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Electrodynamic interaction between a nanoparticle and the surface of a solid
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We study the interaction between a nanoparticle and the surface of a solid in the framework of the local-
field method. Assuming that the nanoparticle is characterized by a finite nonlinear polarizability, we obtain
the interaction potential that is repulsive at short range and has an attractive long-range tail. Our numerical
analysis shows that this potential strongly depends on the shape and size of the particle. Further, we study the
particle-surface interaction in the presence of a surface plasmon polariton propagating along the interface. It is
shown that the excitation of the surface wave leads to a drastic (about one order of magnitude) increase in the
binding energy. Potential applications of this effect are discussed.
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I. INTRODUCTION

Rapid development of nanotechnologies has led to an
increased interest among researchers in the fundamental prop-
erties of the interaction between nanoparticles (or molecules)
and the surface of a solid. This interaction determines the
adsorption properties [1,2], lies at the origin of such effects
as surface-enhanced Raman spectroscopy (SERS) [3,4] and
local-field-enhanced luminescence [5–7], and constitutes the
base of several modern nanomanufacturing techniques [8–10].
A number of methods of visualizing nanoparticles on the
surface, such as various scanning microscopy techniques
(scanning atomic force microscopy [11], scanning tunneling
microscopy [12], and scanning near-field optical microscopy
[13]), as well as methods involving scattering of an evanescent
wave (for example, a surface plasmon) by the nanoparticle
[14–16], are all based on the properties of the particle-surface
interaction. This interaction is essential for certain kinds of
heterogeneous catalysis [17,18]. The use of nanotechnologies
in biological and medical applications has attracted attention to
the interaction between biological objects and nanostructured
surfaces [19–21]. Among possible applications that are cur-
rently discussed are various methods of the antiviral therapy,
based on the interaction of viruses with nanoparticle prepara-
tions [22–24] and on the selective adsorption of viruses on a
nanostructured surface [25]. Since the linear dimension of a
virus is about 100 nm, the approximation of a pointlike particle
becomes insufficient, and one has to take into account the local-
field inhomogeneity when studying the interaction between the
virus and a surface. This calls for the development of a theory
of interaction between a nonpointlike particle and a surface.

The coupling between a particle (an atom, a molecule, or
a nanoparticle) and a surface arises, particularly due to the
van der Waals force combined with the short-range repulsive
forces [26,27]. The adsorption potential defines such important
properties as the type of adsorption and the adsorption
isotherm [28,29]. There are numerous works (see, for example,
Refs. [30–36]) devoted to the study of the interaction between
a particle and an adsorbent surface. However, the effects
of finite size and shape of the particle had not been taken
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into account in a consistent way. Particularly, in the physical
adsorption studies [30–34], usually only the attractive part of
the adsorption potential has been calculated, while the analysis
of the repulsive part has been overlooked.

It should be remarked that the problem of interaction
between material objects caused by the quantum fluctuations of
electromagnetic field has a long history, and has been studied in
a wider context than the adsorption physics. It goes back to the
works of Casimir and Polder [37,38] which predicted the emer-
gence of an attractive interaction between two bodies, induced
by vacuum fluctuations of the field. Subsequently, such forces
induced by vacuum field fluctuations (known in the literature
as the van der Waals, Casimir, and Casimir-Polder forces)
have been studied by many authors (see, e.g., Refs. [39–51],
and references therein). Particularly, Lifshitz, Dzyaloshinskii
and Pitaevskii [39–42] have studied the interaction between
two plates, and have shown that the van der Waals force
between two bodies always has an attractive character and
is monotonically decreasing with the increase of the distance
between the bodies. Later, it was realized [43–45,47–51] that
Casimir forces may acquire a repulsive character under special
conditions, e.g., for a special system geometry [49,50], for a
fine-tuned choice of the material constants of the interacting
bodies and the medium they are immersed in [43,51], or
when the interacting bodies are magnetic [45]. However, to
our knowledge, in all those works the effects of nonlinearity
were not taken into consideration. Particularly, the proof of
a general theorem [46], prohibiting a repulsive Casimir force
for pairs of objects connected by a mirror symmetry, implicitly
assumes linearity of the problem.

