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Magnetically induced bistable behavior of ferronematic liquid crystals
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In the framework of the modified model [S. V. Burylov and A. N. Zakhlevnykh, Phys. Rev. E 88, 012511
(2013)] of soft ferronematic liquid crystals, i.e., suspensions of needlelike ferroparticles in nematic solvents, we
consider the ferronematic states with different mutual orientations of the director and magnetization. We study
the transitions between states in an external magnetic field and show that these transitions are characterized by
either continuous or discontinuous changes in the order parameter; i.e., they can be both the second-order and the
first-order, respectively. In the latter case the magnetic field induced orientational hysteresis arises, which can be
observed in experiments on the birefringence of ferronematic liquid crystals.

DOI: 10.1103/PhysRevE.88.052503 PACS number(s): 61.30.Gd, 77.84.Nh, 64.70.M−, 42.70.Df

I. INTRODUCTION

Recently, in Ref. [1] we proposed a modified theory of soft
ferronematic liquid crystals (FNs), i.e., suspensions of needle
like ferri- or ferromagnetic particles in nematic liquid crystals
(NLCs). The magnetic susceptibility of these suspensions is at
least two orders of magnitude higher than that of pure NLCs
[2–6]. Due to this, the orientational structure of FN can be
controlled by relatively weak (�100 Oe) magnetic fields.

The proposed modified theory [1] is based on the develop-
ment of the existing continuum approaches to the description
of rigid [2] and soft [3] FNs and differs, mainly, in describing
of the orientational interaction between the ensemble of
ferroparticles and nematic matrix. The main stages of the
construction of a continuum model of FNs, the description of
the orientational interaction, i.e., a ferroparticles orientational
energy, in existing theories [2] and [3], as well as the distinctive
features of our modified approach, are as follows.

For the construction of the continuum model of FN
two interconnected levels of theoretical consideration are
used which differ in characteristic scales: mesoscopic and
macroscopic. At the mesoscopic level with a typical scale
of the order of the ferroparticle length L the behavior of an
individual particle in a uniform nematic matrix is considered.
Here the main problems are the theoretical description of local
deformations of the director near the particle, determination
of equilibrium orientation of the particle (i.e., its long axis)
with respect to the unperturbed NLC director, and modeling of
ferroparticle orientational energy at the deviation of the particle
from its equilibrium under the action of an external magnetic
field H . At the macroscopic (or continuum) level the results
of mesoscopic research are averaged at scales much greater
than L, the collective orientational interaction between the
ferroparticle ensemble and the nematic matrix is considered,
and the expression for the volume density of FN free energy in
the external magnetic field is derived. This expression is a basis
for further theoretical studies of orientational and magnetic
behavior of FN in samples with different geometries.

*burylov@westa-inter.com
†anz@psu.ru

At the continuum level of theoretical consideration of
FNs the director n(r) and the magnetization vector M(r)
are used for the description of orientational order of nematic
and magnetic subsystems, respectively. In the uniaxial liquid
crystal matrix, the director n varies only in its direction. At the
same time, the magnetization vector M, which is the product
of the volume fraction f of the solid phase on the saturation
magnetization MS of the particle material, and the unit
vector m = (M/M), i.e. M = f MSm, can vary both in its
direction and in magnitude. Therefore, for its determination it
is necessary to find a distribution of the vector m(r) [M varies
in direction] and a distribution of the local concentration f (r)
[M varies in magnitude]. Thus, the volume density of FN free
energy must depend on three variables: n, m, and f.

From this viewpoint the first continuum model of FNs,
proposed by Brochard and de Gennes in Ref. [2], looks
too simplified. Solving mesoscopic problems, the authors of
Ref. [2] used the approximation of rigid anchoring of nematic
molecules at ferroparticles surfaces (the model of rigid FNs).
They demonstrated that in the three most probable types
of anchoring—longitudinal, homeotropic, and circular (see
Refs. [1–3,7,8])—each individual particle is aligned strictly
parallel to the unperturbed NLC director in the fields of about
several tens of oersteds. At the macroscopic level it leads to
the condition m = n that limits the general consideration: The
number of independent variables reduces from three to two
in the volume density of FN free energy. Additionally, the
continuum theory [2] of rigid FNs takes into account only
the dipole mechanism of interaction between the ferroparticle
ensemble and the external field. It can be used only at low (H ∼
1–10 Oe) magnetic fields. At high fields (H � 102 Oe), when
there is the quadrupole mechanism of interaction between the
ferronematic and the external field caused by the diamagnetic
anisotropy of the nematic matrix, the condition m = n is not
satisfied anymore and the theory [2] cannot be used for the
description of orientational and magnetic behavior of FNs.

Developing the theoretical approach for description of
ferronematic liquid crystals, Burylov and Raikher in Refs. [7,8]
reconsidered the mesoscopic problems concerning the be-
havior of an individual particle in a nematic matrix. They
studied the case of finite values of anchoring energy W of a
nematic liquid crystal at the particle surface and theoretically
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FIG. 1. (Color online) Orientational states of FN in an external magnetic field.

showed that depending on the type of anchoring and material
parameters, in the absence of external field the particle can be
oriented along or perpendicular to the director. An applied
magnetic field induces rotation of the ferroparticle and its
deviation from the initial equilibrium position. This deviation
is characterized by the orientational energy, which the authors
of Refs. [7,8] suggested to write in the form of quadratic
contribution in cos θ , where θ is the angle between the direction
of a long axis of the particle and the NLC director. In
order to receive the macroscopic (continual) description of
magnetic suspension, Burylov and Raikher [3] obtained the
expression for the volume density of FN free energy in which
the orientational energy of ferroparticle ensemble includes the
quadratic contribution from the scalar product (m · n),

FOR,2(θ ) = A2f (m · n)2. (1)

Here, for the orientational energy and other parameters we use
the notation of Ref. [1], where, in particular, it is shown that
the coefficient A2 in the model [3] can be expressed in terms
of volume v of an individual ferroparticle and the difference
in free energies F ′

‖ and F ′
⊥ for parallel (F ′

‖) and perpendicular
(F ′

⊥) orientation of the long axis of the particle with respect to
the nematic director of the uniform nematic matrix, i.e.,

A2 = F ′
‖ − F ′

⊥
v

. (2)

The values of the energies F ′
‖ and F ′

⊥ depend on the type of
anchoring, i.e., on the boundary conditions for the director on
the surface of the particle. For the calculation of these energies
in Ref. [3] the approximation of soft anchoring (model of soft
FNs) was used, which is valid for the magnetic suspensions
with w = (WR/K) � 1, where R is the particle radius, K is
the average of bulk elastic constants of NLC (splay K11, twist
K22, and bend K33). The condition w � 1 is satisfied, for
example, in real thermotropic suspensions [4–6]. As a result,
for the coefficient A2 the following relationship was obtained:

A2
∼= −2

W

d
P2(cos α), (3)

where d = 2R is the particle diameter, P2(cos α) =
(3 cos2 α − 1)/2 is the second-order Legendre polynomial,
and α is the angle between the easy director orientation on the
particle surface and the long axis of the particle. In comparison
with the model [2], which corresponds to the rigid anchoring
(w � 1), in the theory [3] of soft FNs the volume density
of free energy depends on the full number of independent
variables (n,m,f ) and additionally includes the diamagnetic
contribution that allows one to use this theory for any range

of field strength. In this approach, as shown in Ref. [9], a
ferronematic liquid placed in an external magnetic field can
have three states with various mutual orientation of the director
and magnetization, i.e., with different values of the angle θ

between n and m: homeotropic (state A: θ = π/2, m ⊥ n),
angular (state B: 0 < θ < π/2), and parallel (state C: θ = 0,
m ‖ n); see Fig. 1. In an unbounded FN, the transitions between
those states in a magnetic field have a threshold character and
are the second-order transitions [9].

