [two from Eq. (A1)
and one for each of Eqs. (A2) and (A3)]. We need two further
independent equations. One of them can be obtained from the
direction of the exerted impulsive forces between ellipses. As
a matter of fact, if there is no friction the exerted force will
be along the unit normal vector on the ellipse surface at the
collision point. We now define another reference frame, with a
positive x axis (denoted by x ′) along the unit normal vector n̂ on
the collider ellipse (see Fig. 1). Choosing k̂′ = k̂ and assuming
the primed reference system is right-handed, we simply find
ŷ ′ = k̂ × x̂ ′. From now on we refer to this reference frame as
collision frame. As you will shortly see, it would be easier to
find post-collision quantities in the collision frame. The com-
ponents of vectors along the impulsive force will be denoted
by || subscript, whereas the components perpendicular to it
will be denoted by ⊥ subscript. Since the impulsive forces are
along n̂, the perpendicular components of post-collision linear
velocities remain unchanged and only the parallel components
will be affected by the collision. Therefore, we have

v′
c⊥ = vc⊥; v′

p⊥ = vp⊥. (A4)

Equation (A4) gives one of the remaining equations. Having
Eq. (A4) in mind, Eq. (A1) becomes

v′
c‖ + v′

p‖ = vc‖ + vp‖. (A5)

Now we have four unknowns v′
c‖, v

′
p‖, ω

′
c, and ω′

p but three
equations, i.e., Eqs. (A2), (A3), and (A5). To find the last

equation we utilize the concepts of linear and angular impulses.
Let Ip→c be the linear impulse exerted on the collider ellipse
by the partner ellipse. Similarly, Ic→p is the linear impulse
exerted on the partner ellipse by the collider ellipse. We have

Ip→c =
∫

Fp→cdt = �pc; Ic→p =
∫

Fc→pdt = �pp,

(A6)

where �pc and �pp are the changes of linear momentum of
collider and partner ellipses during the collision. In a similar
manner, we can define angular impulses as follows:

Jp→c =
∫

	τp→cdt = �Lc; Jc→p =
∫

	τc→pdt = �Lp,

(A7)

where 	τp→c and 	τc→p are the torque exerted on the collider and
partner ellipses during the collision, respectively. Furthermore,
�Lc and �Lp are the angular momentum change of the
collider and the partner ellipses. To proceed further, we take
the cross product of ĵ ′ with the first part of Eq. (A7) and find

Ip→c = I (ω′
c − ωc)

rc⊥
î ′. (A8)

Taking the cross product of the second part with ĵ ′ gives
the following equation:

Ic→p = I (ω′
p − ωp)

rp⊥
î ′. (A9)

Comparing Eqs. (A8) and (A9) we find

ω′
c − ωc

ω′
p − ωp

= − rc⊥
rp⊥

. (A10)

Equation (A10) is the fourth equation we were seeking. Let
us now solve these four equations. We write rc and rp in the
collision frame as follows:

rc = rc‖ î ′ + rc⊥ĵ ′; rp = rp‖ î ′ + rp⊥ĵ ′. (A11)

Similarly, we have

vc = vc‖ î ′ + vc⊥ĵ ′; vp = vp‖ î ′ + vp⊥ĵ ′. (A12)

Replacing Eqs. (A11) and (A12) into Eq. (A3), we find

I (ωc + ωp) − m(rc⊥vc‖ + rp⊥vp‖)

= I (ω′
c + ω′

p) − m(rc⊥v′
c‖ + rp⊥v′

p‖). (A13)

In order to simplify the rest of the calculations, we introduce

�vc‖ = v′
c‖ − vc‖; �vp‖ = v′

p‖ − vp‖; A = rc⊥
rp⊥

− 1.

(A14)

With these notations, Eq. (A13) becomes

ω′
c − ωc = ωp − ω′

p + m

I
rcp⊥�vc‖. (A15)

Solving Eqs. (A10) and (A15) yields

ω′
p = ωp − m

IA
rcp⊥�vc‖, (A16)

ω′
c = ωc + m(A + 1)

IA
rcp⊥�vc‖. (A17)
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We can also write

v′
c‖ = vc‖ + �vc‖; v′

p‖ = vp‖ − �vc‖. (A18)

Thus we see from Eqs. (A16)–(A18) that if one can obtain
�vc‖ in terms of pre-collision quantities, all the unknowns are
obtained. For this purpose we use Eq. (A2), which has not
been utilized so far. Replacing all primed quantities, except
v′

c‖, in terms of pre-collision quantities, we arrive at a quadratic
equation (not written here) for v′

c‖. The answers turn out to be

v′
c‖ = vc‖; v′

c‖ = vc‖ − vc‖ − vp‖ + rcp⊥
A

(ωc + Aωc − ωp)

1 + m
2IA2 (A2 + 2A + 2)r2

cp⊥
.

