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Structure transitions in oblate nematic droplets
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We consider the structure transitions in oblate supramicrometer nematic droplets related to reorientation of the
line defect in the electric field. These transitions can be used in optical devices based on polymer dispersed liquid
crystal materials with high contrast ratio. We suggest a simple method for determination of director distribution
in nematic droplets of an arbitrary shape with surface interaction and in the presence of constant electric field.
Point and linear defects are taken into account. This method does not require any presuppositions about symmetry
of the director distribution. The elasticity continuum theory is treated with Monte Carlo annealing on a simple
lattice. A special triangulation-based technique is applied for accurate representation of the droplet boundaries.
The method is tested on 5CB material.
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I. INTRODUCTION

Polymer dispersed liquid crystals (PDLC) [1–6] are known
for their ability to combine the properties of polymers
(including the ability to form flexible films and coatings) with
the unique properties of liquid crystals capable of orientation
during the action of a weak external field and changes
in optical characteristics (transparency, birefringence, light
scattering, etc.). They are usually prepared in the form of
microdroplets dispersed in a polymer matrix. An important
feature of PDLC materials is their adjustable optical properties,
including refractive indices [7,8]. For example, under electric
field the initially nontransparent PDLC material can become
optically transparent. The application of PDLC films can be
very wide: electrically controlled blinds, fast-acting optical
attenuators, large-sized display boards, for example, as well as
controlled road signs, petrol pump indicators, railway station
and airport information boards, etc. Since PDLC materials do
not require the presence of polarizers, they are also convenient
for the construction of small and flexible optical devices [9,10].
Prediction of the material properties (optical, electro-optical,
elastic, etc.) is one of the most important practical targets.

At the moment it is already possible to predict the order
parameters and elasticity constants in uniform materials
from the properties of single molecules constituting liquid
crystals (geometry and interactions) [11,12]. There are a few
publications [13], where distribution of the director in the
nematic droplet is predicted theoretically. At the same time,
there is only little success in the theoretical prediction of
the director distribution in confined systems, particularly in
droplets of complex surface boundaries.

In this case computer simulation methods can be very
helpful. One of the simplest approaches for nematics is the
Lebwohl-Lasher lattice model [14] usually simulated by the
Monte Carlo (MC) method. This approach is very fast due to
simplicity of the model, although it cannot be applicable to dis-
torted nematic structures. For a more detailed description, two
different approaches were used. Yao et al. [15,16] suggested
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a finite element method based approach to the Frank-Oseen
free energy formulation using a vectorial representation of
director field. However, the complexity of the system required
an iterative solution of the problem starting from a reasonable
initial condition. Even with these limitations, the method was
able to solve two-dimensional systems only. Another approach
is the Landau–de Gennes model [17–19] which is also usually
treated with a finite element method and explicit relaxation
algorithms [20,21]. This method is very good in reproducing
a detailed structure with defects of various types, and is
more precise than director-based ones. However, the major
disadvantage of this approach is its high computational cost.

Meanwhile, there are many tasks requiring fast investi-
gation of a liquid crystal structure in a large set of various
conditions (i.e., a large set of calculational tasks is required),
with no need of fine details. Therefore it is very important
to have a fast method predicting structure of a droplet with a
minimal set of input data.

In the present paper we suggest a method based on
the elasticity continuum theory [22] applied numerically to
director distribution on a simple lattice. This approach is
generally similar to the one suggested in [15], but with three
major differences. First, we use the Monte Carlo method with
simulated annealing [23] for the free energy optimization.
This procedure does not require any physically reasonable
initial state, fast enough and easily parallelizable. Secondly,
we included linear and point defects in an explicit description
of the system, and thus, we use a much more general approach.
Thirdly, we introduce a triangulation technique to represent
boundaries that allow one to study a system with any given
shape.

Our approach is capable of predicting the structures of
nematic droplets of complex geometries, where the director
distribution and the shape of defects cannot be presupposed
from symmetry arguments. In this paper we consider the oblate
supramicrometer nematic droplets. PDLC materials contain-
ing oblate droplets are highly attractive for a set of applications,
including reflecting flat panel displays [24–28], diffraction
lenses [29], and other applications [30–34]. While spherical
nematic droplets had been exhaustively examined [35–38],
including stable structures at various surface anchoring
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FIG. 1. (Color online) Schematic representation of the surface triangulation treatment: (a) surface and its triangulation; (b) cubic lattice
covering the surface (director vectors are defined in vertices shown as points); (c) retriangulation in a chosen cell; (d) cube vertices and
oversampling points: edge middles (yellow dots on intersections of ribs and dashed lines) and facet middles (red dots on intersections of dashed
lines).

conditions [39] and phase transitions in the presence of electric
field [17,40], oblate droplets are still under active study. These
studies show the presence of radial, bipolar, and radial with
circular defect structures under various conditions. However,
the complete phase diagrams for oblate droplets under electric
field were not resolved. The last step towards this task was done
in [40], where the systems with negative electric anisotropy
were studied. In this paper, we study the behavior of oblate
droplets with a positive electric anisotropy factor under electric
field.

