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Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion
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In the present article, we introduce a phase-field model for thin-film growth with anisotropic step energy,
attachment kinetics, and diffusion, with second-order (thin-interface) corrections. We are mainly interested in the
limit in which kinetic anisotropy dominates, and hence we study how the expected shape of a crystallite, which
in the long-time limit is the kinetic Wulff shape, is modified by anisotropic diffusion. We present results that
prove that anisotropic diffusion plays an important, counterintuitive role in the evolving crystal shape, and we add
second-order corrections to the model that provide a significant increase in accuracy for small supersaturations.
We also study the effect of different crystal symmetries and discuss the influence of the deposition rate.
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I. INTRODUCTION

It is well known that epitaxially grown layers in crystalline
surfaces can have regular or very complex shapes, ranging
from dendritic to fractal (see, e.g., Ref. [1]). There is a plethora
of experimental results where crystallites with different shapes
are grown on different surfaces by different means [2–8].
These shapes are often puzzling, as some of them appear
to be unrelated with the symmetries of the crystallite. It is
known that the substrate can play a big role in shaping these
crystallites, for instance through the interaction of anisotropic
attachment kinetics and anisotropic surface diffusion [2]. The
interaction with the substrate can also lead to the formation
of three-dimensional (3D) structures, for instance when there
is a mismatch between the different crystal structures of the
substrate and the crystallite. However, when this mismatch
is not too big a two-dimensional model usually suffices to
describe the initial stages of growth.

At a large enough scale, it is safe to assume that growth
is well described by attachment kinetics on the step edges
and by diffusion on the terraces. In this case, we expect that
there is a transition from a diffusion-controlled regime for
small supersaturation to a kinetics-controlled regime for high
values of the supersaturation. Also, in the kinetics-controlled
regime, we expect that the shape of the crystallite will be
given by Frank’s theorem [9], i.e., it will have the kinetic
Wulff shape [10,11].

The starting point of the modeling is the classic Burton-
Cabrera-Frank (BCF) theory of surface growth [12]. This
considers separately the different atomic terraces as domains
where the adatoms diffuse, and special conditions apply at the
step edges related with attachment kinetics and step energy.
Essentially, the crystal surface is considered as a discontinuous
system where the boundaries (the step edges) are not fixed but
evolving, and growth is controlled by the supersaturation, the
only extended variable on the terraces.
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Direct numerical simulation of the BCF model implies
considerable complexities stemming from its discontinuous
nature; the step edges have to be tracked in order to impose
the boundary conditions on them, etc. In order to tackle these
problems, phase-field techniques have been used in the past,
as in Ref. [13] or, in a more comprehensive study, [14], see
also Ref. [15] for a thorough study on the stability of epitaxial
island growth. These techniques allow, to different extents, the
incorporation of attachment kinetics or the step stiffness to the
dynamics.

Attachment kinetics are not completely known for most
systems, but we will assume quasi-instantaneous attachment
for a given symmetry (fourfold or sixfold). As in Ref. [13], we
will use a model similar to the one derived in Ref. [16], which
is known to have nonlinear kinetics [17], but it is still capable of
describing the transition from diffusion- to kinetics-controlled
growth, at least qualitatively, e.g., [18].

Diffusion on the terraces has typically been considered
isotropic, even though it is well known that diffusion can
be anisotropic depending on the symmetries of the surface
[19,20]. In some cases, diffusion anisotropy has been measured
experimentally [21].

In theoretical studies, diffusion anisotropy has been very
rarely studied in connection with step flow until recently
[22–24]. Most of the works that deal with diffusion anisotropy
in step flow derive equations for the step profile in the
quasistatic approximation (∂tc = 0). Some studies assume
alternating anisotropies in the steps [22,25,26] and have found
results such as a finite length instability due to the interplay
of step stiffness and diffusion anisotropy [25]. In the case
of an arbitrary diffusion tensor, the same for all steps, it has
been found that the effect of anisotropic diffusion on the step
meandering instability [27] is always stabilizing except when
the fast diffusion axis is almost perfectly aligned with the
step [25]. For review of this line of modeling, see Ref. [28].

Diffusion on a crystalline surface is a very complex process,
in which many different competing mechanisms have been
observed experimentally, and some have been explained from
first principles [29]. The chemical or collective diffusion in
general depends on interactions among adatoms, particularly
at high coverages. We will not dwell on these complexities.
We assume that Fick’s law is valid, with a constant effective
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diffusion tensor. Its specific form is constrained only by the
underlying symmetries of the crystal surface.

Here we will consider a phase-field model similar to
Refs. [30] and [16] but with anisotropic diffusion. A similar
approach was undertaken in Ref. [31] for phase transitions in
liquid crystals, but we incorporate the thin-interface asymp-
totics of Ref. [16] to the model.

In the present work we consider a crystalline surface with
a given symmetry and a thin layer that grows by incorporating
atoms that are deposited on the surface at a given rate. For
simplicity, we do not consider desorption, and therefore the
supersaturation at the surface increases approximately linearly
with time far from the step edge. This leads to a transition
from a diffusion- to a kinetics-controlled regime, which has
been studied in the context of dendritic alloy solidification
experimentally [32] and numerically using a similar model
[18]. In order to compare qualitatively with experimental
results, we are mainly interested in the long-time behavior of
the system, and therefore we are only partially concerned with
the actual transition, which in any case can only be captured
qualitatively with the present model.

To summarize, we model the dynamics of a thin-film by
using a phase-field formulation that incorporates anisotropic
diffusion, anisotropic attachment kinetics, and anisotropic
step stiffness, taking into account thin interface corrections.
The model, the main assumptions behind it and some of its
limitations are described in Sec. II; the numerical techniques
used to solve the model are briefly discussed in Sec. III; and
finally in Secs. IV and V we present and discuss the results.

II. MODEL

A. Sharp-interface model

The starting point of our modeling is the sharp-interface
model, which is basically the BCF theory with small modifi-
cations (see Fig. 1). First, local mass conservation leads to the
following equation for the concentration of adatoms per unit
of surface [33]:

∂tc = ∇ · (D∇c) + F − c

τ
, (1)

ν0

ν− ν+

F τ

D⊥
D

FIG. 1. Diagram of an evolving thin film. We assume that a crystal
grows on a terrace where diffusion may be anisotropic diffusion.
There are attachment-detachment kinetics from both terraces (ν+, ν−)
as well as step permeability (ν0). There is a constant deposition flux
F and a desorption time τ .

where D is a diffusion tensor, the second term in the right-hand
side corresponds to the rate of deposition of adatoms and the
third term models the desorption of adatoms.

We also assume a linearized Gibbs-Thomson relation for
the equilibrium concentration at the step edge:

ceq = c0
eq[1 + �(ξs(θ ) + ξ ′′

s (θ ))κ], (2)

where c0
eq is the equilibrium concentration for a flat interface, κ

is the curvature of the step, and ξs(θ ) + ξ ′′
s (θ ) is proportional to

the step stiffness, with θ being the normal angle. The constant
� is defined in such a way that, in the absence of anisotropy,
ξs(θ ) = 1.

If we define c+ (c−) as the concentration directly ahead
(behind) the step edge, mass conservation at the step edge
leads to:

n · (D∇c)+ − n · (D∇c)− = vn

	
− vn(c+ − c−), (3)

where 	 is the surface occupied by an atom in the solid phase.
Linear phenomenological kinetics imply the following

equation [34]:

vn

	
= k+(c+ − ceq) + k−(c− − ceq), (4)

where the constants k± might depend on the interface orienta-
tion.