As to the restricted volumes, in particular, planar FN cells
with different orientations of an external magnetic field with
respect to the vectors n and m, the theory [3] of soft FNs
predicts that along with the transitions of the second order,
also the first-order transitions between states can take place;
see Refs. [10–16]. It is caused by the influence of cell walls
which impact on the orientation of a nematic director in a cell.
For FN cells with specific geometry, the conditions at which the
second-order transitions between orientational states change to
the first-order ones were determined in Refs. [11–16].

The theory [3] of soft FNs and its application [17–19]
to the description of orientational behavior of real magnetic
suspensions gave a proper explanation of experimental data
that cannot be done using the model [2] of rigid FNs. However,
if we consider the theory [3] of soft FNs critically, it should be
noted that the form (1) of orientational energy in this model
is the most simple one, which contains only the quadratic
contribution in (m · n). The result (3) of the calculation of
A2 is valid at w � 1 for cylindrical (rodlike, needlelike,
or ellipsoidal) particles with (L/d) � 10. In calculations it
makes it possible to neglect the existence of end effects and
local deformations of the director near particles. In real FNs,
the end effects and the local orientational distortions near
particles play, of course, a certain role. As was shown in
Ref. [2], the end effects can make corrections to the energies
F ′

‖ and F ′
⊥ and, as a result, to the coefficient A2 : These

corrections are proportional to the ratio of the end surface
area 2SE = (πd2/2) to the side surface area SS = πdL of
the cylinder, i.e., (2SE/SS) ∼ (d/L) ∼ 10%. The correction
of the same order at determination of A2 in the model [3] can
be made by considering the local deformations of the director
field near side surfaces of ferroparticles (i.e., the second order
in w in the expansion of energies F ′

‖ and F ′
⊥ at the parallel

and perpendicular orientation, respectively, of the particle with
respect to the NLC director; see Eq. (18) in Ref. [1]). To the
same number of corrections one can attribute the possible
influence of the saddle-splay elastic constant K24 of NLC
on the values of energies F ′

‖ and F ′
⊥ and, therefore, on the

estimate of the coefficient A2. This effect has not been studied,
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because in Refs. [2,3,7,8] the constant K24 is not taken into
account. Additionally, the deviation of the particle shape from
cylindrical (for example, ellipsoidal particles) also has to make
the correction to this coefficient. The general consideration of
these corrections and its proper description can influence on
the quadratic type of orientational energy proposed by Burylov
and Raikher. Therefore, in the development of their approach
to the description of FNs the following major question was in
front of us: How do effects of secondary importance influence
the orientational energy of particles?

This question has been already discussed by a number of
authors. In particular, Zadorozhny et al. [12,13] proposed
to consider the coefficient A2 in the model [3] of soft FNs
as a phenomenological (fitting) parameter which must be
obtained not from theoretical estimates, but from the analysis
of experimental results. This procedure was approved in
Refs. [20,21]. However, in our opinion, such modification of
model [3] of soft FNs leads to a simple renormalization of
anchoring energy W in the theoretical expression for A2 from
Eq. (3). We assume that by using one and the same surfactant
for processing the particles of submicronic dimensions and
flat surfaces the corresponding values of anchoring energy W

may not coincide. Apparently, this fact and the influence of
the corrections described above are implied in the approach
of Zadorozhny et al. to the definition of the constant A2. As
for the general form of orientational energy of ferroparticles,
in Refs. [12,13] it does not differ from the model [3] of
soft FNs.

Another idea is suggested by Baldin and Zakhlevnykh
in Ref. [22]. Considering magnetic suspensions with the
homeotropic type of anchoring at ferroparticle surfaces, the
authors of Ref. [22] proposed to take into account not only
the second order in (m · n) in the orientational energy, but
also the fourth-order one. As the major argument for that
modification, Baldin and Zakhlevnykh used the analogy with
a more general (in comparison with the Rapini potential
[23]) expression for the density of surface energy of nematic
anchoring at a rigid substrate, which includes a term of this
type (compare the surface energy of NLC in Refs. [23] and
[24]). However, up to now this theoretical approach was not
developed in the literature. The reasons are as follows. First, the
suggested form of orientational energy breaks traditional ideas
of the behavior of particles in the nematic matrix of FN since it
allowed for the possibility of their bistable or tilted orientation
with respect to the NLC director in the absence of an external
magnetic field [1]. Second, the main idea of this modification is
not supported by detailed theoretical justification, in particular,
at the mesoscopic level.

In Ref. [1], we carried out the mesoscopic study for the
anchoring of arbitrary type at the surface of a single particle.
Going to the continuum (macroscopic) description of magnetic
suspensions, we have shown that, in general, the orientational
energy of the ensemble of ferroparticles is an infinite series in
even powers of the scalar product (m · n):

FOR(θ ) = f

∞∑
k=1

A2k(m · n)2k. (4)

It was also found that for the sum of the coefficients A2k

in the expansion (4) more general expression than (2) takes

place
∞∑

k=1

A2k = F ′
‖ − F ′

⊥
v

. (5)

Starting from Eq. (4) and consistently developing the
continuum theory of FN, we by analogy with Ref. [22] took
into account the additional term of fourth order in (m · n)
in the expansion of orientational energy of ferroparticles.
Additionally, we have generalized the idea of Ref. [22] for
the homeotropic anchoring on the case of arbitrary uniform
boundary conditions for the director on the surface of fer-
roparticles. Also, we have established the influence of surface
elastic constant K24 of NLC on the energies F ′

‖ and F ′
⊥ that

are used to estimate the coefficients of the expansion (4). As
a result, for the modified orientational energy of ferroparticles
the following expression was obtained [1]:

FOR,4(θ ) = A2f (m · n)2 + A4f (m · n)4

= −2
W

d
P2f (m · n)2[1 − ζ (m · n)2], (6)

P2 = P2(cos α), ζ = −(A4/A2) = ζ (cos2 α).

We have shown that theoretical estimate of Ref. [3] for
the coefficient A2 in Eq. (3), determined in the approximation
w � 1, is rather good. In addition, we have obtained that
for a large value of the surface saddle-splay constant K24 =
(1–2)K of the nematic matrix (see, for example, Refs. [25,26])
this estimate can be used up to the values w � 1. To take
into account the coefficient A4 in the modified orientational
energy of ferroparticles we introduce the phenomenological
parameter ζ in Eq. (6). In general, its value depends on the FN
material parameters and the type of anchoring of the director
at the particle surfaces. The possible values of ζ belong to the
interval −1 � ζ < ζBS, where the restriction on the upper
boundary ζBS = 0.5 is introduced in order to exclude the
existence of a bistable or a tilted orientation of ferroparticles
with respect to the nematic director in the absence of an
external magnetic field [1].