In particular, we show that the line defect can exist in oblate
nematic droplets even without electric field, as was previously
displayed in [41]. We have also found out the new phase
transition resulting in reorientation of the line defect, when the
electric field applied along the plane, to which the line defect
belongs, exceeds some critical value. This transition should
drastically change the optical properties of PDLC materials
composed of oblate droplets, and thus can be used for the
creation of optical devices with high contrast ratios. This effect
is not observed in PDLC materials composed of conventional
spherical droplets.

The paper is organized as follows. In Sec. II we start with
a description of the method. In Sec. III the results of computer
simulation for nematics in spherical and oblate droplets under
electric field will be presented and discussed. Finally, the
conclusions will be made in Sec. IV.

II. METHOD

A. Geometry of the system

We consider a finite nematic liquid crystal (LC) with a
regular boundary surface. Recent approaches concern only par-
ticular analytically described boundary shapes (cube, sphere,
set of spheres, set of ellipsoids, etc.). Here we present the
method of director distribution calculation in nematic LC
droplets of any shape, including channels and cavities inside
of a finite volume, using a combination of the triangulation
technique and simple cubic lattice.

1. Boundary surface setup

Let us approximate the real border dividing the LC material
and surrounding media by a polyhedron consisting of triangles.
This procedure, called triangulation, is well known [42] from
computer graphics and can be applied to any regular surface
with any desired accuracy. The triangulated surface (T ) can be

of any complexity and be obtained from most computer-aided
design packages.

2. Space discretization

The next task is to discretize the volume, inside of
which director n(r̄) is distributed. We suggest the following
algorithm. Let us introduce the rectangular lattice in the larger
space than volume inside of T . Then continuous director field
n(r̄) is replaced with a set of vectors n(r̄ijk), where i, j , and
k are the lattice indexes and r̄ijk are the positions of lattice
vertices (bold points in Fig. 1).

The lattice divides the entire volume into rectangular cells
(cuboids limited by eight nearest lattice points). All the cells
can be divided into three groups: “inside cells,” which are
fully inside of T , “outside cells” that are fully outside of
T , and “surface cells” that are intersecting with T . Finally,
retriangulation proceeds for each surface cell, which produces
a set of triangles (Ti) belonging to initial surface T and located
completely inside of the cell or at its boundaries (see Fig. 1).

B. Free energy representation

In the framework of elasticity continuum theory, free energy
of the system F is supposed to be a functional of the director
distribution. As the entire volume of the system is divided
into rectangular cells, one can write the total free energy of the
entire volume as a sum of the free energies of each subvolume:

F =
∑

i

F (i),

where F (i) is the free energy of the ith cell, which is
independent of the free energies of the other cells. Each energy
F (i) is calculated as a sum of the four terms:

F (i) = F
(i)
el + F

(i)
S + F

(i)
ext + F

(i)
def,

where F
(i)
el is the elasticity energy, F

(i)
S is the anchoring

energy, F
(i)
ext is the interaction of LC molecules with the

external electric field, and F
(i)
def is the energy of defects. The

first three terms are usually considered in the framework
of continuum theory, while the fourth term, F

(i)
def, is the

additional contribution allowing one to take defects into
account. Particular expressions for each term are considered
below.
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1. Elasticity energy

The Frank elasticity free energy [22] per unit volume of a
nematic LC can be written in the following form:

fel = K11

2
(div n)2 + K22

2
(n · rot n)2 + K33

2
[n × rot n]2,

where K11, K22, and K33 are the splay, twist, and bend elasticity
constants. The elasticity energy of each cell F

(i)
el = ∫

V
f

(i)
el dv

is calculated here as the average f
(i,α)
el Vi over four of eight

vertices, which are enumerated by index α. In these vertices
all gradient terms ∂n

∂r̄
are calculated numerically and then f

(i,α)
el

is calculated explicitly. Here Vi is the volume of the ith cell
inside of surface T (which is equal to the volume of the cells’
cuboid V0 for the inside cells, equal to zero for the outside
cells, and varies from zero to V0 for the surface cells).

2. Anchoring energy

We use Rapini-Papoular approximation for the anchoring
energy [43]. The total surface anchoring energy is calculated
as a sum of the energies of all triangles:

FS =
∑

t

WtSt

2

{
(nt · at )2 planar

1 − (nt · at )2 homeotropic,

where Wt is the anchoring strength at the t th triangle, St is the
surface area of the t th triangle, nt is the director in the center
of the t th triangle, and at denotes the easy axis vector for
the t th triangle. Anchoring strength Wt is positive for planar
anchoring and negative for homeotropic anchoring.