(A19)

Obviously, the solution v′
c‖ = vc‖ is not acceptable because

it implies no change in the ellipses status. The acceptable
answer gives

�vc‖ = vp‖ − vc‖ + rcp⊥
A

(ωp − Aωc − ωc)

1 + m
2IA2 (A2 + 2A + 2)r2

cp⊥
. (A20)

By substituting �vc‖ from Eq. (A20) into Eqs. (A16)–
(A18), all the post-collision velocities will be given in terms
of pre-collision ones. However, it should be noted that in
Eq. (A20) the pre-collision quantities are expressed in the
collision reference frame, which is instantaneous. For practical
purposes, we should be able to express the pre-collision
quantities in Eq. (A20) in the fixed reference frame. To
this end, first we notice that ωc and ωp have the identical
values in the collision and fixed frames because the problem
is two-dimensional. For the other vectors, let us show the
directions î ′ and ĵ ′ by n̂ and τ̂ , respectively. In fact, n̂ is the unit
normal vector and τ̂ is the unit tangent vector at the collision
point of collider ellipse (see Fig. 1). An arbitrary vector Q can
be written in the fixed frame as follows:

Q = Qxî + Qyĵ . (A21)

This vector takes the following form in the collision frame:

Q = (Q · n̂)n̂ + (Q · τ̂ )τ̂ = Q‖n̂ + Q⊥τ̂ . (A22)

If the equation of partner and collider ellipses are fp(x,y) =
0 and fc(x,y) = 0, then n̂ turns out to be

n̂ = ∇fc(x∗,y∗)

|∇fc(x∗,y∗)| . (A23)

The unit tangent vector τ̂ can be written as

τ̂ = k̂ × n̂ = k̂ × (nx î + nyĵ ) = −ny î + nxĵ . (A24)

We are now able to express the components of Q in the
collision frame in terms of nx,ny and its components in the
fixed frame:

Q‖ = Q · n̂ = (Qxî + Qyĵ ) · (nx î + nyĵ ) = Qxnx + Qyny,

(A25)

Q⊥ = Q · τ̂ = (Qxî + Qyĵ ) · (−ny î + nxĵ ) = Qynx − Qxny.

(A26)

To find explicitly nx and ny , we note the equations of
ellipses are (see Appendix B)

fc(x,y) = Ac(x − Xc)2 + Bc(y − Yc)2

+Cc(x − Xc)(y − Yc) + Dc = 0, (A27)

fp(x,y) = Ap(x − Xp)2 + Bp(y − Yp)2

+Cp(x − Xp)(y − Yp) + Dp = 0. (A28)

The coefficients turn out to be

Ac = e2 cos2 θc − 1; Bc = e2 sin2 θc − 1;
(A29)

Cc = e2 sin 2θc; Dc = b2,

where θc is the angle between the major axis of collider with

respect to x axis of fixed reference frame and e =
√

1 − b2

a2

is the ellipse eccentricity. By changing c → p we obtain
coefficients for the partner ellipse. Furthermore, we obtain

∂fc

∂x
(x∗,y∗) = 2Ac(x∗ − Xc) + Cc(y∗ − Yc), (A30)

∂fc

∂y
(x∗,y∗) = 2Bc(y∗ − Yc) + Cc(x∗ − Xc). (A31)

By substituting Eqs. (A30) and (A31) into Eq. (A23), we
find

nx = 2Ac(x∗ − Xc) + Cc(y∗ − Yc)√
(x∗ − Xc)2

(
4A2

c + C2
c

) + (y∗ − Yc)2
(
4B2

c + C2
c

) + 4Cc(x∗ − Xc)(y∗ − Yc)(Ac + Bc)
, (A32)

ny = 2Bc(y∗ − Yc) + Cc(x∗ − Xc)√
(x∗ − Xc)2

(
4A2

c + C2
c

) + (y∗ − Yc)2
(
4B2

c + C2
c

) + 4Cc(x∗ − Xc)(y∗ − Yc)(Ac + Bc)
. (A33)

Substitution of Eqs. (A32) and (A33) into Eqs. (A25) and (A26) gives the components of every vector in the collision frame
in terms of its components in the fixed frame. Here are some examples:

rc‖ = rcx[2Ac(x∗ − Xc) + Cc(y∗ − Yc)] + rcy[2Bc(y∗ − Yc) + Cc(x∗ − Xc)]√
(x∗ − Xc)2

(
4A2

c + C2
c

) + (y∗ − Yc)2
(
4B2

c + C2
c

) + 4Cc(x∗ − Xc)(y∗ − Yc)(Ac + Bc)
, (A34)

rc⊥ = −rcx[2Bc(y∗ − Yc) + Cc(x∗ − Xc)] + rcy[2Ac(x∗ − Xc) + Cc(y∗ − Yc)]√
(x∗ − Xc)2