Analyzing the expression (1)–(6) and tracing the rela-
tionship between mesoscopic and continuum descriptions of
magnetic suspensions, it is easy to see that, compared with the
model [3] of soft FNs, due to the additional phenomenological
parameter ζ we make a correction to the energy (F ′

‖ − F ′
⊥) of

a single particle at parallel and perpendicular orientation of its
long axis with respect to the nematic director. These correc-
tions, as mentioned above, may be associated with end effects,
local deformations of the director near individual particles, and
the deviation of the particle shape from cylindrical. However,
unlike the approach of Refs. [12,13] in our modified theory of
soft FNs these corrections are not taken into account by simple
renormalization of the coefficient A2 (or the anchoring energy
W ), but due to more complete [up to fourth order in (m · n)]
description of ferroparticle orientational energy.

The higher-order contributions (A6, A8, and so on) in
Eq. (6) for the particle orientational energy are related to
more subtle effects such as small differences of particles in
sizes, a local heterogeneity of surface relief of particles, a
local heterogeneity of boundary conditions on the particles,
etc. In our opinion an inclusion of these contributions in
Eq. (6) exceeds the accuracy of the FN free energy density
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proposed in [1]. Therefore, higher-order contributions were
not considered in Ref. [1] for description of FNs.

Below, based on the proposed modified model of soft
FNs, we consider the influence of additional contribution
of the fourth order in (m · n) in the orientational energy of
ferroparticles on the behavior of magnetic suspensions in an
external magnetic field. The paper is structured as follows.

Section II provides detailed theoretical description of the
orientational states of FN: homeotropic (A), angular (B), and
parallel (C), which were predicted in Ref. [9]. As a sample we
consider unbounded FN and obtain the expression for the free
energy density corresponding to the given case. On the basis
of this expression, we obtain the equations of equilibrium for
the orientational angles of the director n and the magnetization
m in an external magnetic field and determine the energies of
the orientational states and the critical values of the fields that
correspond to the absolute instability of the states A and C.
In Sec. III we show that for the unbounded FN the modified
form (6) of the orientational energy of soft FNs leads to new
results. In particular, to the conclusion that FN transitions
between states A, B, and C can be both second-order and
first-order transitions, and for certain values of ζ the angular
state B can be only metastable. In Sec. IV, we propose the
theoretical description of the experiment on the birefringence
of FN in a magnetic field. Here we show the possibility of
observing the orientational states A, B, and C and describe
the features of the transitions of the first and second order
between the states. It is established that at the transitions of
the first order the orientational hysteresis can be observed,
caused by the simultaneous existence of thermodynamically
stable and metastable FN states in an external magnetic field.
It is also shown that depending on the value of ζ there are five
types of hysteresis loops, whose character can be observed
in experiments on FN birefringence. The obtained results are
generalized in Sec. V.

II. UNBOUNDED FERRONEMATIC IN
A MAGNETIC FIELD

A. Free energy and equilibrium equations

Let us consider the influence of the modified form (6) of
ferroparticles orientational energy on regions of existence of
homeotropic (A), angular (B), and parallel (C) states with
various mutual orientation of the director n and magnetization
vector m in uniform magnetic field (see Fig. 1), and also let
us discuss the character of transitions between these states
depending on the phenomenological parameter ζ. Within
the model [3] of soft FNs this study was carried out in
Ref. [9], where an unbounded sample of FN was considered.
Using the unbounded sample for the description of orientation
states A, B, and C in comparison with their study in finite
volumes of FN gives the following advantages. First, at
equilibrium the unbounded FN sample does not contain the
director field deformations at scales r � L; therefore, in the
density F of FN free energy (the general expression for
which is presented in Ref. [1]) the Frank energy of these
deformations is identically zero. Second, the concentration
of the particles remains constant in each small bulk of FN,
and the so-called segregation effect [2,3] associated with the

spatial redistribution of ferroparticles under external magnetic
field action is absent. Third, such consideration eliminates
an influence of cell walls on the orientational behavior of a
magnetic suspension. Therefore, for unbounded FN in the free
energy density remains three terms:

F = FOR,4 + FDP + FQP . (7)

The first term in Eq. (7) is modified orientational energy
from Eq. (6). The contribution

FDP = −MSf (m · H) (8)

describes the dipole mechanism of ferroparticle ensemble
interaction with an external magnetic field. The term

FQP = −χa

2
(n · H)2 (9)

corresponds to quadrupole interaction of nematic matrix with
the external field and is the diamagnetic energy of NLC, where
χa is the anisotropy of diamagnetic susceptibility. Therefore,
the use of the unbounded ferronematic liquid crystal for study
of ferronematic phases A, B, and C, allows us to investigate
the direct competition between the orientational interaction
of particles with the nematic matrix, dipole, and quadrupole
interactions of FN with the external magnetic field.

Now we turn directly to a formulation of the problem. Let us
consider the unbounded uniform FN sample with the director
n along which we direct the x axis of the Cartesian coordinate;
see Fig. 2. We assume that the NLC has positive diamagnetic
anisotropy (χa > 0), and the homeotropic type of anchoring
(α = π/2) takes place at the surfaces of particles. At this
anchoring the coefficient A2 = −[2WP2(0)/d] = (W/d) >

0; therefore, in the absence of magnetic field the particles are
oriented in the planes which are perpendicular to the director.
Now we direct the magnetic field H = (0,H,0) along the y

axis. For H ∼ 1Oe it plays the role of the bias field [1,3] and
magnetizes the FN to the saturation, orienting the ferroparticle
magnetic moments in the direction of H (along the y axis).
As the field increases, the director also tends to orient along
to the field due to χa > 0; see Eq. (9). Thus, there occurs
a competition between different mechanisms of orientation
ordering of FN.

It is convenient to write the components of the director and
magnetization unit vector in the form

n = (cos φ, sin φ, 0) , (10)

m = (− sin ψ, cos ψ, 0), (11)

where the angles φ and ψ determine the deviations n and
m from the directions of their initial orientation φ0 = ψ0 = 0,

(b)(a)

FIG. 2. (Color online) Unbounded FN in the external magnetic
field (a); choice of the coordinate system (b).
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i.e., n = (1, 0, 0) and m = (0, 1, 0); see Fig. 2(b). Substituting
(10) and (11) into (7), we obtain

F = W

d
f sin2(φ − ψ)[1 − ζ sin2(φ − ψ)] − Msf H cos ψ

− 1

2
χaH

2 sin2 φ, (12)

where for the parameter ζ = ζ (0) corresponding to the
homeotropic anchoring (α = π/2), we left the same notation,
as in (6).

It is convenient to write Eq. (12) in dimensionless variables,
taking H0 = Msf/χa (representing a characteristic field of
transition from dipolar to a quadrupolar ordering regime
[27]) as a unit of field strength. Thus, H = H0h, where
h is the dimensionless field strength. Let us introduce also
the dimensionless orientational energy of magnetic particles
ω = (Wχa/dM2

Sf ); as a result we obtain

F = χaH
2
0

{
ω sin2(φ − ψ)[1 − ζ sin2(φ − ψ)]

−h cos ψ − 1
2h2 sin2 φ

}
. (13)

The equations of FN orientational equilibrium are obtained
by minimization of free energy (13) with respect to φ and ψ ;
hence,

h2 sin φ cos φ − ω sin 2(φ − ψ)[1 − 2ζ sin2(φ − ψ)] = 0,

(14)

h sin ψ − ω sin 2(φ − ψ)[1 − 2ζ sin2(φ − ψ)] = 0. (15)

Let us consider the solutions of these equations which
correspond to the different orientational states of FN.