In the limit of step transparency, that is, high step per-
meability (see Sec. V and Ref. [14]), we can assume that
c+ = c− = cI , which leads, by combining Eqs. (3) and (4), to
the following boundary conditions at the step edge:

cI = c0
eq + c0

eq�[ξs(θ ) + ξ ′′
s (θ )]κ + β̃(θ )vn (5)

vn

	
= n · (D∇c)+ − n · (D∇c)−, (6)

where β̃(θ ) = [(k+ + k−)	]−1 is the kinetic coefficient.
It is important to notice that, in this limit, the model is iden-

tical with a solidification model and that the asymmetry in the
attachment-detachment kinetics (i.e., the Ehrlich-Schwoebel
effect) is irrelevant.

Before proceeding further, let us discuss the parametriza-
tion of the diffusion tensor. Assuming symmetry, the diffusion
tensor can be diagonalized by a rotation:

D = R(ψ)

(
D‖ 0

0 D⊥

)
R(ψ)−1, (7)

where D‖ denotes the largest eigenvalue of the two (without
loss of generality). The angle ψ corresponds to the (counter-
clockwise) angle that the axes have to be rotated to coincide
with the principal diffusion axes. Therefore, the rotation matrix
R(ψ) is given as:

R(ψ) =
(

cos ψ − sin ψ

sin ψ cos ψ

)
. (8)

Defining two new parameters:

D̄ = 1

2
(D‖ + D⊥); δ = D‖ − D⊥

D‖ + D⊥
, (9)
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the tensor D can then be written in a compact form as a function
of these parameters:

D = D̄D̃ = D̄

(
1 + δ cos(2ψ) δ sin(2ψ)

δ sin(2ψ) 1 − δ cos(2ψ)

)
. (10)

Scaling space with a given characteristic length l (see
Sec. III A below) and time with l2/D̄, and defining u =
(c − c0

eq)	, we obtain the following nondimensional system:

∂tu = ∇ · (D̃∇u) + f − u

τv

, (11)

vn = n · (D̃∇u|+ − D̃∇u|−), (12)

uI = d0[ξs(θ ) + ξ ′′
s (θ )]κ + β(θ )vn, (13)

where β(θ ) = 	β̃(θ )D̄/ l, τv = τD̄/ l2, d0 = 	�c0
eq/l, and

f = l2(	/D̄)(F − c0
eq/τ ). Also, we define β(θ ) = β ξk(θ ),

i.e., the product of the kinetic coefficient with the angle-
dependent part. As with the step energy, ξk(θ ) = 1 in the
isotropic case. Finally, in the following, we will omit the tilde
of the rescaled diffusion tensor.

B. Phase-field model

In order to numerically solve the previous model, we make
use of a phase-field model following Karma and Rappel [16].
The starting point is the free energy functional:

F[φ] =
∫ [

1

2
ε2ξs(�)2|∇φ|2 + f (φ) − ελg(φ)u

]
dV,

(14)

where φ is the phase variable (φ = 1 marks the thin film crys-
tal domain), f (φ) = φ2(1 − φ)2/4, g(φ) = φ3(10 − 15φ +
6φ2)/120. The parameter ε, assumed small, corresponds to the
interface width and λ is a coupling constant with the diffusion
field u. As before, ξs is related with the change of interfacial
energy with the orientation, and depends on the angle �,
which is defined as tan � = ∂yφ/∂xφ. It can be proved that
� converges to the actual normal angle θ as ε → 0.

The dynamics of the field φ ensue from a variational
approach:

ατ (�)ε2∂tφ = −δF
δφ

, (15)

where δF/δφ is the variational derivative. This results in the
following equation

ατ (�)ε2∂tφ = ε2∇ · [ξs(�)2∇φ] − ε2∂x[ξs(�)ξ ′
s(�)∂yφ]

+ ε2∂y[ξs(�)ξ ′
s(�)∂xφ] − f ′(φ) + ελg′(φ)u.

(16)

We see that when ξs does not depend on � the equation for the
phase-field φ is the same as the one found in Ref. [16] shifted
to 0 � φ � 1.

We see below how the function τ (�) in (16) is related with
the kinetic attachment anisotropy. In the case of a completely
isotropic system, τ (�) → 1 as ε → 0. Note that we are
introducing the different anisotropies as in Ref. [30].

For the diffusion field u we have:

∂tu = ∇ · (D∇u) + f − u

τv

− ∂tφ, (17)

which is Eq. (11) with an additional coupling term with the
phase field.

C. Connection of the phase-field model with the
sharp-interface model

In a similar way as in Ref. [16] we have performed a
second-order thin-interface expansion in the interface width
ε to obtain equations (12), (13), and (11) in the limit ε → 0.
This expansion is performed in detail in Appendix A. Here we
summarize the main results.

To begin with, we recover the Gibbs-Thomson equa-
tion (13) and the adatom conservation condition (12) when
ε → 0 with the following model parameters as a function of
the physical parameters:

λ = a1

d0
, (18)

α = β

d0
, (19)

where a1 = 10
√

2.
Also, if we define

τ (�) = τ0(�) + τ1(�)ε (20)

we have that

τ0(�) = ξs(�)ξk(�). (21)

For the equation to be correct to the next order in ε, it is
shown in Appendix A that

τ1(�) = a2
ξs(�)2

β{1 + δ cos[2(ψ − �)]} , (22)

where a2 = 47
√

2/60.
Finally, for the kinetic and line energy anisotropies we take

the following prescription:

ξs,n(�) = 1 + εs,n cos(n�), (23)

ξk,n(�) = 1 + εk,n cos(n� − n�0), (24)

where �0 can have different values. A usual assumption is
�0 = π/n, which corresponds to maximal line energy along
the directions where the kinetic coefficient is minimal.

III. NUMERICAL METHOD

To solve Eqs. (16) and (17) we use the adaptive nonlinear
multigrid algorithm developed by Wise et al. [35], and the
corresponding solver BSAM. Equations are discretized using
finite differences and we use an implicit Crank-Nicolson
scheme in time. More details together with a grid adaptation
example are shown in Appendix B.

A. Parameters

In Table I we show a summary of the chosen parameters.
The interface thickness ε has been chosen as small as
computationally feasible, see Sec. IV and Appendix B. We
use seven levels of mesh refinement, where each refinement
corresponds to a halving of the grid spacing; the finest mesh
corresponds to �x = 0.001 95. Note that we have used a
step energy anisotropy substantially smaller than the kinetic
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TABLE I. Parameters used to compute the phase-field constants
and to build the anisotropy functions.

Parameter Symbol Value

Capillary parameter d0 6 × 10−4

Reference deposition flux f0 0.677
Reference kinetic coefficient β0 5.54 × 10−3

Kinetic anisotropy (n-fold) εk,n 0.08
Step energy anisotropy (n-fold) εs,n 0.001

anisotropy, which makes the step energy anisotropy essentially
irrelevant. This is because we are concerned with the long-term
behavior, which we expect will be dominated by kinetics. The
competition between the step and kinetic anisotropies has been
described elsewhere [36].

The values in Table I are nondimensional and they depend
on a given characteristic length l. We pick l = 1 μm, consistent
with the size of the crystallites in many experiments [4–8] and
with the size of our computational domain (see Appendix B).
This implies a capillary length of d0 = 6 × 10−10 m, which is
also consistent with the order of magnitude of the step stiffness
reported for several materials [37,38].