3. Electric-field energy

Electric-field energy density can be written as follows [44]:

f
(i)
ext = −ε0�ε (E · n)2,

where E is the electric-field intensity. Any particular distribu-
tion of electric field can be taken into account. E is assumed to
be independent of the director field distribution. Integration of
f

(i)
ext over the cell is replaced with the summation over 26 key

points at the surface of the cell:

F
(i)
ext =

∑
k

vk f
(i)
ext ,

where vk is a part of a cell “related” to the kth key point
(vk = 1

64Vi for vertices, 1
32Vi for edge middles, and 1

12Vi for
facet middles).

4. Determination of point and linear defects

As mentioned above, it is important to take into account
the defects in confined geometries. However, the elastic
continuum theory can only describe a small distortion of the
director vector field n(r̄). Therefore computer minimization of
the free energy based solely on the elastic continuum theory
can result in the wrong position and kind of defects. To avoid
this mistake, one should be able to identify the defects at
particular lattice cells and to replace their free energy following
from continuum theory with different values specific to certain
kinds of defects. Here we are going to suggest a simple
computer algorithm allowing one to identify the positions
and kinds of defects. This algorithm is based on the idea that

(a) (b)

FIG. 2. (Color online) Origin of misalignment. Black bars are the
in-lattice director vectors, white bars are the averages in the edge
middles obtained at the first step, and red (light gray) bars are the
averages in the facet middles obtained at the second step. (a) and (b)
represent the two ways of calculating the director in the facet middle
leading to different results ñ1 and ñ2.

director orientations in different areas adjacent to a defect
should be incompatible with each other.

An example of the director incompatibility is presented in
Fig. 2, where the two ways of calculatiing the director vector
in a facet center are shown. In the first way the director is
averaged along the horizontal direction first, and then along
the vertical direction, while in the second way the director is
averaged along the vertical direction first, and then along the
horizontal direction. One can see from Fig. 2 that these ways
[presented either in Fig. 2(a) or in Fig. 2(b)] lead to different
director orientations in the facet centers [red (light gray) bars].
We have empirically found that this difference corresponds
to the presence of a defect. As a numerical measure of this
difference, let us introduce the misalignment for a rectangular
facet middle [red dots in Fig. 1(d)] as

mfacet = 1 − cos2(ñ1,ñ2),

where ñ1 and ñ2 are the average directors along two principal
dimensions of a facet (white bars in Fig. 2), and for the center
of a cubic cell as

mcp = 1 − min{cos2(ñx,ñy); cos2(ñx,ñz); cos2(ñy,ñz)},
where ñx , ñy , and ñz are the averages for each pair of opposite
facet middles (facets perpendicular to the x, y, and z axes,
respectively). The misalignment is expected to be small in the
cells with small director distortion, while it is expected to be
large in the cells with large director distortion, and therefore
can be used for the identification of defects.

Totally we have seven misalignment values for each cell
(mi = 1, . . . ,7) (six facet middles and one cell center). Let us
introduce the two critical misalignments mmin and mmax, below
and above which the defect strength is either considered to be
equal to zero (the defect is absent) or equal to one (the defect
is present), while between mmin

i and mmax
i let us consider the

defect with some probability (defect strength) approximated
by polynomials of the corresponding misalignment:

di =
∑

n

αnm
n
i ,

where it is enough to consider the four terms to spline the
probability between zero for mi = mmin and one for mi =
mmax with gradient growth in between (see Fig. 3).

In addition, it is critically important to distinguish the
point and linear defects. For this purpose, let us introduce the
segment defect strength for each of six segments connecting
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FIG. 3. Defect strength (d) as a function of misalignment in a
sublattice point. Here mmin = 10−4 and mmax = 5 × 10−3.

the facet middles with the central point as a square root of
the multiple of the defect strengths of the central point and of
the corresponding facet middle. In the end, the defect strength
(probability of defect) in seven middle points (six facet middles
and one cubic cell middle) and in six segments is determined.
If the defect strength of some segment is different from zero,
the linear defect along this segment is supposed. If the defect
strengths of all segments in the cell are equal to zero, but at the
same time, the defect strength of the corresponding center of
the cell is different from zero, the point defect is supposed in
the cell. Finally, we introduced the maximum value of (div n)2,
above which the only point defect without linear defects is
assumed in the cell regardless of the defect strengths of all
segments.

An empirical algorithm described above does not incorpo-
rate the topological charge of defects and approximates the
core energies of linear defects of all types with the same
values, and the core energies of point defects of all types
with another single value. However, in the absence of defects
with sufficiently different absolute topological charge values
the algorithm works appropriately, as shown in Sec. III.

We run this algorithm for each Monte Carlo step, so we
update the positions and kinds of defects with any change of
the director field. The energy of linear and point defects we
use in our numerical scheme will be defined in the following
paragraph.