B. Orientational states of FN

The set of orientation equilibrium equations (14) and (15)
has three solutions satisfying the conditions of free energy
minimum

∂2F

∂φ2
� 0,

∂2F

∂φ2

∂2F

∂ψ2
−

(
∂2F

∂φ∂ψ

)2

� 0. (16)

These solutions correspond to uniform ferronematic states;
we classify them by analogy with Ref. [9].

(i) The trivial solution φA = ψA = 0 corresponds to
the unperturbed configuration, i.e., n = (1, 0, 0) and m =
(0, 1, 0). This state is characterized by the perpendicular
orientation of the director with respect to the magnetization
unit vector and to the external magnetic field direction:
n⊥m||H . It is called “homeotropic FN state”; see state A
in Fig. 1.

(ii) The solution of a general form when φ and ψ are
different from zero and (π/2) corresponds to the so-called [9]
“angular FN state” or state B in Fig. 1. For this configura-
tion, the angles of director orientation φB = φB(h,ω,ζ ) and
magnetization unit vector ψB = ψB(h,ω,ζ ) are determined
from the system of Eqs. (14) and (15) and are the functions of
magnetic field strength, material parameters of the system and
phenomenological parameter ζ.

(iii) The third solution corresponds to the values φC = π/2
and ψC = 0, i.e., n = (0,1,0) and m = (0, 1, 0). It describes
“parallel FN state” or state C in which the director and

ferroparticle magnetic moments are oriented along the field
n||m||H ; see Fig. 1.

From equilibrium equations (14) and (15) it is possible to
find the critical values of fields, at which the homeotropic (A)
and parallel (C) states are absolutely unstable. All we have to
do is to linearize Eqs. (14) and (15) near {φA = 0,ψA = 0} for
state A and near {φC = π/2,ψC = 0} for state C. Solutions
of the linearized equations show that the homeotropic state is
absolutely unstable at h > h⊥, where

h⊥ =
√

ω2 + 2ω − ω, (17)

and the parallel state is absolutely unstable at h < h‖, here

h‖ =
√

ω2(1 − 2ζ )2 + 2ω(1 − 2ζ ) + ω(1 − 2ζ ). (18)

More complete information about existence areas of each
orientational state—A, B, and C—can be obtained by compar-
ison of their free energies in the magnetic field h. For these
states the dimensionless [divided by χaH

2
0 ; see Eq. (13)] values

of free energies per unit volume of FN are as follows:

FA = −h,

FB = ω sin2(φB − ψB)[1 − ζ sin2(φB − ψB)]
(19)

−h cos ψB − 1

2
h2 sin2 φB,

FC = ω(1 − ζ ) − h

(
1 + h

2

)
.

The comparative analysis of these energies is given in the
following section.

III. ORIENTATIONAL TRANSITIONS
IN FERRONEMATICS

A. General description

First of all, we briefly discuss the results of Ref. [9],
where the comparison of energies (19) is carried out within
the framework of the model [3] of soft FN, i.e., at ζ = 0.

In this case the increase of external magnetic field h leads
to consecutive orientational transitions from state A to state
B at h = h⊥, and then to state C at h = h‖(ζ = 0). Both
transitions between the states are the transitions of the second
order when the order parameter (which can be, e.g., sin2 φ or
sin2 ψ) smoothly varies at the transition point.

In the considered case, i.e., at ζ 	= 0, the situation becomes
more complicated. As calculations show, the critical fields of
transitions between states and the character (the second or first
order) of these transitions depend on the values of ω and ζ.

Let us remind the reader that the transition of the first-order is
characterized by a jump of order parameter (sin2 φ or sin2 ψ)
at the transition point.

A general picture of the regions of existence of orientational
states A, B, and C in the plane (ω,ζ ) at the considered values
of ζ from the interval −1 � ζ < ζBS = 0.5, as well as the
character of transitions between the states are presented in
Fig. 3. Here the plane (ω,ζ ) is divided into three regions by
curves ζ⊥(ω) and ζ‖(ω), which are depicted by solid lines.
The physical meaning of these curves is discussed below.
Within −1 � ζ < ζ‖ all of three orientational states A, B, and
C can exist consistently (with the increase of h), and transitions
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FIG. 3. Regions of existence of orientational states A, B, and
C induced by magnetic field in the plane (ω,ζ ). Symbols (1) and
(2) show the character of equilibrium transitions between the states
(first or second order). The tricritical curves ζ‖(ω) and ζ⊥(ω) are
calculated with use of Eqs. (22) and (23). The curves ζ ∗(ω) and
ζ ∗∗(ω) correspond to Eqs. (26) and (28).

between the states in the external magnetic field are transitions
of the second order, as well as at ζ = 0 [9]. For ζ‖ < ζ < ζ⊥ the
orientational states also consistently exist at the increase of h,

but the transition from the angular state B to the parallel state C
becomes a transition of the first order. For ζ⊥ < ζ < ζBS only
two states are stable—homeotropic (A) and parallel (C)—and
the transition between these states in the external field is a
transition of the first order. As is obvious from the above, the
curves ζ⊥(ω) and ζ‖(ω), i.e., the boundaries of the mentioned
regions, play a role of tricritical dependences: They correspond
to the points of the plain (ω,ζ ) at which the transition character
changes from the second-order to the first-order one (and vice
versa).

It should be noted that in Fig. 3 we show also the critical
curves ζ ∗(ω) and ζ ∗∗(ω), which correspond to the qualitative
change of the orientational hysteresis loop in the magnetic
field. At this stage we do not pay special attention to them
as the phenomenon of a hysteresis is in detail discussed in
Sec. IV. Here we consider equilibrium transitions between
the FN orientational states, study the behavior of magnetic
suspensions in each of three regions described above, and give
relations corresponding to the tricritical dependences ζ⊥(ω)
and ζ‖(ω).

B. Second-order transitions at −1 � ζ < ζ‖

Figure 4 presents the dependencies of free energy density of
orientational states A, B, and C on the dimensionless magnetic
field h specific for −1 � ζ < ζ‖, and also the dependences of
deviation angles of the director φ and the magnetization unit
vector ψ corresponding to these states on h at ω = 0.1 and ζ =
0.1. The energy point of reference in Fig. 4(a) is represented
by the energy FA of homeotropic (A) state; therefore, the
value of �FA corresponds to the abscissa axis for this state,
and the functions �FB = FB − FA and �FC = FC − FA with
the energies from Eq. (19) correspond to the angular (B) and

(a) (b)

FIG. 4. Regions of existence of orientational states A, B, and C
in the magnetic field h for ω = 0.1 and ζ = 0.1: (a) free energy
density of the states; (b) deviation angles of the director φ and the
magnetization unit vector ψ.

parallel (C) states, respectively. The critical fields h⊥ = 0.358
and h‖ = 0.488 of absolute instability of states A and C shown
in this figure are calculated with the use of Eqs. (17) and (18)
for ω = 0.1 and ζ = 0.1. Thermodynamically stable sections
of curves in Fig. 4 and the subsequent figures are shown by
solid lines.