The remaining parameters, f0 and β, depend on the surface
diffusion coefficient, which in turn depends on the substrate
and the value of the temperature T . Its value can vary several
orders of magnitude because of that [39–41]. See Sec. V for a
discussion on the value of β.

IV. NUMERICAL RESULTS

A. Effect of the second-order correction.

In the following we check the consistency and the conver-
gence of the model, with and without anisotropy. In order to
do so we study, first without any anisotropy, the growth of
a circular crystal in the presence of an initial supersaturation
u0 = 0.5 without a deposition flux. If we extract the radius of
the island at a given time for different values of the interface
thickness ε we obtain the plot in Fig. 2.

From the figure we see that in the studied range of values
of the interface thickness the second-order approximation is
always closer to the extrapolated value of the radius than the
first order model, where τ1 = 0 instead of Eq. (22).

In Fig. 3 we take the values of the anisotropies given in
Table I, with sixfold kinetic anisotropy, and study the shape
of a crystallite, which has been grown from an initial small
circle, in the absence of supersaturation, but with a constant
deposition flux f = f0 and no desorption. We have picked
two perpendicular axes of diffusion with the highest (fastest)
diffusion axis rotated π/6 from the x axis, with D‖ = 2D⊥
(δ = 0.33). The crystals are shown at time t = 1.1 with
different choices of ε using the first-order method (top) and
the second-order method (bottom).

Although the crystal has sixfold symmetry, with dendrites
forming in the direction of small kinetic coefficient, there
is a strong fourfold component driven by the diffusion
anisotropy. In particular, the four prominent dendrites grow
in the slow diffusion direction while the dendrites in the
fast diffusion direction are suppressed. This effect had been
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5)

 

 

1st Order
2nd Order

FIG. 2. (Color online) The radius of a circular island at time
t = 0.5 as a function of the interface thickness ε. The island grows
due to an initial uniform supersaturation. Results from the first- and
second-order schemes are shown, as labeled, together with linear
and quadratic fits. The first-order term is obtained by taking τ1 =
0 in Eq. (20) rather than the form given in Eq. (22). The initial
supersaturation is u0 = 0.5, an the kinetic coefficient is β = 4β0.

observed previously [31], but we see in Fig. 3 how this effect
depends strongly on the interface width. For instance we see
that for ε = 0.01 the first-order shape has already grown
small dendrites in the slow diffusion direction, whereas the
second-order has a more hexagonal shape. For the second
order, as ε is decreased small dendrites bud at the vertices of
the hexagon, with larger dendrites at the vertices that point
away from the fast diffusion direction. For the first order, we
see a much more dramatic change, with the dendrites in the
fast direction reducing its size and increasing their separation.

A visual inspection shows clearly that the convergence
of the second order is much better, with the shape of the
crystallite remaining essentially invariant for ε < 0.005, but
we can quantify how good the convergence is by extracting the
perimeters of the crystals and plotting them, similarly to Fig. 2.

The perimeters are plotted in Fig. 4. Clearly, the second-
order model behaves much better than the first-order model,
converging faster to the extrapolated value for ε = 0. The

1.25 2.50 5.00

1  Order

10.0

st

103 ε

2   Ordernd

FIG. 3. Snapshots of the evolutions of initially circular crystallites
at t = 1.1 for different values of ε. Top row: first order. Bottom row:
second order. β = 4β0, f = f0, ψ = π/6 and δ = 0.33.
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FIG. 4. (Color online) The perimeters of the crystals at t = 1.1,
for the examples depicted in Fig. 3 for the first- and second-order
model formulations, as labeled. The extrapolation is performed using
linear and quadratic functions. The kinetic coefficient has the value
β = 4β0, and the deposition flux is f = f0.

extrapolation has been done by fitting a line for the first-order
model and a parabola centered at ε = 0 for the second-order
model.

Finally, it should be noted that both in Figs. 2 and 4 the
extraction of the radius and the perimeter is greatly hindered
by grid anisotropy, and many levels of refinement are required
to obtain a good convergence. Grid anisotropy is a well-known
effect and sometimes can be quantified [16], but in our case
the convergence analysis in Figs. 2 and 4 helped us select the
right number of refinements and the right value of the interface
width ε to obtain accurate results.

B. Effect of anisotropic diffusion

In this section, we study the shapes of a crystallite for
different values of the anisotropic diffusion parameter δ, and
for fourfold and sixfold kinetic anisotropy. The fact that we are
ignoring desorption means that the value of the supersaturation
far away from the interface will be growing following an
approximately linear law.

We start describing the time evolution in two extreme cases,
one corresponds to isotropic diffusion (δ = 0) and the other
corresponds to a strongly anisotropic diffusion, D‖ = 2D⊥
(δ = 0.33). The crystal evolutions are shown in Fig. 5 where
the fourfold symmetric case is shown in Fig. 5(a) and the
sixfold symmetric case is shown in Fig. 5(b). In Fig. 5(a),
the principal diffusion axes are not rotated while in Fig. 5(b),
the axes are rotated by π/6. In this and in the subsequent
examples, the initial condition is a small circular island with
radius r = 0.3 and zero supersaturation everywhere.

At short times (e.g., t = 0.50), the crystal is circular when
δ = 0 (isotropic diffusion) but when δ = 0.33 (anisotropic
diffusion), the crystal shape is ellipselike, where the major
axis points in the direction of fast diffusion.

By t = 0.80 the crystal has more than doubled its area,
and in the sixfold case we see the dendrites budding in the

D

D⊥
(a)

δ

t
0.50 0.80 0.93 1.00

0.33

0.0

(b)

0.0

δ

t
0.50 0.80 0.93 1.00

0.33

DD⊥

FIG. 5. Evolution of selected cases with δ = 0 and δ = 0.33. In
(a), the fourfold kinetic anisotropy case is shown while in (b) the
sixfold case is shown. The deposition flux is f = 1.0 and the kinetic
coefficient is β = β0. The diffusion tensor rotation angle is ψ = 0
for the fourfold case and ψ = π/6 for the sixfold. There is a small
line energy anisotropy, εs,6 = 0.001 and the kinetic anisotropy has
a strength εk,n = 0.08, the interface thickness is ε = 0.001 25 in the
fourfold case and ε = 0.0025 in the sixfold case.

directions in which the kinetic coefficient is the smallest.
Recall that the value of the surface energy anisotropy is small
and hence we do not see interactions between the surface and
kinetic anisotropies. Note the difference among the two sym-
metries, in the fourfold case the dendrites take longer to form.

By t = 0.93 there is a dramatic change in the evolution. To
begin with, we observe that the timescale of the evolution has
changed, as now it is much faster. We see that some dendrites
have developed from the original buds, and side branches have
begun to form. When diffusion is isotropic, the crystals take on
symmetric shapes. When the diffusion is anisotropic, dendrites
in the slow diffusion directions are suppressed, as can be seen
in the sixfold case. Further, side branches begin to form in the
slow-diffusion directions.

Finally, by t = 1.0, the dendrites and side branches have
grown significantly to the point where the dendrites are nearly
merging. A difference is clearly seen between the sixfold
and the fourfold case. In the sixfold case, the number of
dendrites is constant even when δ is high, while in the fourfold
case, secondary dendrites appear, leading to a competition
between primary and secondary dendrites. These secondary
dendrites compete with the primary dendrites and also exhibit
the formation of side branches.
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(b)

ψ=π/6

n=4
ψ=0

(a)

n=6

0.00 0.08 0.33 0.50

δ

DD⊥

D

D⊥

FIG. 6. Summary of the shapes of crystals of comparable size with a fourfold kinetic anisotropy (a) and a sixfold kinetic anisotropy (b),
for different values of the diffusion anisotropy parameter δ. There is a small line energy anisotropy, εs,6 = 0.001, the kinetic anisotropy has a
strength εk,n = 0.08, the deposition rate is f = 1.0, and the kinetic coefficient is β = β0. The interface thickness has a value ε = 0.0025 for
the sixfold case and ε = 0.001 25 for the fourfold.