5. Defects energy

When the defect strength in all six segments and the defect
kind are defined for a particular cell, its defect energy Fdef can
be assigned. The energy of a point defect is calculated as

Fdef = F point
core dcp,

where F
point
core is the energy of a point defect core, which is an

input parameter of the model as well as the elastic constants.
The energy of a linear defect is calculated as

Fdef =
∑

α

f line
core dα Linside

α ,

where f line
core is the linear energy density of a linear defect core

(which is also an input parameter) and Linside
α is part of the αth

segments’ length, which is inside of volume V .

FIG. 4. A model of linear defect: cylindric isotropic core (I ) and
perfect nematic outside (N ).

Following the approach introduced by Kleman and Lavren-
tovich [45], let us consider the linear defect core as a cylinder
(Fig. 4) of radius rc with isotropic phase inside, while
the homogeneous nematic phase with order parameter S is
distributed outside of cylinder rc and inside of some larger
cylinder of radius r � rc. Defining the difference between
free energy densities of nematic and isotropic states as fc, one
can estimate the total free energy inside of the r cylinder as
follows:

F = l

(
πKk2 ln

r

rc

+ fcπr2
c

)
,

where K is the elasticity constant in single constant approx-
imation, k is the order of the defect, and l is the length of
the cylinder. Minimizing free energy F with respect to rc

one obtains the energy-optimal radius of a defect core as
rc = k

√
K
fc

. Here we are going to consider the defect core
radius as a maximum of rc and correlation length.

One can estimate fc from the Landau–de Gennes theory as
in [20]:

fc = 3
4a (T − T ∗

NI )S2 + 1
4BS3 + 9

16CS4,

where S is the order parameter of nematic phase. Substituting
a, B, and C with typical values [20] of 105 J m−3 K−1,
−106 J m−3, and 106 J m−3, respectively, and assuming S =
0.535 [46] and k = 1

2 one obtains fc ≈ 2.74 × 105 J m−3, and,
as a result, rc ≈ 2.5 nm. Considering a correlation length of
about 6.6 nm [47] (and then the core radius is also 6.6 nm
instead of 2.5 nm), one obtains f core

line ≈ 3.75 × 10−11 J m−1,
or f core

line K−1 ≈ 6.1.

C. Free energy minimization

As discussed above, we use MC simulated annealing [23]
with Metropolis criterion [48] which does not require any
preassumptions on director distribution. It can successfully
start from a random state and converge to the global minimum.
Results of a set of independent starts can be used to verify
whether the annealing converges to the global minimum and
not to some local minimum.

At each MC step, a random lattice point is selected. Then the
director n in this point is changed randomly in correspondence
with current MC temperature (TMC): n → n + �n, where the
rms of the projections of �n on all coordinate axes �nx ,
�ny , and �nz proportional to σ

√
kBTMC are generated with

Box-Muller transformation [49]. Then the new director n
is normalized. Here σ plays the role of a unit translation
coefficient and also sets the value of the mean acceptance ratio
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of MC steps. We chose σ accordingly to mean acceptance ratio
close to 0.5.

The starting temperature T start
MC is set sufficiently large to

reach the maximum possible free energy in the beginning of
annealing. Thus, the system is guaranteed to be independent
of initial state and therefore is optimized globally and
not locally. For the systems studied below we are using
kBT start

MC = 2 ×10−15 J ≈ 5 × 105kBT , which is empirically
found to be reasonably large. The final temperature T final

MC
determines the quality of optimization of the final state. We are
using kBT final

MC = 2 × 10−22 J ≈ 5 × 10−2kBT , below which
the director distribution does not change to any noticeable
extent.

The MC temperature undergoes an exponential decay
during the optimization steps. The amount of steps is defined
by the lattice size as 104 steps per lattice point.

III. RESULTS AND DISCUSSION

In the present section we are going to present our numerical
results obtained by the method described above. The structures
discussed below can be obtained at typical values of the
elasticity constants. In particular, we are using the values
measured for 5CB at the temperature 10 K below nematic-
isotropic transition from [50]: K11 = 6.2 × 10−12 N, K22 =
3.9 × 10−12 N, and K33 = 9.8 × 10−12 N, which are also in a
good agreement with [46].

Theoretical approaches usually deal with spherical droplets
for simplicity. In many experimental techniques, which are
used for the creation of PDLC films, however, the droplets
appear to be oblate. In the present paper we are going to apply
our method to the oblate disklike droplets and to outline some
new properties, which are not specific to the spherical droplets.
Before that, however, we are going to verify several structures
obtained previously in spherical droplets by different methods.