From Fig. 4 it can be seen that in weak magnetic fields which
correspond to the values h < h⊥, the initial homeotropic state
A is stable. In this case, the ordering of FN occurs mostly
in a dipole (8) mode of interaction of the magnetic field
with the ensemble of ferroparticles, and this interaction makes
the main magnetic contribution to free energy density (7) of
the system. Because the orientational energy of ferroparticles
possesses the minimum at m⊥n, in weak fields the director
n and magnetization vector m keep their initial orientation:
n = (1, 0, 0) and m = (0, 1, 0). The homeotropic state A is
stable until the magnetic field strength reaches the threshold
value h⊥. At h = h⊥ it transforms into angular state B.
At that, the values of orientation angles of the director φ

and magnetization ψ vary smoothly at the transition point
that corresponds to the transition of the second order [see
Fig. 4(b)]. Due to positive diamagnetic anisotropy (χa > 0),
at h > h⊥ the LC director deviates in the direction of a
field. In this case the ensemble of ferroparticles is affected
by two mechanisms of ordering: dipole (interaction with the
external field) and orientational (interaction with the nematic
matrix). The competition of these mechanisms results in a
deviation of the magnetization unit vector from the direction
of its initial orientation. Thus, above the transition point the
angles φ and ψ possess nonzero values, and their difference
(φ − ψ) 	= 0 and π/2, which is a characteristic feature of the
angular state B.

In the angular state B, with the increase of the magnetic field
strength the function φB(h) monotonically increases from zero
at h = h⊥ up to (π/2) at h = h‖. The function ψB(h), in its
turn, increases from zero at h = h⊥, reaches its maximum,
and then again becomes zero at h = h‖. Thus, at h = h‖ the
angular state B transforms into the parallel state C. In the state
C the magnetic interactions (dipole and quadrupole) of FN
with the external field suppress the orientational interaction
of particles with the nematic matrix. Therefore, the director n
and magnetization vector m line up along the field direction.
From Fig. 4(b) one can see that the angles φ and ψ, and
therefore the order parameter, vary smoothly at the transition
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point; i.e., this transition, as well as the transition at h = h⊥,

is the second-order transition. For −1 � ζ < ζ‖ the parallel
state C remains stable at h > h‖.

C. First- and second-order transitions at ζ‖ < ζ < ζ⊥

As calculations show, the second-order transition at h = h‖
from the angular state B into the parallel state C does not
remain the same at any values of ζ. This can be seen
by considering the behavior of φB(h) and ψB(h) near the
transition point. Using in equilibrium Eqs. (14) and (15) the
approximations (π/2 − φ) � 1 and ψ � 1 for (h‖ − h) � h‖
we obtain the following form of the solutions:

φB ≈ π

2
− √

D(h‖ − h), ψB ≈ h‖
√

D(h‖ − h), (20)

D = 2(1 − 2ζ )(2 + h‖)

h‖[h‖(2 + h‖)2 − 2ζ (3h3
‖ + 10h2

‖ + 10h‖ + 2)]
.

(21)

As it is seen from Eq. (20), the character of the transition
depends on a sign of D. For D > 0 the orientational transition
of the second order takes place, in this case with the increase
of the field strength h up to h‖ the angle φB smoothly increases
and ψB smoothly decreases [as in Fig. 4]. For D < 0 the first-
order transition occurs, when the orientations of the director
and unit vector of magnetization change discontinuously near
h‖. At the tricritical point where the transition of the second
order changes to the first-order one (and vice versa), the value
of D has to tend to infinity. It means that the denominator in
Eq. (21) should be zero. As the field h‖ from Eq. (18) is the
function of the parameters ω and ζ, the obtained equation

h‖(2 + h‖)2 − 2ζ (3h3
‖ + 10h2

‖ + 10h‖ + 2) = 0 (22)

determines the tricritical dependence which in Fig. 7 is
designated as ζ‖(ω). For ζ < ζ‖ the transition from the angular
state B to the parallel state C is the transition of the second
order, and for ζ > ζ‖ this is the transition of the first order.

The dependencies �F (h), φ(h), and ψ(h) for orientational
states A, B, and C, typical for ζ‖ < ζ < ζ⊥, are shown in Fig. 5
at ω = 0.1 and ζ = 0.25. For the given parameters ω and ζ the
critical field h‖ corresponds to 0.370, and the tricritical point
ζ‖ = 0.153.

From Fig. 5 it can be seen that in weak fields, i.e., at h < h⊥,

the homeotropic state A is stable. At h = h⊥ the second-order

(a) (b)

FIG. 5. (Color online) Regions of existence of orientational states
A, B, and C in the magnetic field h for ω = 0.1 and ζ = 0.25: (a)
free energy density of the states; (b) deviation angles of the director
φ and the magnetization unit vector ψ.

transition into angular state B takes place. In this state, as
the external magnetic field increases, the functions φB(h) and
ψB(h) monotonically increase from zero at h = h⊥ to the
certain values φP and ψP at h = hP , when the orientational
transition to the parallel state C occurs with the angles
φC = π/2 and ψC = 0. Thus, the order parameter for this
transition changes discontinuously; i.e., this transition is of the
first order. The threshold field hP and the corresponding critical
values of φP and ψP are functions of the material parameters
and phenomenological parameter ζ. They can be found from
Eqs. (14) and (15) and the condition of equality of free energies
of parallel and angular FN states, i.e., FB = FC. For the
case shown in Fig. 5, the field of the first-order transition
and critical angles correspond to the values hP = 0.395,

φP = 0.776 = 0.247π, and ψP = 0.199 = 0.063π.

Metastable segments of dependences φ(h) and ψ(h) for
the angular and parallel states are shown in Fig. 5(b) by the
dashed lines. As it is seen, the state C is metastable within h‖ �
h < hP , and at h > hP this state becomes thermodynamically
stable.

D. First-order transition at ζ⊥ < ζ < ζBS

As ζ increases, the critical value of the field hP of the
first-order transition between the angular B and parallel C
states shifts towards smaller values of h. At the certain ζ = ζ⊥
this value becomes equal to the field h⊥ of the second-order
transition from the homeotropic A state to the angular B one.
From Fig. 5 it is seen that in this case, the angular state becomes
metastable, and the second-order transition from state A into
state B becomes the first-order transition from state A into state
C. Therefore, at hP = h⊥ the energies of all three states have to
be equal to each other. For the homeotropic and parallel states
this is equivalent to FA = FC at h = h⊥, which allows us to
determine the tricritical dependency ζ⊥(ω), shown in Fig. 3;
it is obtained from the following expression [coincidence of
expressions (23) for ζ⊥(ω) and (17) for h⊥ is formal]

ζ⊥(ω) =
√

ω2 + 2ω − ω. (23)

The characteristic behavior of FN in the external magnetic
field for ζ⊥ < ζ < ζBS is clearly illustrated in Fig. 6; here the
tricritical point ζ⊥ at ω = 0.1 corresponds to 0.358, and the
absolute instability boundary of the parallel state at ω = 0.1

(a) (b)

FIG. 6. (Color online) Regions of existence of orientational states
A and C in the magnetic field h for ω = 0.1 and ζ = 0.4: (a) free
energy density of the states; (b) deviation angles of the director φ and
the magnetization unit vector ψ. In this case the state B can be only
metastable.
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and ζ = 0.4 corresponds to the critical field h‖ = 0.221.

From the presented dependencies it can be seen that in the
external field at ζ⊥ < ζ < ζBS the angular state can be only
metastable, and the other two states—homeotropic A and
parallel C—are thermodynamically stable. The critical value
of the field hP of the first-order transition between these
states can be found from the condition FA = FC, that for
ω = 0.1 and ζ = 0.4 results in hP = 0.346. The homeotropic
state is stable at h < hP and metastable for hP < h � h⊥.