To elucidate the dynamics further, we perform an additional
study of the growth shapes as a function of the parameter
δ. In addition to the cases with δ = 0 and δ = 0.33, we
consider two more cases with δ = 0.08 and δ = 0.5, which
correspond to D‖/D⊥ = 1.17 and 3, respectively. The results
are shown in Figs. 6(a) and 6(b), where the crystals are
shown at times for which they have approximately the same
size.

When δ = 0 we observe regular shapes, approximately
symmetric with respect to a rotation with the appropriate angle.
The dendrites develop in the small kinetic coefficient direction,
and this is also true for sidebranching, which develops at π/2
from the dendrite direction in the fourfold case and π/3 in the
sixfold case.

When δ = 0.08 the crystallite largely retains the δ = 0
shape, but the (approximate) rotational symmetry is lost. This
is clearly seen in the way in which sidebranching is less
developed in the fast diffusion direction, even more so in the
sixfold case, where even the dendrites in the fast diffusion
direction (which makes an angle of π/6 with the horizontal)
are clearly smaller.

In the δ = 0.33 case, there is a clear divide between the
fourfold and the sixfold crystals, already seen in Fig. 5. For
this value of the undercooling, sidebranching does not develop
in the fast diffusion direction, and in the sixfold case the growth
of the dendrites in that direction is greatly diminished. Also
in the sixfold case, we observe how the dendrites closer to
the slow diffusion direction tend to diverge, i.e., they form an
angle greater than π/3.

While in the sixfold case the number of dendrites is always
the same, we observe that in the fourfold case there are more
dendrites when δ (and time) increases, with a spacing that
is smaller the closer the dendrites are to the slow diffusion
direction. This signals a diffusion-limited instability, such as
the Mullins-Sekerka instability [42], where the number of

dendrites (fingers) increases in time and competition ensues
between the dendrites.

In the most anisotropic case, δ = 0.50, all the trends
that were observed for δ = 0.33 are confirmed. For both
symmetries, there is almost no sidebranching in the fast
diffusion direction. In the fourfold case, there are more
dendrites and their spacing has been decreased. In the sixfold
case, the dendrites in the fast diffusion direction are quite
small, with the remaining dendrites separated by an angle of
almost π/2, leading to a quasifourfold crystallite.

Finally, we consider variations in the direction of the princi-
pal diffusion axes. In the fourfold case we have considered so
far that the principal axes of diffusion are in the directions of
maximum kinetic coefficient. We now change this by rotating
the diffusion tensor by ψ = π/4. In the sixfold case we have
considered the case in which the fast diffusion is along the
minimum kinetic coefficient direction, now we will assume
the opposite and take ψ = 0. The results are shown in Fig. 7.

The first thing that we notice in Fig. 7 is that the shapes of
the crystals are completely different when we change the axes
of diffusion. In Fig. 7(a), the fourfold case when ψ = π/4, we
observe that we do not have a flattened hourglass shape, like in
Fig. 7(b), the case when ψ = 0, but rather the slow diffusion
directions coincide with one pair of dendrites, which become
much more elongated, while the remaining dendrites are
significantly suppressed giving this crystal a highly distorted
quasitwofold symmetry shape.

In Fig. 7(c), the sixfold case with ψ = 0, we also observe
that the dendrites in the slow diffusion direction are more
developed, while the others are smaller and have nearly equal
sizes. This results eventually in a distorted star polygon at later
times.

Let us note that in Fig. 7 we have used a larger value of f

and shown the results at an earlier time than in Figs. 5 and 6.
This is why the dendrites are wider than in the previous cases.
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FIG. 7. Effect of different principal directions of diffusion, for
the f = 4f0, δ = 0.33, and β = β0 case. (a) fourfold kinetics with
ψ = π/4. (b) fourfold kinetics with ψ = 0. (c) sixfold kinetics with
ψ = 0. (d) sixfold kinetics with ψ = π/6. The anisotropies and the
different values of the interface thickness are the same as in Figs. 5
and 6.

V. DISCUSSION

In this paper we have developed the simplest phase-
field model that incorporates kinetic anisotropy, step energy
anisotropy, and diffusion anisotropy, correct to second order
in the thin-interface asymptotics. The analysis in Appendix A
leads to an additional term in Eq. (16), the τ1 term in Eq. (20),
which has the form given in Eq. (22). It is one of our main
results that this term is presented in this form.

We have undertaken a study of the different shapes of
crystallites on a crystalline surface, and the influence of
the degree of anisotropic diffusion, for different symmetries,
e.g., by considering sixfold and fourfold anisotropic kinetic
coefficients.

In the fourfold case we have found an interesting interaction
of anisotropic diffusion with kinetic anisotropy, exemplified in
a transition, as the diffusion anisotropy strength δ is increased,
from a regime in which the crystal grows as sidebranches
form along the primary dendrites (i.e., the dendrites along
the direction of small kinetic coefficient) to a different
regime where growth occurs through a competition among the
dendrites in the slow diffusion directions, as shown in Fig. 6.
It is also noteworthy that this transition is absent in the sixfold
case, possibly due to the earlier development of the dendrites
(cf. Fig. 5).

The main effect of the increased value of δ in the sixfold case
is the suppression of dendrites in the fast diffusion direction,
see Fig. 6. This effect has already been reported for a similar
model for liquid crystals [31] and for step-profile equations in
the quasistatic limit [24]. It reflects a preference of dendritic
growth in the direction where lateral diffusion is the fastest.
This effect is not restricted to the the sixfold case, as it can be

seen in Fig. 7 for the fourfold case when the principal diffusion
axes are rotated by ψ = π/4.

The remaining dendrites tend to separate as much as
possible from each other. In Fig. 6 with δ = 0.5, for ex-
ample, the competition between the kinetic and diffusional
anisotropies leads to a quasifourfold symmetric crystal from
sixfold kinetics. Nevertheless, a telltale sign that the crystal
shown in Fig. 6 (with sixfold kinetic anisotropy and δ = 0.5)
is not fourfold symmetric is the preferred development of side
branches in the slow diffusion direction, which is consistent
with a diffusion-limited instability.

Another feature that is present in the results is a relationship
between the supersaturation and the tip radius of the dendrites.
This is seen in Fig. 5 where the curvature of the dendrites at
the tip decreases with increasing time (and therefore supersat-
uration), hence the radius of curvature ρ increases. Since the
velocity of the front also increases with the supersaturation, as
can be seen on the same figure, we conclude that the dendrites
are away from the regime that is most commonly treated in
the literature, i.e., ρ2V ≈ const. This has been noticed and
characterized previously in Ref. [18] for a similar model in
the context of solidification of pure substances, and alternative
scaling laws were proposed.

In our numerical simulations, we have tried to limit the
influence of numerical grid anisotropy on the results by
taking the interface thickness small and using a highly refined
adaptive mesh. Because the adaptive mesh is not isotropic
[43], numerical noise generates small asymmetries in the
crystallites, which are perhaps most noticeable when δ = 0 and
the kinetic anisotropy is sixfold symmetric. The numerically
generated anisotropies are much smaller than the diffusion
anisotropy, even in the case when δ = 0.08, and thus we are
confident that the effects of diffusion anisotropy are being
accurately captured.