(
4A2

c + C2
c

) + (y∗ − Yc)2
(
4B2

c + C2
c

) + 4Cc(x∗ − Xc)(y∗ − Yc)(Ac + Bc)
, (A35)
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vc‖ = vcx[2Ac(x∗ − Xc) + Cc(y∗ − Yc)] + vcy[2Bc(y∗ − Yc) + Cc(x∗ − Xc)]√
(x∗ − Xc)2

(
4A2

c + C2
c

) + (y∗ − Yc)2
(
4B2

c + C2
c

) + 4Cc(x∗ − Xc)(y∗ − Yc)(Ac + Bc)
, (A36)

vc⊥ = −vpx[2Bc(y∗ − Yc) + Cc(x∗ − Xc)] + vpy[2Ac(x∗ − Xc) + Cc(y∗ − Yc)]√
(x∗ − Xc)2

(
4A2

c + C2
c

) + (y∗ − Yc)2
(
4B2

c + C2
c

) + 4Cc(x∗ − Xc)(y∗ − Yc)(Ac + Bc)
. (A37)

APPENDIX B: COORDINATES OF THE COLLISION POINT

In this Appendix we show how to find the coordinates of
the collision point if the collision time between two ellipses
is known. Suppose two ellipses (labeled with numbers one
and two) are apart from each other at t = 0. Center of mass
of ellipse i is at [xi(0),yi(0)] and its major axis makes angle
θi(0) with respect to x axis (i = 1,2). Denoting the collision
time by t∗ the ellipse i configuration at the collision instant
become [xi(t∗),yi(t∗)] and θi(t∗) in which xi(t∗) = xi(0) +
vxi t

∗,yi(t∗) = yi(0) + vyi t
∗ and θi(t∗) = θi(0) + ωit

∗. We de-
note xi(t∗),yi(t∗) and θi(t∗) by xi,yi and θi for abbreviation.
Moreover, the coordinates of the two foci of ellipse i turn out
to be (xi ± c cos θi,yi ± c sin θi), where c = ea. The equation
of ellipse i then becomes√

[x − (xi + c cos θi)]2 + [y − (yi + c sin θi)]2

+
√

[x − (xi − c cos θi)]2 + [y − (yi − c sin θi)]2 = 2a.

(B1)

Squaring both sides, after lengthy but straightforward
algebra we arrive at the following equation:

Ai(x − xi)
2 + Bi(y − yi)

2

+Ci(x − xi)(y − yi) + Di = 0 i = 1,2, (B2)

where

Ai = e2 cos2 θi − 1; Bi = e2 sin2 θi − 1;
(B3)

Ci = e2 sin 2θi ; Di = b2.

Since the collision point should satisfy the equations of
both ellipses, we have

A1(x∗ − x1)2 + B1(y∗ − y1)2

+C1(x∗ − x1)(y∗ − y1) + D1 = 0, (B4)

A2(x∗ − x2)2 + B2(y∗ − y2)2

+C2(x∗ − x2)(y∗ − y2) + D2 = 0. (B5)

By solving Eqs. (B4) and (B5) we find the coordinates of the
collision point x∗ and y∗. By replacing x∗ in terms of y∗ and
after very lengthy algebra we reach to the following quartic
equation for y∗:

H (y∗)4 + I (y∗)3 + J (y∗)2 + Ky∗ + L = 0, (B6)

where

H = C ′2; I = D′ − 4y1C
′2; J = 6y2

1C ′2 − 3y1D
′ + E′;

K = −4y3
1C ′2 + 3y2

1D′ − 2y1E
′ + F ′, (B7)

L = y4
1C

′2 − D′y3
1 + E′y2

1 − F ′y1 + G′, (B8)

in which

A′ = 4A2
1A

2
2(x1 − x2)2 − 4A1A

2
2D1 + 4A2

1D2, (B9)

B ′ = 4A1C2(A1 − A2)(x1 − x2), (B10)

C ′ = A2C
2
1 − 4A1A2B1 + A2C

2
2 + 4A2

1B2 − 2A1C
2
2 , (B11)

D′ = 2B ′C ′ + 2C2
(
4A1B1 − C2

1

)
(A1 − A2), (B12)

E′ = B ′2 + 2A′C ′ + 4A1A2(x1 − x2)
(
4A1B1 − C2

1

)
,

(B13)

F ′ = 2A′B ′ + 8A1D1C2(A1 − A2), (B14)

G′ = A′2 + 16A2
1A2D1(x1 − x2). (B15)

We can solve Eq. (B6) by the Ferrari method (see mathe-
matical handbooks such as Ref. [55]) and find y∗. Then x∗ is
found from the following quadratic equation:

x∗ =
−c1(y∗ − y1) ±

√
c2

1(y∗ − y1)2 − 4A1[D1 + B1(y∗ − y1)2]

2A1
+ x1. (B16)

Note there are four answers for y∗ and for each of them two answers for x∗. In order to find the unique collision point, one
should evaluate the sum of distances of the collision points to the two foci for each of the eight points. The acceptable answer is
the one which gives 2a.
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