The parallel state is metastable at h‖ < h < hP and becomes
thermodynamically stable at h > hP .

IV. ORIENTATIONAL HYSTERESIS AND
BIREFRINGENCE OF A FN

A. Optical properties of a FN in the magnetic field

The orientational transitions between the FN states with
various mutual orientation of the director n and magnetization
unit vector m studied above can be observed experimentally
when a light beam passes through the ferronematic. Let us go
back to the geometry in Fig. 2 and assume that the light is
incident along the vector H, i.e., perpendicular to the director
(optical axis) of the initial homeotropic (A) state. The magnetic
field induces the rotation of the director and at the critical field
values shown above, it initiates the equilibrium transitions to
the angular (B) and parallel (C) states (or directly to the parallel
state C). In this case the birefringence �n = neff − no of the
liquid crystal matrix of a FN changes; here neff is the effective
refraction index which is defined by

1

n2
eff

= sin2 φ

n2
o

+ cos2 φ

n2
e

, (24)

where no and ne are the refraction indices of ordinary and
extraordinary rays, respectively.

In the homeotropic state φ = 0 and from Eq. (24) it
follows that neff = ne; i.e., the birefringence �n = ne − no

is maximal. In the parallel state, φ = π/2, neff = no, and
�n ≡ 0. The intermediate values of birefringence 0 < �n <

ne − no correspond to the angular state when 0 < φ < π/2.

If we introduce the parameter ξ = (n2
e − n2

o)/n2
e, then it is

convenient to take the reduced value of birefringence as the
FN optical characteristic,

�n

no

= 1√
1 − ξ cos2 φ

− 1. (25)

Let us discuss the character of the FN birefringence
expected in experiments, and demonstrate how the transitions
of the first and second order between the orientational states
A, B, and C can exhibit themselves. For that, let us go to
Fig. 7 showing the dependence [�n(h)/n0] at ω = 0.1 and
ζ = 0.25 as an example. For calculation of this dependence
for the nematic matrix of FN the following parameters of liquid
crystal 5CB were used: no = 1.53 and ne = 1.71 for the light
wavelength λlight = 632.8 nm [28]. In this case ξ = 0.2.

The results obtained in Sec. III C show that the transitions
of both the first and the second order occur in the ferronematic
liquid with the parameters ω = 0.1 and ζ = 0.25 under the
action of the external magnetic field. From Fig. 7 it is seen
that the second-order phase transition from state A to state B

FIG. 7. The reduced value of birefringence (�n/n0) as a function
of the magnetic field h for ω = 0.1 and ζ = 0.25. Arrows show
plots of [�n(h)/n0], which can be observed in the experiment at the
increasing and decreasing of magnetic field.

can be detected through the smooth change of birefringence
at h = h⊥. At the same time the first-order transition from
state B to state C is accompanied by the stepwise change of
birefringence near h = hP . This transition, as well as first-
order transitions in other systems, can be accompanied by the
hysteresis phenomena. It is connected with the existence of
metastable states of FN near h = hP : the angular state B at
h‖ � h � hC and the parallel state C at h‖ � h < hP . Thus,
the greatest possible hysteresis loop designated in Fig. 7 by
the letters {cdefijc}, is bounded from below by h = h‖, and
from above by h = hC. Let us remind the reader that the field
h‖ is the point of absolute instability of parallel state C and is
determined by Eq. (18). The value hC is introduced here for
the first time; it corresponds to the maximal field strength of
existence of the solution of Eqs. (14) and (15) for the angular
state B. In the considered case, i.e., at ω = 0.1 and ζ = 0.25,

the field hC is equal to 0.402 and as it was already mentioned
above, at that value the angular state is metastable (hC > hP ).
Now let us show in more detail how the reduced birefringence
(�n/n0) changes first at the increase of the dimensionless
strength h of external magnetic field and then at its decrease.

When h increases up to the value h = h⊥ then the
homeotropic state A is thermodynamically stable and the FN
birefringence is maximal; see plot {ab} in Fig. 7. The second-
order transition to the angular state B occurs when h = h⊥, i.e.,
at the point {b}, and as h increases, the birefringence decreases
smoothly. At first, the dependence [�n(h)/n0] goes along
the thermodynamically stable section of the curve {bcd}, and
then, passing at h = hP the certain point {d} of the first-order
equilibrium transition into the parallel state C, it can come to
the metastable section {de} of existence of the angular state.
At such change of birefringence, the observed transition of
the first-order to state C in the increasing external magnetic
field corresponds to the value h = hC, i.e., the point {e} of
[�n(h)/n0]. At the point {e} the birefringence jumps to zero;
see plot {ef}. With a further increase of the field, the FN
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birefringence remains equal to zero [see plot {fg}], since at
h > hC the parallel state C is thermodynamically stable.

When h decreases from the values exceeding the critical
field hC, the curve [�n(h)/n0] first goes along the thermo-
dynamically stable section {gfi}, which corresponds to the
parallel state C and zero value of birefringence. Then, passing
at h = hP the certain point {i} of the first-order equilibrium
transition into the angular state B, the ferronematic can keep
the parallel orientation of n and m, being thus in the metastable
state [see plot {ij} in Fig. 7]. The lower boundary of existence
of the parallel metastable state C and the lower boundary
of the first-order transition between states C and B (which
can be experimentally observed at the decreasing of h), is
the field h = h‖, i.e., the point {j} of the curve [�n(h)/n0].
At the point {j} the reduced birefringence of FN jumps
from zero to the finite value [�n(h = h‖)/n0], corresponding
to the angular state [see plot {jc}]. With the further field
decrease the birefringence smoothly increases at the angular
state [see plot {cb}]. At the point {b}, i.e., at h = h⊥, the
second-order transition to the homeotropic state A occurs, and
the birefringence reaches its maximum.

B. Shape of hysteresis loop

Now let us discuss how from a qualitative viewpoint a
hysteresis loop shape varies depending on the parameters ω

and ζ. Let us define a width of hysteresis loop �h = hC − h‖.
It is obvious that �h depends on ω and ζ, since at different
relations between them, hC and h‖ can change as well as the
character of the transitions between the FN orientational states.
Thus, a shape of hysteresis loop can change qualitatively, and
this undoubtedly will be observed in experiments.

In Sec. III we showed that in the plane (ω,ζ ) there are
three regions where the equilibrium transitions between the
FN orientational states have different characters; see Fig. 3.
Looking ahead, we can say that the variations of hysteresis
loop have broader gradation: At the plane (ω,ζ ) there are
five regions where the hysteresis loop contains qualitatively
different plots which correspond to thermodynamically stable
or metastable states of FN. These five regions at the plane
(ω,ζ ), for which the hysteresis loop can differently behave
in the experiments, are divided by the curves ζ‖(ω), ζ ∗(ω),
ζ⊥(ω), and ζ ∗∗(ω); see Fig. 3. The shape of hysteresis loop for
each of these regions is schematically shown in Fig. 8. Let us
discuss qualitative differences between the hysteresis loops of
various regions, estimate their width �h, and obtain general
expressions for the dependences ζ ∗(ω) and ζ ∗∗(ω).