A. Electric-field-induced transitions in spherical nematic
droplets with homeotropic anchoring

1. Equilibrium structures

We applied the method described above to the spherical
supramicrometer nematic droplets with homeotropic surface
conditions. Let us introduce the dimensionless anchoring
strength μ = WR

K11
varying from 10 to 2000 and the dimension-

less uniform electric field e = ER( ε0�ε

K11
)1/2 varying from zero

to 150, where R is the droplet radius. To obtain the equilibrium
structures of a droplet at particular values of μ and e, we have
done Monte Carlo optimization in eight independent runs per
each μ and e, and then the structure with the lowest free energy
was selected as the equilibrium structure. Totally we have
found the three equilibrium structures of a spherical droplet,
which are presented in the phase diagram in Fig. 5.

(1) Radial structure (R, marked with black squares in
Fig. 5), or hedgehoglike structure, in which only one point
defect exists in the center of the droplet. This structure arises
when the surface energy dominates over the elasticity energy
and/or the electric-field energy.

(2) Axial structure without defects (A, marked with blue
triangles in Fig. 5). This structure arises in the case, when

FIG. 5. (Color online) Diagram of states of 5CB nematic LC
in spherical droplet with homeotropic anchoring under electric field.
Here e denotes the dimensionless electric-field strength and μ denotes
the dimensionless anchoring strength. Radial (R), axial (A) and axial
with linear defect (AD) states are present.

the elasticity energy and/or the electric-field energy dominates
over the surface anchoring energy.

(3) Axial structure with line defect (AD, marked with red
circles in Fig. 5), which arises in between the axial and radial
structures at strong enough surface anchoring under moderate
electric field.

These structures and the phase diagram are in good
agreement with those obtained by Kralj and Zumer [51]. A
quantitative comparison of our results with Kralj and Zumers’
data is presented below together with an analysis of all possible
phase transitions (R-A, R-AD, and AD-A).

2. Direct transition between axial and radial
structures (A-R transition)

The direct transitions between axial and radial structures
can be observed, when the electric field increases at small
anchoring strength or when the anchoring strength increases
at small electric field (see left bottom corner of the diagram
presented in Fig. 5). The qualitative behavior of the structure at
the phase transition can be easily understood if one introduces
the tensor order parameter Qαβ = 〈 1

2 (3nαnβ − δαβ)〉, where nα

and nβ are the projections of local director n on coordinate axes
α and β, and δαβ is the Kronecker symbol. Here the angular
brackets denote the average over the whole droplet. One notes,
that the order parameter Qαβ is introduced in the same manner
as the nematic order parameter with the only difference that
the local director participates instead of the molecular long
axis, and the average is over a larger scale, at which the
director itself exhibits considerable modification. In particular,
in the homogeneous nematic state with the director along the
z coordinate the diagonal elements of Qαβ should be equal to
−1/2, −1/2, and 1, while at perfect radial distribution of the
director inside a spherical droplet all the diagonal elements
should be equal to zero. The nondiagonal elements should be
equal to zero for any distribution of the director possessing
the axial symmetry with respect to any coordinate axis; in
particular, they should be equal to zero for both homogeneous
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FIG. 6. (Color online) Dependencies of the dimensionless total
free energy derivative 1

K11R

∂F

∂μ
and the diagonal elements of tensor

order parameter Qαβ on the dimensionless surface anchoring strength
μ in a spherical droplet with 5CB without electric field (e = 0). The
first order phase transition from axial state (A) to radial state (R)
happens at μ ≈ 24 ± 1.

and axial distributions of the director inside of a spherical
droplet considered above.

The dependence of calculated total free energy derivative
in dimensionless form 1

K11R
∂F
∂μ

on the value of anchoring
strength μ at zero electric field is presented in Fig. 6, as
well as the dependence of the diagonal elements of tensor
order parameter Qαβ . The derivative changes stepwise at
μA−R = 24 ± 1 indicating the first order phase transition. One
notes that orientation of the director along a particular z axis
dominates in the axial state, while in the radial state there is no
domination of any particular orientation of the director. The
anchoring strength at the transition point is in good agreement
with [51].

3. Axial structure with defect (AD)

There is a critical point in the phase diagram (μc ≈ 280,
ec ≈ 4), above which the axial structure with defect (AD)
arises between the axial and radial structures (see Fig. 5). This
result is again in good agreement with Ref. [51], where it was
shown that the defect should arise in the plane perpendicular
to the electric field at an anchoring strength larger than
μc ≈ 240 in the single elasticity constant approximation. The
dependencies of calculated dimensionless total free energy
derivative 1

K11R
∂F
∂h

on the value of electric field e at μ = 1100
and the diagonal elements of tensor order parameter Qαβ

are presented in Fig. 7. Both derivative and order parameter
change stepwise at e = 7.3 ± 0.3 indicating the first order
phase transition.