The phase-field model we have used here is known to have
very nonlinear kinetics in the high supersaturation regime.
This has been recognized and discussed in the past, together
with possible modifications of the model [17,44]. Further,
the coalescence of side branches (and dendrites) is handled
phenomenologically in the phase-field approach and depends
on the interface thickness. Nevertheless, by simulating crystals
with different interface thicknesses, using highly refined adap-
tive grids, we believe that the transitions in crystallite growth
we observed here from anisotropic-diffusion-dominated to
kinetics-dominated regimes are characteristic of other related
phase-field models [18] and are qualitatively independent of
the interface thickness.

The sharp interface model on which this analysis is based
has also several limitations. To begin with, we have picked
arbitrary periodic functions for the anisotropy functions. This
is a standard practice [30] and can be justified assuming
that the value of the anisotropy is small enough. For the
diffusion anisotropy, the description is more natural, but still
our model is limited to the case where the diffusivity tensor is
the same in both terraces. This is not necessarily the case in
reality [25], but the computation of thin-interface corrections
with arbitrary diffusivities at both sides of the interface is
an open problem [45,46]. In any case, even considering
symmetric but anisotropic diffusivities we uncover a very rich
phenomenology.
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Finally, the same comment applies to the fact that we have
adopted the step transparency approximation [14,47], which
makes the Ehrlich-Schwoebel effect (kinetic attachment-
detachment asymmetry) irrelevant in this limit. Transparency,
i.e., a high degree of step permeability, is a strong assumption,
and one of its consequences is nonlocal dynamics, as adatoms
are able to diffuse through many steps. Nevertheless, this
effect has been observed experimentally in different vicinal
surfaces of Si, under different experimental conditions [48,49].
The applicability of the transparency approximation has been
discussed by Stoyanov and Tonchev [50]. Their condition for
transparency translates in our case to βl/

√
	 	 1, which im-

plies β 	 10−4, and hence we are in the region of applicability
of the approximation by the argument in Ref. [50]. In any case,
the nonlocality is not important as we study a single step, and
the kinetics of the model are qualitative in any case. For a
recent study of the connection of the kinetic coefficients with
microscopic dynamics, including step permeability, see, e.g.,
Ref. [51].

In conclusion, despite its limitations, this model is capable
of uncovering a qualitative picture of how a thin layer of
material deposited on a crystalline surface is shaped by
different sources of anisotropy.
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APPENDIX A: ASYMPTOTIC EXPANSION

Here we deduce the findings outlined in Sec. II C. The
starting point is Eqs. (16) and (17) for φ and u.

1. Curvilinear coordinates

Here we write Eqs. (16) and (17) in the frame of reference
of the advancing solidification front, with coordinates adapted
to the edge of the growing layer.

a. Anisotropic phase-field equation in curvilinear coordinates

We define a curvilinear coordinate system based on the
evolving interface. The coordinates of the interface are given
by [X(s,t),Y (s,t)], a function of the arclength s and time t .
We introduce an additional coordinate, the normal distance to
the interface r , where the normal is given by n = [Y ′(s,t), −
X′(s,t)], where the primes denote derivatives over s.

With these definitions, the change of coordinates is given
by:

x = X(s,t) + rY ′(s,t), (A1)

y = Y (s,t) − rX′(s,t). (A2)

In these coordinates, the Jacobian can be easily computed,
as well as the gradient. For example,

∂rφ = Y ′∂xφ − X′∂yφ, (A3)

∂sφ = (X′ + rY ′′)∂xφ + (Y ′ − rX′′)∂yφ (A4)

and inverting the Jacobian, we obtain

h∂xφ = (Y ′ − rX′′)∂rφ + X′∂sφ,
(A5)

h∂yφ = −(X′ + rY ′′)∂rφ + Y ′∂sφ,

where

h = X′2 + Y ′2 + r(X′Y ′′ − Y ′X′′) = 1 + rK (A6)

is the determinant of the Jacobian, with K being the curvature
of the interface.

With this notation, the gradient can be written in the
following form:

∇φ = ∂rφ r + 1

h
∂sφ s (A7)

with r being the normal vector to the interface and s the tangent
vector.

With the previous definitions it readily follows that

tan � = ∂yφ

∂xφ
= −(X′ + rY ′′)∂rφ + Y ′∂sφ

(Y ′ − rX′′)∂rφ + X′∂sφ
. (A8)

After a lengthy calculation it can be seen that the functional
derivative of F from Eq. (14) can be written as

δF
δφ

[φ] = − ε2

1 + rK

{
∂r [(1 + rK)ξs(�)2∂rφ]

+ ∂s

[
ξs(�)2∂sφ

1 + rK

]
+ ∂s[ξs(�)ξ ′

s(�)∂rφ]

− ∂r [ξs(�)ξ ′
s(�)∂sφ]

}
+ f ′(φ) − ελg′(φ)u

(A9)

With this change of coordinates, the time derivative be-
comes

∂t φ̃(t,r,s) = ∂tφ(t,X + rY ′,Y − rX′)|r,s const.

= ∂tφ + ∂xφ(Ẋ + rẎ ′) + ∂yφ(Ẏ − rẊ′), (A10)

where the dot denotes a time derivative, and φ̃ stands for the
function in the new variables.

By using (A5), we can find, after some algebra:

∂tφ = ∂t φ̃ − vn∂r φ̃ − vt∂sφ̃ + r
v′

n

1 + rK∂sφ̃, (A11)

where vn = Y ′Ẋ − X′Ẏ and vt = X′Ẋ + Y ′Ẏ are the normal
and tangential interface velocities, respectively. Note that
Eq. (A11) is exact and not a small r approximation.

Finally, we can put together Eqs. (A11) and (A9) after
dropping the tildes:

α τ (�)ε2

(
∂tφ − vn∂rφ − vt∂sφ + r

v′
n

1 + rK∂sφ

)

= ε2

1 + rK

{
∂r [(1 + rK)ξs(�)2∂rφ] + ∂s

[
ξs(�)2∂sφ

1 + rK

]

+ ∂s[ξs(�)ξ ′
s(�)∂rφ] − ∂r [ξs(�)ξ ′

s(�)∂sφ]

}

− f ′(φ) + ελg′(φ)u (A12)
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b. Anisotropic diffusion in curvilinear coordinates

Just like the phase-field equation, we need to express the
anisotropic diffusion equation (17) in curvilinear coordinates.

To do so we need first to find the divergence of the diffusion
tensor applied to the gradient of the u field. The gradient is
computed as in Appendix A1a,

∇u = ∂ru r + 1

h
∂su s. (A13)

We need to put the tensor D in curvilinear coordinates
too, which means that its components depend on s due to the
transformation:

D = R(θ )−1R(ψ)

(
D‖ 0

0 D⊥

)
R(ψ)−1R(θ )

=
(

Dnn Dnt

Dnt Dtt

)
. (A14)

Note that the elements of the matrix depend on s through
θ = θ (s).