It is well known that nanoparticles, metallic as well as
nonmetallic, are usually characterized by a rather high non-
linear polarizability [52–55]. When a nanoparticle is located
at a large distance from the surface, the linear polarizability
plays a main role in the formation of the interaction potential.
On the other hand, when a nanoparticle comes closer to the
surface, the local field at the particle increases [56–58] and the
nonlinearity starts to play an important role. At small distances
from the surface, the nonlinear component presents the major
contribution to the particle polarization, and the repulsive
part of the interaction potential becomes strong. Thus, the
importance of the local-field-enhancement effect makes it
necessary to take into account the nonlinear polarization of
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the nanoparticle when the interaction between the nanoparticle
and the surface is considered.

In Refs. [35,36], a self-consistent approach to the calcula-
tion of adsorption potential for pointlike objects (molecules)
near a surface had been proposed, that allowed one to capture
both the repulsive and the attractive parts of the interaction
potential. The key ingredient of those works, responsible
for the emergence of the repulsive component, was taking
into account the nonlinear polarizability of the molecules.
A realistic description of nanoparticle adsorption, however,
requires going beyond the approximation of pointlike particles,
which is known to result in strongly overestimated values
of local-field intensities [59,60]. In a consistent description,
effects of strongly inhomogeneous local-field distribution,
together with shape effects, should play an important role.
Thus, it is highly desirable to extend this approach to particles
of a finite size, as the properties of nanoparticles are known
to depend strongly on their linear dimensions and shape
[61–64]. The proposed mechanism of generating the Casimir
repulsion, based on nonlinearity, is obviously just one of
many mechanisms that can contribute to the repulsive part
of the potential, and in order to understand how important this
mechanism can be for the nanoparticle adsorption, one needs
to make realistic estimates taking into account the effects of
size and shape of the particles.

In the present work, our goal is to construct a self-consistent
theory for calculation of interaction potential between a finite-
size nanoparticle and a flat surface of a solid, taking account of
the nonlinear particle polarization. The theory is an extension
of the approach developed previously in Refs. [35,36] for
pointlike particles; it is constructed in the framework of the
local-field method [59] and exploits the concept of effective
susceptibility [65]. One should note that in contrast to numer-
ous papers (see, for example, Ref. [66], and references therein)
considering the microscopic theory of the adsorption potential,
our work focuses on the general macroscopic properties
governing the formation of the effective interaction between
nonlinearly polarizing particles and solid surfaces. We show
that the proposed approach leads to a qualitatively correct form
of the particle-surface interaction, allowing one to obtain the
interaction potential that contains a short-range repulsive core
in addition to the long-range attraction. We perform numerical
analysis that reveals a strong dependence of the interaction
potential on the shape and size of the particle. Numerical
estimates show that for typical nonlinearity strengths found
in nanoparticles of semiconductor materials, our theory is
applicable and yields binding energies consistent with the
values characteristic for the physical adsorption. We study the
particle-surface interaction in the presence of the propagating
surface plasmon polariton, and show that the excitation of the
surface wave leads to a sharp increase of the binding energy.

II. THE FREE ENERGY OF A NANOPARTICLE NEAR
THE FLAT SOLID SURFACE

Consider a nanoparticle located close to the surface of a
solid (Fig. 1). The particle, characterized by linear and nonlin-
ear polarizabilities, is situated in the medium with the dielectric
constant εm that fills the half space z > 0, at some distance
d above the surface of the adsorbent with dielectric constant
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FIG. 1. (Color online) A nanoparticle near a flat surface.

εs (filling the other half space). The center of the particle is
located at the point Rp = (0, 0, d). In order to find the relation
between the polarization of the particle and the electric field
acting on the system, one needs to calculate the free energy of
the system, which can be written in the following form [67]:

F =
∫

Vp

d Rp(Uint − PiEi) +
∫
R3

d RW, (1)

where Uint is the internal energy density of the particle, PiEi is
the density of the energy of the dipole moment Pi interacting
with electric field Ei , and W is the density of the field energy.