As is shown below, qualitative differences in the orienta-
tional behavior of FN which can be observed in experiments
on birefringence are connected with various relations between
the critical fields h⊥, h‖, hP , and hC. Their values depend on
ω and ζ so that each of five regions of the plane (ω,ζ ) shown
in Fig. 3 corresponds to a certain relation between the critical
fields.

Let us consider the region −1 � ζ < ζ‖. As shown above,
here the condition h⊥ < h‖ = hP = hC is satisfied, and
equilibrium transitions from state A to state B and then to
state C are the second-order transitions, and the hysteresis loop
width �h = hC − h‖ ≡ 0. Therefore, in the range of values of
ω and ζ the hysteresis should not be observed in experiments;
see Fig. 8(a).

For ζ‖ < ζ < ζ ∗ the dependence of birefringence on the
external magnetic field strength is shown in Figs. 7 and
8(b). Here h⊥ < h‖ < hP < hC, and the width of hysteresis
loop �h = hC − h‖, the equilibrium transition from state A
to state B is the second-order transition, and the transition
between states B and C is the first-order transition. The type of
hysteresis loop for this region is in detail described in Sec. IV
A. In particular, it is shown that all three states—homeotropic,
angular, and parallel—should be observed in the experiment,
both at increase and at decrease of external magnetic field.
However, such behavior of the system does not remain the
same at any values ζ > ζ‖: At a given ω, the increase of
parameter ζ results in decreasing of the critical fields h‖, hP ,

and hC. At that, h⊥ remains constant; see Eq. (17). From Fig. 7
it is easy to understand that at the increase of ζ and decrease
of h‖, hP , and hC the field h‖ is the first to reach the value
h⊥ at the certain critical value ζ = ζ ∗(ω). In this case the
plot {jc}, shown in Fig. 7, coincides with the segment {kb}.
The further increase of ζ, i.e., decrease of h‖, results in the
qualitative change of hysteresis loop (see below). Thus, the
critical dependence ζ ∗(ω), which corresponds to that change,
can be found from the condition h⊥ = h‖; hence,

ζ ∗ =
√

ω2 + 2ω − ω√
ω2 + 2ω − ω + 1

. (26)

Let us turn to the case ζ ∗ < ζ < ζ⊥, corresponding to
Fig. 8(c). As compared with the previous case, here the
character of equilibrium transitions between states A, B, and
C does not change and the loop width remains the same,
i.e., �h = hC − h‖. However, the lower boundary h‖ of the
hysteresis loop changes relative to the field h⊥ of the transition
between states A and B since for the critical fields the

(a) (b) (c) (d) (e)

FIG. 8. Qualitative type of hysteresis loop at the birefringence for the regions of the plane (ω,ζ ), shown in Fig. 3: −1 � ζ < ζ‖ (a),
ζ‖ < ζ < ζ ∗ (b), ζ ∗ < ζ < ζ⊥ (c), ζ⊥ < ζ < ζ ∗∗ (d), ζ ∗∗ < ζ < ζBS (e).
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condition h‖ < h⊥ < hP < hC is satisfied. It means that with
the decreasing of magnetic field h the angular state may not
be observed in the experiments. Indeed, at h = h‖ parallel
C state immediately goes into a homeotropic state C, and the
birefringence (�n/n0) jumps from zero to the maximum value
(ne − n0)/n0. The increase of the parameter ζ in the consid-
ered case leads to the further decrease of the critical fields h‖,
hP , and hC at constant h⊥. The relation between the fields
h‖ < h⊥ < hP < hC, typical for this case, is broken when
the critical field hP of the first-order equilibrium transition
between states B and C reaches the value h⊥. The value ζ⊥
which corresponds to this condition is determined by Eq. (23).

For ζ⊥ < ζ < ζ ∗∗ the critical fields satisfy the condition
h‖ < hP < h⊥ < hC ; the hysteresis loop width presented in
Fig. 8(d) is still �h = hC − h‖. As shown above, there are
only two states that are stable in this case: homeotropic A
and parallel C. Meanwhile, the metastable angular state can
be observed in the experiments on birefringence under the
increasing magnetic field. This can be seen in the top right
segment of the hysteresis loop which corresponds to the
metastable angular state B. This segment disappears when
at the increase of ζ the field hC becomes equal to h⊥. The
condition hC = h⊥ takes place at the certain value ζ = ζ ∗∗(ω).
The dependence ζ ∗∗(ω) can be found from Eqs. (14) and
(15) near h = h⊥, when the orientational distortions are small
φ � 1 and ψ � 1. In the lowest order of expansion for the
angular phase we have

φB ≈
√

E(h − h⊥), ψB ≈ h⊥
√

E(h − h⊥),
(27)

E = 2(h⊥ + ω)

ω[h⊥(h⊥ − 2)2 − 4ζ (1 − h⊥)3]
.

At hC = h⊥ the coefficient E has to go to infinity, i.e.,
the denominator for E in Eq. (27) should be zero. From this
condition one can find the critical dependence ζ ∗∗(ω), which
determines the upper boundary of considered region in the
value of ζ :

ζ ∗∗ = h⊥(h⊥ − 2)2

4(1 − h⊥)3
. (28)

Finishing the discussion of FN birefringence, we investigate
the shape of hysteresis loop for ζ ∗∗ < ζ < ζBS ; see Fig. 8(e).
Here the critical fields satisfy the condition h‖ < hP < h⊥ =
hC, the hysteresis loop width is equal to �h = h⊥ − h‖,
and the shape of the loop becomes rectangular. Only two
states—homeotropic and parallel—can be observed at both
the increase and the decrease of external field. Thus, at ζ ∗∗ <

ζ < ζBS the angular state cannot be observed in experiments
on birefringence of FN.

V. CONCLUSIONS

In this work in the framework of the modified model
of soft FNs proposed in Ref. [1], we have studied the
conditions of existence of the homeotropic (A), angular (B),
and parallel (C) ferronematic states with different mutual
orientations of m and n in an external magnetic field; see
Fig. 1. The sample of magnetic suspension considered in this
paper represents the unbounded ferronematic liquid crystal

with homeotropic anchoring of the director at the particles.
In such a system the ferroparticles are aligned perpendicular
to the director; therefore, in the absence of a magnetic
field for the directions μi of their magnetic moments there
is the anisotropy of the “easy plane” type; i.e., the FN
initial magnetization M = MSf

∑
i μi is equal to zero (it is

the so-called compensated state of FN [2,3,29]). The weak
magnetic field H � 1Oe magnetizes [1,3] the suspension to
the saturation in the direction of vector H without any effect on
the NLC matrix orientational alignment; so M = MSf. This
state corresponds to the homeotropic state A with n⊥m||H . At
the increase of a magnetic field which strength is characterized
by the dimensionless value h = (H/H0) = (Hχa/Msf ), there
occurs a competition between the orientational interaction
of the particles with the LC matrix, dipole interaction of
ferroparticles, and quadrupole interaction of a nematic liquid
crystal with the external magnetic field. The result is the
orientational transitions to the angular state B, which is
characterized by the other than zero and (π/2) angle between
the vectors m and n, and to the parallel state C where n||m||H .

It is established that the regions of existence of orientational
states A, B, and C, and the order (first- or second-) of
transitions between states in the external magnetic field depend
on the relation between the phenomenological parameter ζ

and dimensionless energy ω = (Wχa/dM2
Sf ) of anchoring

between particles and the NLC matrix. It is shown also that
for the first-order transitions which are characterized by the
order parameter jump, the orientational hysteresis occurs in
the ferronematic liquid crystal, which depending on ζ and ω

may differently behave in the experiments on birefringence
of magnetic suspensions. We have determined the regions of
the plane (ω,ζ ) between which there are the distinctions of
this kind (see Fig. 3) and established that in these regions the
following behavior is typical for FNs.