Further increase of the electric-field strength leads to an
increase of the defect ring. Finally the defect ring reaches the
radius of a droplet, and one would expect the second order
phase transition into the axial structure without defect. In our
approach, however, which does not predetermine the axial
symmetry of the structure, we see a different scenario. The
defect ring breaks into pieces first, and then the length of each
piece decreases. At present we cannot answer the question,

FIG. 7. (Color online) Dependencies of the dimensionless total
free energy derivative 1

K11R

∂F

∂h
and diagonal elements of tensor Qαβ

on the dimensionless electric-field strength e in a spherical droplet
with 5CB at strong surface anchoring (μ = 1100). The first order
phase transition from radial state (R) to axial state with linear defect
(AD) happens at e ≈ 7.3 ± 0.3.

whether this scenario is solely due to the approach we are
using or not. The dependencies of the dimensionless defect
energy, its derivative with respect to the electric field and the
diagonal elements of tensor Qαβ on the electric-field strength
are presented in Fig. 8. Both defect energy and order parameter
vary rather continuously. Since our method cannot classify
this structural change as a phase transition, we have plotted
the dashed line in the phase diagram (Fig. 5) at a position
corresponding to the maximum value of | dFdef

dh
|.

FIG. 8. (Color online) Dependencies of the dimensionless defect
energy derivative 1

K11R

∂Fdef
∂e

(black empty triangles), dimensionless

length of defect L = l

2πR
, where l is real length (blue empty circles),

and diagonal elements of tensor Qαβ (blue filled squares and triangles)
on the dimensionless electric-field strength e in a spherical droplet
with 5CB at strong surface anchoring (μ = 1100). The continuous
transformation from axial state with linear defect (AD) to axial state
(A) is observed.
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B. Electric-field-induced transitions in the oblate nematic
droplet with homeotropic anchoring

1. Equilibrium structures

Let us consider oblate ellipsoidal droplets with two long
eigenvectors dx and dy , which are equal to each other, and
one short eigenvector dz. Let us introduce the degree of
oblateness δ = dx

dz
at a given volume of the droplet, which

is greater or equal to one. Here we are going to use the same
elasticity constants, as in the case of the spherical droplets,
corresponding to the material 5CB (see above). We also
suppose the strong homeotropic anchoring (μ = 2000). For
the oblate droplet, let one use mean size of the droplet R

equal to radius of sphere with the same volume. The drastic
difference from spherical droplets can be seen already without
electric field, when the following two states can be observed
at various oblateness δ [see Figs. 9(a)–9(c)]:

(1) Radial structure (R), or hedgehoglike structure, which
arises at δ < 3.125. The director deformation gradually in-
creases with the increasing oblateness [see Figs. 9(a)–9(c)],
while the defect topology remains the same (only one point
defect exists in the center of a droplet).

(2) Axial structure with the line defect (AD) arises at δ >

3.125. At strong oblateness the circular defect line of diameter
close to dx arises, as shown in Fig. 9(d). The almost uniform
director distribution is observed in the inner part of the droplet
(inside of the defect ring), while the outer part of the structure
appears to be strongly deformed. One can see that, in contrast to
the case of spherical droplets, the AD structure arises without
electric field solely due to the homeotropic anchoring at the
surface.

When the electric field is applied along the short axis (the
symmetry axis) of the droplet, the sequence of states depending
on the droplet oblateness δ is quite simple. At δ < 3.125,
the sequence of states is R → AD → A, the same as for the
spherical droplet. At δ > 3.125, the AD state exists at no field
instead of R state, and the sequence of states is then AD → A.
The corresponding oblateness–electric-field phase diagram is
shown in Fig. 10, where R is marked with black squares, AD
is marked with red circles, and A is marked with green up
triangles. The thresholds of both transitions decrease with the
increasing δ, but the transition kinds remain the same as for
the spherical droplet.

It is more interesting to consider the case when the electric
field is applied along one of the long axes of the droplet
(perpendicular to the symmetry axis of the droplet). The phase
diagram appears to be richer in this case, since the symmetry
of the system is broken. Our simulations reveal the following
states:

(1) Radial structure (R), described above [see
Figs. 9(a)–9(c)].

(2) Axial structure with defect (AD), described above [see
Figs. 9(d) and 11(a)].

(3) Asymmetric structure with tilted director distribution in
the central part of the droplet (TD), where the director tends
to be oriented along the electric field. The circular defect line
exists at approximately the same position as in the previous
case. The structure is shown in Fig. 11(b). This structure arises
at δ > 3.125 in the presence of a small electric field.

(a)

(b)

(c)

(d)

FIG. 9. (Color online) Structures of 5CB in droplets with strong
homeotropic anchoring (μ = 2000) and various oblateness: δ = 0
(a), δ = 2 (b), δ = 3 (c), and δ = 3.5 (d). Director vectors are colored
in correspondence with their direction orientation. Defect is marked
with a bold red line.