In these coordinates, the divergence of a field v can be
computed as follows:

∇ · v = 1

h

[
∂r (vrh) + ∂s

(
vs

h

)]
= 1

h
[∂r (vrh) + ∂s(v

sh)],

(A15)

where r, s subscripts or superscripts of v are coordinate
indices, they do not denote derivatives. Since we are using unit
vectors, the s component should be divided by h to extract the
contravariant component. Then, we have the following:

∇ · (D∇u) = 1

h
∂r (hDnn∂ru + Dnt∂su)

+ 1

h
∂s

(
Dnt∂ru + 1

h
Dtt∂su

)
. (A16)

2. Asymptotics: outer expansion

Here we find the equations satisfied by the fields in the outer
expansion, which is valid far away from the interface, as given
here:

φ̃(r,s) = φ̃0 + φ̃1 + ε2φ̃2 + · · · (A17)

ũ(r,s) = ũ0 + εũ1 + ε2ũ2 + · · · . (A18)

For ũ it is trivially found that the (anisotropic) BCF equation
holds at all orders:

∂t ũk = ∇ · (D∇ũk) + f − ũk

τv

. (A19)

The phase-field variable φ̃ is simply 1 or 0 and distinguishes
between the upper and lower steps.

For future use, we compute here the limit of Eq. (A19) as
r → 0± in curvilinear coordinates. From Appendix A1a the
equation can be written in this limit as follows:

∂t ũk|± − vn∂r ũk|± − vt∂sũk|±

= ∇ · (D∇ũk)|± + f − ũk|±
τv

. (A20)

To find the form of the anisotropic Laplacian in this case
we use the results of Appendix A1b. By using the following
identities:

∂sD = ∂θDK, (A21)

∂sh = rK∂θK (A22)

and also the following relations, that are readily deduced from
the definitions of the elements of the diffusion tensor:

∂θDnt = Dtt − Dnn, (A23)

∂θDtt = −2Dnt (A24)

we finally find, after some algebra, the expression of the
anisotropic Laplacian on the interface:

∇ · (D∇ũk)|± = DttK∂r ũk|± + Dnn∂
2
r ũk|± + 2Dnt∂r∂s ũk|±

+Dtt∂
2
s ũk|± − 2DntK∂sũk|±. (A25)

The previous relation means that

∂t ũk|± − vt∂sũk|± − f + ũk|±
τv

− Dtt∂
2
s ũk|± + 2DntK∂sũk|±

= (vn + DttK)∂r ũk|± + Dnn∂
2
r ũk|± + 2Dnt∂r∂sũk|±

(A26)

for all k � 0.

3. Asymptotics: inner expansion and matching

Near the interface, we make the transformation η = r/ε

and expand the two fields as follows:

�(η,s) = �0 + ε�1 + ε2�2 + · · · (A27a)

U (η,s) = U0 + εU1 + ε2U2 + · · · . (A27b)

When written in curvilinear coordinates, Eq. (16) takes the
form given in Appendix A1a. If we expand Eq. (A12) to second
order in ε, we obtain the following:

−α(ετ0(θ )vn∂η� + ε2{vnτ1(θ )∂η�

+ [(vn + vt )τ0(θ ) + vnτ
′
0(θ )]∂s� − τ0(θ )∂t�})

= ξs(θ )2∂2
η� − f ′(�) + ε λg′(�)U + ε{ξs(θ )2K∂η�

+ ξs(θ )ξ ′
s(θ )∂η∂s� + ∂s[ξs(θ )ξ ′

s(θ )∂η�]}
+ ε2(∂s{[ξs(θ )2 + ξ ′

s(θ )2 + ξs(θ )ξ ′′
s (θ )]∂s�}

− ηK{∂η[ξs(θ )ξ ′
s(θ )∂s�] + ∂s[ξs(θ )ξ ′

s(θ )∂η�]}
− ηK2ξs(θ )2∂η�) (A28)

For the anisotropic diffusion equation (17), from Eq. (A16)
of Appendix A1b, we have that (after making the change and
expanding up to order ε0)

∇ · (D∇u) ≈ 1

ε2
Dnn∂

2
ηU + 1

ε
(DttK∂ηU + 2Dnt∂η∂sU )

+Dtt∂
2
s U − ηDttK2∂ηU

− 2DntK(∂sU + η ∂η∂sU ), (A29)

where we have taken into account the properties of the (s-
dependent) elements of the diffusion tensor.

052409-9



ESTEBAN MECA, VIVEK B. SHENOY, AND JOHN LOWENGRUB PHYSICAL REVIEW E 88, 052409 (2013)

With the previous approximation, we can now write Eq. (17)
to order zero as:

−vn

ε
∂ηU + ∂tU − vt∂sU

= 1

ε2
Dnn∂

2
ηU + 1

ε
(DttK∂ηU + 2Dnt∂η∂sU )

+Dtt∂
2
s U − ηDttK2∂ηU − 2DntK(∂sU + η ∂η∂sU )

+f − U

τv

+ vn

ε
∂η� − ∂t� + vt∂s�. (A30)

Now, as usual, we introduce the expansion (A27) in (A28)
and (A30) and proceed order by order.

a. Order 0

From (A28), collecting terms of order ε0:

ξs(θ )2∂2
η�0 − f ′(�0) = 0, (A31)

which implies, as usual (making use of the fact that � is one
or zero far from the interface):

1
2ξs(θ )2(∂η�0)2 − f (�0) = 0. (A32)

Therefore, locating the interface at �0 = 1/2,

η = ±
∫ �0(η)

1
2

d�
ξs(θ )√
2f (�)

. (A33)

For f (�) = �2(1 − �)2/4 we obtain

�0(η) = 1

2

[
1 ± tanh

(
η

2ξs(θ )
√

2

)]
. (A34)

We choose the minus sign, meaning that ∂η�0 will be negative.
The other choice would give the same equations, if we assume
that ξ depends on tan �, but with a receding interface.

From (A30), collecting terms of the lowest order (ε−2), we
obtain the following:

Dnn∂
2
ηU0 = 0. (A35)

The only solution that is physically acceptable is U0 = Ū0(s),
a constant dependent on s. Otherwise it would be impossible
to match the inner and outer solutions.

b. Order 1

To first order, the phase-field equation reads as follows:

ξs(θ )2∂2
η�1 − f ′′(�0)�1

= −ατ0(θ )vn∂η�0 − ξs(θ )2K∂η�0 − ξs(θ )ξ ′
s(θ )∂η∂s�0

− ∂s[ξs(θ )ξ ′
s(θ )∂η�0] − λg′(�0)U0. (A36)

Note that this equation has the form L�1 = G1, where the
operator L is self-adjoint. Also, observe that L is an even
operator, i.e., it does not change with the transformation η →
−η. For future use note that ∂s does not change the evenness
while ∂η changes it.

Now, it is easy to prove the adjoint homogeneous problem
L�1 = 0 (the operator is self-adjoint) has the solution �1 =
∂η�0, as the previous equation becomes the η derivative
of (A31). Thus, the right-hand side of (A36) must be
orthogonal to ∂η�0:

{αvnτ0(θ ) + ξs(θ )[ξs(θ ) + ξ ′′
s (θ )]K}

∫ ∞

−∞
dη(∂η�0)2

+ λU0

∫ ∞

−∞
dη ∂η�0 g′(�0) = 0. (A37)

To obtain the previous equation we have made use of the
relation:

∂s�0 = −η
ξ ′
s(θ )

ξs(θ )
K∂η�0, (A38)

obtained from Eq. (A33). Note that the previous equation
implies that, even if �0 does not have a definite parity, ∂s�0 is
odd. After some algebra and an integration by parts, we arrive
at Eq. (A37).