(i) At −1 � ζ < ζ‖ with the increase of magnetic field
strength h there are the consecutive equilibrium transitions of
the second order from state A to state B at h = h⊥, and then to
state C at h = h‖; here the values of ζ‖ = ζ‖(ω), h⊥ = h⊥(ω),
and h‖ = h‖(ω,ζ ) can be found from Eqs. (22), (17), and
(18), respectively. The hysteresis loop at −1 � ζ < ζ‖ does
not occur; see Fig. 8(a).

(ii) At ζ‖ < ζ < ζ⊥, first, with the increase of h there occurs
the second-order equilibrium transition from state A to state
B at h = h⊥, and then at the further increase of the field there
occurs the first-order equilibrium transition from state B to
state C at h = hP ; here the value of ζ⊥ = ζ⊥(ω) is determined
by Eq. (23), and hP can be found from the equality condition
of the energies of angular and parallel states: FB = FC ; see
Eq. (19). According to the shape of hysteresis loop this region
of ζ values is divided by the curve ζ ∗ = ζ ∗(ω) from Eq. (26)
into two parts. Differences in the behavior of FN under the
increase and decrease of the magnetic field strength h affecting
the shape of the hysteresis loop are explained by the existence
of metastable states B and C near the point of the first-order
equilibrium transition, i.e., near h = hP . These differences are
manifested in the following way:
(a) when ζ‖ < ζ < ζ ∗, all three states (A, B, and C) can be

observed in experiments on birefringence of FNs in the
magnetic field both increasing and decreasing in h [see
Fig. 8(b)];
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(b) when ζ ∗ < ζ < ζ⊥, the states A, B, and C can be
observed consecutively only in the increasing field; when
h decreases, the plot of the metastable parallel state
overlaps the plot of the existence of the angular state,
therefore possibly that the latter one cannot be observed
in the experiments [see Fig. 8(c)].

(iii) For ζ⊥ < ζ < ζBS = 0.5, the angular state B can be
only metastable. States A and C are stable with the first-order
equilibrium transition between them in the magnetic field
h = hP , here hP is determined from the condition of equality
of energies of homeotropic and parallel states: FA = FC. For
these values of ζ there are also two areas with different
characters of the hysteresis loop. These areas are divided by
the curve ζ ∗∗ = ζ ∗∗(ω) from Eq. (28), and the behavior of FN
at the birefringence has following features:
(a) When ζ⊥ < ζ < ζ ∗∗, in the increasing field h the

metastable angular state B possibly can be observed along
with stable states A and C. In the decreasing magnetic
field h only states A and C can be observed; see Fig. 8(d).

(b) When ζ ∗∗ < ζ < ζBS, the angular state cannot be ob-
served in the experiments on the FN birefringence. Only
two of the states—A and C—can be observed in both the
increasing and the decreasing field; see Fig. 8(e).

Let us note that at ζ = 0 the obtained results coincide with
the results of Ref. [9], where the orientational states of FN were
investigated in the framework of soft FN model [3]. The latter
predicts [9] that in the unbounded FN only transitions of the
second order take place between states A, B, and C under the
action of the external magnetic field. Our modified theory of
soft FNs gives a better understanding concerning the behavior
of magnetic suspensions in the external field. First, the present
study demonstrates that depending on ω and ζ the transitions
between states can be of both the second and the first order. At
that, the curves ζ‖(ω) and ζ⊥(ω) presented in Fig. 3, play a role
of tricritical dependences: They correspond to the values ω and
ζ at which the order of the transitions changes from the second
to the first one (and vice versa). Second, the obtained results
allow us to compare the orientational states of the system and
the transitions between states with the FN optical properties.
In particular, the second-order transitions in the experiments
can be detected due to the smooth change of the magnetic
suspension birefringence �n [see Eq. (25)], and the first-order
transitions can be detected due to the stepwise behavior of �n.

By the shape of the hysteresis loops it is possible to estimate
ω and ζ for real FNs, and further it will help us to predict the
behavior of magnetic suspensions and changes of their optical
properties in different devices. It is very important from the
viewpoint of possible applications.

Being focused on real thermotropic suspensions, let us
give the estimates for the dimensionless parameter ω and
characteristic fields

H⊥ = h⊥H0 = W

Msd

[√
1 + 2f M2

s d

Wχa

− 1

]
,

H‖ = h‖H0

= W

Msd

[
(1 − 2ζ ) +

√
(1 − 2ζ )2 + 2f M2

s d

Wχa

(1 − 2ζ )

]
,

(29)

which correspond to the second-order transitions and have
the order of magnitude of the first-order transitions fields
(HP = hP H0 ∼ H⊥ ∼ H‖). Following Refs. [3,4,17] and
assuming χa ∼ 10−7, d ≈ 7 × 10−6 cm, MS ≈ 5 × 102 G,
W ∼ 5 × 10−2 erg/cm2, and f ∼ 10−7–10−6, we obtain ω ≈
3 × 10−2. In this case the fields H⊥ and H‖ are about 100 Oe,
and their difference |H‖ − H⊥|, which characterizes the
interval between the orientational transitions, can possess
values from one to dozens of oersteds depending on the value
of the phenomenological parameter ζ. Thus, the optical effects
connected with the existence of various ferronematic states and
transitions between them have to be observed in rather weak
magnetic fields.

This conclusion is valid not only for FNs with homeotropic
anchoring of the director at the particles. The presented
results are also true for FNs with the circular boundary
conditions for the director at the ferroparticle surface, and at the
dimensionless parameter renormalization ω → −2ωP2(cos α)
according to the law of transformation of A2 from Eq. (3), for
any magnetic suspensions in which particles in the absence
of a field are oriented perpendicular to the nematic matrix
director. As shown in Refs. [1,3,30], for such suspensions
the boundary angle α between the long axis of an individual
particle and the direction of easy orientation of the director at
its surface lies within the interval α∗ < α � π/2, where α∗ =
arccos(1/

√
3). It should be noted that the similar consideration

of ferronematic states can be also performed for other type of
magnetic suspensions in which ferroparticle is oriented along
the director in the absence of external magnetic fields. This
initial orientation of particles is realized at 0 � α < α∗ and, in
particular, at the longitudinal anchoring at the ferroparticle
surfaces, when α = 0. At 0 � α < α∗ the existence of all
three states A, B, and C in the external field is possible in
FNs with negative diamagnetic anisotropy of the nematic
matrix (χa < 0). In this case the parallel state C is initial,
and when the field reaches its critical value, the transition to
the angular state B and then to the homeotropic state A (or
directly to state A) can take place. The qualitative character
of those transitions (of the second and/or first order) does not
change.

In summary, we note that the magnetic suspensions
synthesized by now greatly vary both in nematic solvent,
and in dimensions and types of particles of a rigid phase;
see, for example, Refs. [4–6,18–21]. Practically in all the
experiments the change of FN birefringence in the magnetic
field was studied, and in the cells which geometry was close
to the considered case, the threshold effects were observed.
However, the purposeful study of hysteresis phenomena in the
experiments has not been performed. We hope that theoretical
results of this paper can give impetus to performing such
research.
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