(4) Asymmetric structure with tilted director distribution
and also with tilted defect ring (TTD) [see the structure in
Fig. 11(c)]. It arises at any oblateness δ in the presence of
an electric field high enough to suppress the elasticity energy
of the liquid crystal. The defect ring tilts gradually with the
increasing electric field and becomes almost perpendicular
to the electric-field direction when h tends to infinity [see
Figs. 11(c) and 11(d)]. The limit orientation of the defect ring
in the TTD structure is the same as that for the AD structure
in the spherical droplet.
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FIG. 10. (Color online) Diagram of states of 5CB nematic LC
in an oblate droplet with homeotropic anchoring (μ = 2000) under
electric field applied along the short axis of the droplet. Here e denotes
the reduced electric-field strength, and δ denotes the oblateness of a
droplet. The solid line denotes the phase transition border between
the R and AD states, and the dashed line denotes the maximum
transformation between the AD and A states.

(5) Axial structure without defects (A). This structure arises
when the electric field is high enough to suppress the surface
boundaries [see Fig. 11(e)].

The corresponding oblateness–electric-field phase diagram
is shown in Fig. 12, where R is marked with black squares,
AD is marked with purple down triangles, TD is marked with
green rhombuses, TTD is marked with red circles, and A is
marked with blue up triangles.

The mechanisms of R → TTD and TTD → A transitions
are the same as that for R → AD and AD → A observed
in spherical droplets (see details in the previous section). The
transitions R → AD, AD → TD, and TD → TTD are specific
to oblate droplets only, and their details will be described
below.

2. Transition from radial structure to axial structure
with defect (R-AD transition)

The radial structure arises in a spherical droplet at an
appropriate balance between homeotropic surface anchoring
and elasticity energy [see Fig. 9(a)]. In a slightly oblate
droplet [see Figs. 9(b) and 9(c)] the deformed radial structure
arises with maximum deformation near the plane containing
the two long eigenvectors, and increasing when δ increases.
Above some critical value of oblateness, the transition to the
axial structure with linear defect happens. The defect ring is
then located in the same plane located near the surface. The
structure inside of the defect ring appears to be almost uniform,
while the outer part appears to be strongly deformed [see
Fig. 9(d)]. The elasticity energy of the droplet in this structure
is smaller than in the AD structure and is compensated by the
defect energy. Both the first derivative of the dimensionless free
energy 1

K11R
∂F
∂δ

and the order parameter Qαβ change stepwise
at critical oblateness δR→AD = 3.125 ± 0.025 (see Fig. 13)

(a)

(b)

(c)

(d)

(e)

FIG. 11. (Color online) Structures of 5CB in a droplet of
oblateness δ = 4 with strong homeotropic anchoring (μ = 2000) and
various electric-field strengths: axial state with linear defect (AD) at
e = 0 (a), tilted state with defect (TD) at e = 4.0 (b), tilted state
with tilted defect (TTD) at e = 5.0 (c), TTD state at e = 52.5 (d),
and axial state (A) at e = 103.5 (e). Director vectors are colored
in correspondence with their direction orientation. Defect is marked
with a bold red line.

indicating the first order phase transition shown with a solid
black line in Fig. 12.

3. Transition from axial structure with defect to tilted structure
with defect (AD-TD transition)

This transition occurs at δ > δR→AD at moderate values
of electric field. Below the critical value of the electric field
e < eAD→TD, the director distribution is approximately the
same as at e = 0 [see Fig. 11(a)]. At eAD→TD = 3.6 ± 0.1 the
transition to the tilted director structure with the same position
of defect occurs [see Fig. 11(b)]. We have analyzed the details
of this transition by calculation of the free energy derivatives
and order parameter as functions of e [Fig. 14]. The linear
approximations to the first derivative of the dimensionless free
energy in the ranges of electric field below and above eAD→TD
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FIG. 12. (Color online) Diagram of states of 5CB nematic LC
in an oblate droplet with homeotropic anchoring (μ = 2000) under
an electric field applied along the long axis of the droplet. Here e

denotes the dimensionless electric-field strength and δ denotes the
oblateness of a droplet. Radial (R), axial (A), axial with linear defect
(AD), tilted structure with defect (TD), and tilted structure with tilted
defect (TTD) are present. Solid lines correspond to the first order
phase transitions, the dotted line corresponds to the second order
phase transition, and the dashed line corresponds to the strongest
continuous transformation from TTD to A.

are shown with red lines in Fig. 14. Intersection of these two
lines shows the approximate transition point. The same point
can be found from direct calculations of the second derivative

1
K11R

∂2F
∂e2 (plotted with black empty circles in Fig. 14). It has a

stepwise change at eAD→TD. Order parameter (blue rhombus
in Fig. 14) remains almost constant below the critical field
eAD→TD, and changes gradually above this point. Behavior
of both the second derivative of free energy and the order
parameter indicates the second order phase transition shown
in the phase diagram (Fig. 12) with a dotted line.

FIG. 13. (Color online) Dependencies of dimensionless total free
energy derivative 1

K11R

∂F

∂δ
and diagonal elements of tensor Qαβ on

oblateness δ of a droplet with 5CB, no electric field. First order phase
transition at δR→AD = 3.125 ± 0.025.