For the diffusion equation, we obtain the following:

Dnn∂
2
ηU1 + vn∂η�0 = 0, (A39)

which gives, after two integrations:

U1 = Ū1 + A

Dnn

η − vn

Dnn

∫ η

0
dη′�0(η′), (A40)

where all constants depend on s.

c. Order 2

The phase-field equation at the second order takes the
following form:

−α

(
τ0(θ )vn∂η�1 +

{
vnτ1(θ ) − η

ξ ′
s(θ )

ξs(θ )
K[(vn + vt )τ0(θ ) + vnτ

′
0(θ )]

}
∂η�0

)

= ξs(θ )2∂2
η�2 − f ′′(�0)�2 − 1

2
�2

1f
′′′(�0) + ξs(θ )2K∂η�1 + ξs(θ )ξ ′

s(θ )∂η∂s�1 + ∂s[ξs(θ )ξ ′
s(θ )∂η�1]

+ λ[g′′(�0)�1U0 + g′(�0)U1] + ∂s{[ξs(θ )2 + ξ ′
s(θ )2 + ξs(θ )ξ ′′

s (θ )]∂s�0}
− ηK{∂η[ξs(θ )ξ ′

s(θ )∂s�0] + ∂s[ξs(θ )ξ ′
s(θ )∂η�0]} − ηK2ξs(θ )2∂η�0. (A41)

Note that the previous equation has again the form L�2 = G2. As before, the right-hand side has to be orthogonal to ∂η�0.
Despite its very complex form, this condition can be greatly simplified by noticing that the odd terms will not contribute to the
orthogonality condition. Note also that since L is an even operator and it is easy to prove that the right hand side of Eq. (A36) is
also even, �1 will be even too.
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Taking this into consideration, the orthogonality condition takes the following very simple form:

−αvnτ1(θ )
∫ ∞

−∞
dη(∂η�0)2 = λ

∫ ∞

−∞
dη ∂η�0 g′(�0)U1. (A42)

From the diffusion equation, which will be needed to find the second-order correction to the flux across the interface, we have
the following:

−vn∂ηU1 + ∂tU0 − vt∂sU0 = Dnn∂
2
ηU2 + DttK∂ηU1 + 2Dnt∂η∂sU1 + Dtt∂

2
s U0 − 2DntK∂sU0 + f −U0

τv

+ vn∂η�1 + vt∂s�0.

(A43)

In order to obtain a useful correction from the previous equation, we will have to make use of the matching conditions between
the inner and the outer problem.

d. Matching conditions

lim
η→±∞[U0(η,s)] − ũ0|± = 0, (A44a)

lim
η→±∞[U1(η,s) − (ũ1|± + η∂r ũ0|±)] = 0, (A44b)

lim
η→±∞

[
U2(η,s) −

(
ũ2|± + η∂r ũ1|± + η2

2
∂2
r ũ0|±

)]
= 0.

(A44c)

Also, immediately one can obtain that

∂r ũ0|± = lim
η→±∞ ∂ηU1(η,s), (A45a)

∂sũ0|± = lim
η→±∞ ∂sU0(η,s), (A45b)

∂r ũ1|± = lim
η→±∞

[
∂ηU2(η,s) − η∂2

r ũ0|±
]
, (A45c)

∂sũ1|± = lim
η→±∞[∂sU1(η,s) − η∂r∂sũ0|±]. (A45d)

While we do not write the arguments of the outer functions
in the interface, it is understood that they depend on s.

e. Adatom conservation

In this section we prove that the jump discontinuity for the
adatom flux is what could be expected from a conservation
equation, at least to second order. We start by computing the
flux to zero order in the outer expansion.

According to the matching condition (A45a), by using
Eq. (A40) we have that

∂r ũ0|+ = lim
η→+∞ ∂ηU1(η,s) = A

Dnn

, (A46a)

∂r ũ0|− = lim
η→−∞ ∂ηU1(η,s) = 1

Dnn

(A − vn). (A46b)

From (A45b) we have that

∂sũ0|+ = ∂sũ0|− = ∂sŪ0(s), (A47)

which does not change across the interface.
From Appendix A1 the jump condition follows as r → 0±:

[n · D∇ũ0]± = [Dnn∂r ũ0 + Dnt∂sũ0]± = vn, (A48)

which is what we expected. Nevertheless, we have performed
a higher-order expansion, and we have to make sure that the
additional terms added will not change the previous equation.

Second-order correction. Now it is proved that going to a
higher order does not change Eq. (A48), and that the correction
is bounded.

To do so the two derivatives of ũ1 with respect to r and s

have to be computed. We start with the derivative with respect
to s, as it can be computed from what we have done already.
From the matching condition (A45d) we have that

∂sũ1|+ = lim
η→+∞ (∂sU1(η,s) − η∂r∂sũ0|+)

= lim
η→+∞

[
∂sŪ1 + ∂s

(
A

Dnn

)
η

− ∂s

(
vn

Dnn

)∫ η

0
dη̄�0(η̄) − vn

Dnn

∫ η

0
dη̄∂s�0(η̄)

− η ∂s

(
A

Dnn

)]

= ∂sŪ1 − ∂s

(
vn

Dnn

) ∫ ∞

0
dη̄�0(η̄)

+K vn

Dnn

ξ ′

ξ

∫ ∞

0
dη̄η̄∂η�0(η̄). (A49)

Similarly, one can show that

∂sũ1|− = ∂sŪ1 − ∂s

(
vn

Dnn

) ∫ −∞

0
dη̄[�0(η̄) − 1]

+K vn

Dnn

ξ ′

ξ

∫ −∞

0
dη̄η̄∂η�0(η̄). (A50)

The relevant integrals are discussed in the next section. For
now, it is enough to notice that∫ ∞

0
dη̄�0(η̄) =

∫ ∞

0
dη̄[1 − �0(−η̄)]

=
∫ −∞

0
dη̄[�0(η̄) − 1]. (A51)

The first equality stems from the symmetry �0(η) = 1 −
�0(−η) and the second from changing the sign of the
integration variable. Similarly,∫ ∞

0
dη̄η̄∂η�0(η̄) =

∫ −∞

0
dη̄η̄∂η�0(η̄), (A52)

which again follows from a change of sign in the integration
variable and the fact that ∂η�0 is even. The previous relations

052409-11



ESTEBAN MECA, VIVEK B. SHENOY, AND JOHN LOWENGRUB PHYSICAL REVIEW E 88, 052409 (2013)

prove that ∂sũ1|+ = ∂sũ1|− and hence that this derivative will
not contribute to the jump discontinuity.

Now, in order to find ∂r ũ1|± Eq. (A45c) implies that we need
to know ∂ηU2. For that reason we bring in Eq. (A43), which,
after an integration with respect to η, takes the following form:

η

(
−f + U0

τv

− Dtt∂
2
s U0 + 2DntK∂sU0 + ∂tU0 − vt∂sU0

)

= A2(s) + Dnn∂ηU2 + (DttK + vn)U1

+ 2Dnt∂sU1 + vn�1 + vt

∫ η

0
dη̄∂s�0, (A53)

where all the integration constants have been amalgamated in
A2(s).

Clearly, the LHS of the previous equation has the same
structure as Eq. (A26). If we multiply the latter by η and
subtract it from the former the following result is obtained
automatically, after taking the limit η → ±∞:

−A2(s) = ∂r ũ1|± + (DttK + vn)ũ1|±

+ 2Dnt∂sũ1|± + vt

∫ ±∞

0
dη̄ ∂s�0, (A54)

where we have made use of the fact that each term in
the LHS of (A26) matches its counterpart in (A53) by
matching condition (A44a). We have also used the matching
conditions (A44b), (A45c), and (A45d). Finally, �1 goes
to zero as η → ±∞, which can also be deduced from the
matching with the outer solution.