FIG. 14. (Color online) Dependencies of first and second deriva-
tives of dimensionless total free energy ( 1

K11R

∂F

∂e
and 1

K11R

∂2F

∂e2 , shown
in black triangles with black line and black circles, consequently),
and order parameter Qyy (blue rhombus) on reduced electric-field
strength e for 5CB in oblate droplet (δ = 3.5). Strong surface
anchoring (μ = 2000). Red solid lines show linear approximations
to 1

K11R

∂F

∂e
in regions near second order phase transition AD →

TD (eAD→TD = 3.6 ± 0.1). First order phase transition TD → TTD
occurs at eTD→TTD = 4.38 ± 0.04.

4. Transition from tilted structure with nontilted defect to tilted
structure with tilted defect (TD-TTD transition)

At some larger critical value of the electric field eTD→TTD

at oblateness δ > δR→AD the first order transition to a different
structure happens, where the defect line also appears to be
tilted. Below eTD→TTD only the director tilt in the central part of
the droplet increases with the increasing electric field, while the
location of the defect line remains unchanged. Above eTD→TTD

the defect line rotates stepwise by angle about 30◦ around the
long eigenvector of ellipsoid, which is perpendicular to the
electric-field direction [see Fig. 11(c)]. This transition reduces
the elasticity energy competing with the electric-field energy.
Figure 14 shows that the transition point is very close to
AD → TD transition (for example, eTD→TTD = 4.38 ± 0.04
for δ = 3.5). The difference between two critical values of the
electric field, eAD→TD and eTD→TTD, grows with the increasing
oblateness δ, while near the critical oblateness δR→AD both
transitions tend to coincide with each other.

IV. CONCLUSIONS

In the present paper a method for fast director distribution
calculations in liquid crystal droplets in the framework of elas-
tic continuum theory is presented. The theoretical approach
is expanded with point and linear disclinations, which are
explicitly taken into account in the numerical scheme. The
expansion uses the empirical approach, which does not take
into consideration detailed information about the defects, such
as topological charge or core structure of the defect [18,19,52].
This method uses Monte Carlo simulated annealing for global
energy optimization. A special triangulation technique is
suggested for representing the boundaries, which allows one to
predict the director distribution in a droplet of any shape. The
recent version of the software can be found on the link [53].
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First we have shown that our method gives the correct
results for the case of spherical nematic droplet in the electric
field, where the director distribution can be either calculated
with more complex methods, or verified experimentally.
Despite a very simple representation of the defects, the
suggested method works fine, when only topological defects
of the same topological charge are presented in the system. In
particular, we obtained the radial, axial without defects, and
axial with circular defect structures, and the corresponding
phase diagram is very similar to the one predicted earlier
in [51].

Using our method we investigated various nematic struc-
tures arising in the oblate droplets, which are normally created
during PDLC preparation techniques. It was demonstrated
that strongly oblate droplets tend to have large circular
defect even without electric field. This fact gives rise to
the existence of several new structures in the electric field
applied perpendicular to the principal (short) axis of the oblate
droplet. In particular, we recognized the new tilted structure
with circular defect lying in the longitudinal plane of the
oblate ellipsoid (TD) and tilted structure, where the circular
defect is also tilted with respect to the longitudinal plane
of the oblate ellipsoid (TTD). These are two intermediate
structures between the two axial structures, the one existing
without electric field (or at small electric field) with the director
tending to be oriented along the short eigenvector of the oblate
ellipsoid, and another one arising at large electric field with
the director tending to be oriented along the long eigenvector
of the oblate ellipsoid, which is collinear to the electric-field
direction.

PDLC materials consisting of spherical (or weakly oblate)
droplets usually demonstrate the nontransparent R state

without electric field and the transparent AD state in the
electric field. In contrast, PDLC materials consisting of
strongly oblate droplets should demonstrate transparent AD
state without electric field and nontransparent TD state at
small electric field. Our calculations suggest that the transition
between AD and TD states in strongly oblate droplets should
happen at approximately twice smaller electric field than the
transition between R and AD states in spherical droplets at the
same anchoring strength. Thus, our investigations suggest that
PDLC materials consisting of strongly oblate droplets can be
used for creation of the low-voltage optical devices.

PDLC materials consisting of strongly oblate droplets can
also be used for creation of high-contrast optical devices
based on birefringence (using polarizers). Indeed, the apparent
birefringence should arise in one of the two axial states,
and should disappear in another one. The existence of two
intermediate states (TD and TTD) can also be used for creation
of several birefringence colors at different voltages [54].

Thus, in the present paper we have outlined several new
structures and several new capacities of PDLC materials
composed of strongly oblate droplets. The optical properties
of the structures reported here should, however, be accurately
investigated in a separate publication.
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