Most of the terms present in Eq. (A54) have been discussed
already, including the ∂sũ1|± term and the integral, and it has
been proved that they do not change across the interface. The
only term that it is left to check is ũ1|±:

ũ1|+ = lim
η→+∞ (U1(η,s) − η∂r ũ0|+) (A55a)

= Ū1 − vn

Dnn

∫ ∞

0
dη̄ �0(η̄),

ũ1|− = lim
η→−∞ (U1(η,s) − η∂r ũ0|−) (A55b)

= Ū1 − vn

Dnn

∫ −∞

0
dη̄(�0(η̄) − 1),

and it has already been proven in Eq. (A51) that the integrals
in both limits are identical.

This concludes the proof that ∂r ũ1|+ = ∂r ũ1|−. The deriva-
tive can be computed on either side, and takes the following
form:

∂r ũ1|± = −K
(

2Dnt

vn

Dnn

− vt

)
∂θξ

ξ

∫ ∞

0
dη̄ η̄ ∂η�0(η̄)

− (DttK + vn)

(
Ū1 − vn

Dnn

∫ ∞

0
dη̄ �0(η̄)

)

− 2Dnt∂sŪ1 + 2Dnt∂s

(
vn

Dnn

) ∫ ∞

0
dη̄ �0(η̄)

−A2(s). (A56)

Finally, we can write the conservation condition as follows:

[n · D∇(ũ0 + εũ1)]± = vn, (A57)

so that the conservation condition is correct to order O(ε2).

f. Gibbs-Thomson

Now we prove that the Gibbs-Thomson equation is cor-
rectly reproduced in the sharp interface limit. From Eq. (A37)
by using (A32) we obtain the following:{

αvn

τ0(θ )

ξs(θ )
+ [

ξs(θ ) + ξ ′′
s (θ )

]
K

}∫ 1

0
dφ

√
2f (φ)

− λU0

∫ 1

0
dφ g′(φ) = 0, (A58)

or

ũ0|± = lim
η→±∞ U0 = α

λ
vn

τ0(θ )

ξs(θ )

I

J
+ 1

λ

I

J
(ξs(θ ) + ξ ′′

s (θ ))K,

(A59)

where we have defined

I = ξs(θ )
∫ ∞

−∞
dη(∂η�0)2 =

∫ 1

0
dφ

√
2f (φ), (A60)

J = −
∫ ∞

−∞
dη ∂η�0 g′(�0) =

∫ 1

0
dφ g′(φ). (A61)

Second-order correction. As in the preceding section, we
can improve the previous result with a second-order correction,
which in this case will be nonzero. From (A42) and (A40) we
have the following:

−αvn

τ1(θ )

ξs(θ )

∫ 1

0
dφ

√
2f (φ) = −λŪ1

∫ 1

0
dφ g′(φ)

− λξs(θ )vn

Dnn

∫ 1

0
dφ g′(φ)

∫ φ

1
2

dφ̄
φ̄√

2f (φ̄)
, (A62)

where we have used (A32) and the fact that ∂η�0 g′(�0)
is even in the integration interval. Equation (A62) implies
that

Ū1 = αvn

λ

τ1(θ )

ξs(θ )

I

J
− ξs(θ )vn

Dnn

K

J
, (A63)

with the substitution

K = 1

ξs(θ )

∫ ∞

−∞
dη ∂η�0 g′(�0)

∫ η

0
dη̄ �0(η̄)

=
∫ 1

0
dφ g′(φ)

∫ φ

1
2

dφ̄
φ̄√

2f (φ̄)
. (A64)

Now, according to (A55b) we have that

ũ1|± = Ū1 + ξs(θ )vn

Dnn

∫ 0

1
2

dφ̄
φ̄√

2f (φ̄)

= αvn

λ

τ1(θ )

ξs(θ )

I

J
− ξs(θ )vn

Dnn

(
K

J
+ F

)
, (A65)

where F is defined as

F = 1

ξs(θ )

∫ −∞

0
dη̄[�0(η̄) − 1] =

∫ 1
2

0
dφ̄

φ̄√
2f (φ̄)

. (A66)

Finally, we are left with the Gibbs-Thomson condition:

ũ|± ≈ ũ0|± + εũ1|± = 1

λ

I

J
[ξs(θ ) + ξ ′′

s (θ )]K

+ vnα

ξs(θ )λ
[τ0(θ ) + ετ1(θ )]

I

J
− ε

ξs(θ )vn

Dnn

(
K

J
+ F

)
.

(A67)
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g. Summary

If we define the two numerical constants a1 = I/J and a2 =
K/J + F we can rewrite Eqs. (A67) and (A57) as follows:

ũ|± ≈ vnα

ξs(θ )λ
[τ0(θ ) + ετ1(θ )]a1 − ε

ξs(θ )vn

Dnn

a2

+ 1

λ
a1[ξs(θ ) + ξ ′′

s (θ )]K (A68)

vn = [n · D∇(ũ)]±. (A69)

Clearly, the previous equations have the same form as the sharp
interface boundary conditions (13) and (12). This allows us to
make the following identifications:

λ = a1

d0
, (A70)

α = β

d0
, (A71)

τ0(θ ) = ξs(θ )ξk(θ ), (A72)

where ξk(θ ) is the kinetic anisotropy.
In order to cancel the first order in ε correction and to make

the problem correct to second order, we have to make the
following identification:

τ1(θ ) = ξs(θ )2

βDnn(θ )
a2, (A73)

which requires the explicit computation of Dnn(θ ), by using
the formulas of Appendix A1b.

Finally, note that the previous formulas make use of the
sharp-interface angle θ , as opposed to �, which is the angle

that can be computed from the phase field. A careful analysis
of the differences between these two descriptions shows that
these differences do not contribute the the formulas obtained
above.

APPENDIX B: NUMERICAL MESH

In this Appendix we illustrate the process of adaptation
of the grid. In all cases, there is a base grid of size 64 ×
64, covering the domain [−8,8] × [−8,8] in the units of the
problem.

Successive refinements of the computational grid that
divide mesh spacing by a factor of two, are computed where
they are needed, where the gradient of u or the gradient of φ

has a value higher than a given threshold. The grid adaptation
algorithm of Ref. [43] is used.

The small value of the ε parameter in this problem needed
for the phase-field model to accurately approximate the sharp
interface problem requires several levels of refinement. We
have used in all simulations seven levels of refinement,
resulting in the ratio �xmin/�xmax = 2−7, as we show
in Fig. 8.

In Fig. 8, we show the dynamic adaptive mesh for Fig. 6(b),
the sixfold case with δ = 0. In the first panel we show the
root grid and the next two levels of refinement and then in
the subsequent panels we zoom in several times, by adding
the representation of a higher level grid each time, in such a
way that the highest-order grid has the same lattice spacing
in all cases. We see that the different refinements of the grid
concentrate on the interface, as expected.

FIG. 8. (Color online) Example of grid adaptation for the case δ = 0 from Fig. 6(b). From left to right, and from top to bottom we show
different levels of magnification. Each subfigure has a magnification of 2× with respect to the previous one, and the area magnified is represented
as a thick red square. For each subfigure we add another subgrid, in such a way that the lattice spacing of the finer grid is always the same.
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