Assuming that the external electric field is much weaker
than the intracrystalline field inside the particle, the contri-
bution to the particle internal energy coming from the dipole
moment induced inside the particle will be much smaller than
the energy of the chemical bonds of the material. Then, keeping
up to the quartic terms in the Taylor expansion of the internal
energy in the polarization, one can write

Uint(P) = U0 + 1

2ε0
(αij )−1PiPj + 1

3ε0
σijkPiPjPk

+ 1

4ε0
βijklPiPjPkPl. (2)

The first term in Eq. (2) represents the energy of the
intraparticle chemical bonds, which does not depend on P
and will be omitted in what follows. The term linear in P must
vanish due to the requirement that the internal energy remains
invariant when the particle rotates as a whole. The second term
in Eq. (2) is the positively defined quadratic form, and αij is
the tensor of linear polarizability of the particle. Tensors σijk

and βijkl describe the contributions of nonlinear effects to the
particle polarizability. If the symmetry group of the particle
contains a center of inversion, then tensor σijk vanishes; in
what follows, we will assume that this is the case. Taking into
account the finite size of the particle under consideration, one
can write the free energy of the system in the form

F =
∫

Vp

d Rp

[
1

2ε0
(αij )−1Pi(Rp)Pj (Rp)

+ 1

4ε0
βijklPi(Rp)Pj (Rp)Pk(Rp)Pl(Rp)

−Pi(Rp)Ei(Pi,Rp)

]
+

∫
R3

d R
εmε0E

2
i (Pi,R)

2
, (3)
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where the integration in the first term is over the particle
volume Vp, while the second term describes the field energy
and is represented as an integral over the entire space. In this
expression Ei(Pi,Rp) is the local field acting on the particle.
To find the ground state of the system, one should minimize
its energy with respect to the dipole moments Pi [67–69]:

δF [Pi(Rp)]|Pi (Rp) = 0. (4)

To calculate the local field, it is convenient to use the
Green’s function method. The connection between the local
field at an arbitrary point and the dipole moment density at the
particle is expressed by the Lippmann-Schwinger equation
[59,60,69],

Ei(R) = E
(0)
i (R) + k2

0

ε0

∫
Vp

d R′
pGij (R,R′

p)Pj (R′
p), (5)

where k0 = ω/c and c is the speed of light, Gij (R,R′
p) is the

photon propagator (the electrodynamic Green’s function) [63],
and ω is the frequency of the local field (a summation over
frequencies will be performed at a later stage). The explicit
form of the photon propagator can be found in Refs. [59,70,71].

At this point a natural question arises, namely, what is the
external field in Eq. (5)? According to the generally accepted
opinion, the source of the van der Waals interaction [72,73]
is the vacuum fluctuations of electromagnetic field. Then one
should assume that E

(0)
i (R) in Eq. (5) is the field of vacuum

fluctuations playing the role of an external field to the system.
Our aim is to express the dipole moment distribution inside
the particle through the fluctuation field E

(0)
i (R). On the other

hand, fluctuations of the dipole moment inside the particle can
also be the source of the interaction between the particle and
a surface [72]. The dipole moment induces electric field in
the substrate as well as in the particle. These fields, having a
fluctuating nature, form the field at the particle which can be
considered as “external” for the self-action processes inside of
a nonpointlike particle and a substrate. One should note that
the variation procedure is very complicated in the general case.
To simplify the problem without loss of the generality, one can
assume that tensors αij and βijkl are symmetric with respect
to the permutation of the indices, and take into account that
the Green’s function Gij (R,R′

p) should satisfy the reciprocity
theorem [73–76]. Substituting Eq. (5) into Eq. (3), one obtains

F =
∫

Vp

d Rp

{
1

2ε0
(αij )−1Pi(Rp)Pj (Rp) + 1

4ε0
βijklPi(Rp)Pj (Rp)Pk(Rp)Pl(Rp)

−Pi(Rp)E0
i (Rp) − Pi(Rp)

k2
0

ε0

∫
Vp

d R′
pGij (Rp,R′

p)Pj (R′
p)

}

+
∫
R3

d R
1

2
εmε0

{
E0

i (R) + k2
0

ε0

∫
Vp

d R′
pGij (R,R′

p)Pj (R′
p)

}2

. (6)

The minimization of the free energy yields the following equation for the polarization density Pj (Rp):

1

ε0
(αij )−1Pj (Rp) + 1

ε0
βijklPj (Rp)Pk(Rp)Pl(Rp) − E0

i (Rp) − k2
0

ε0

∫
Vp

d R′
pGij (Rp,R′

p)Pj (R′
p)

+
∫
R3

d Rεmk2
0Gij (R,Rp)

{
E0

j (R) + k2
0

ε0

∫
Vp

d R′
pGjl(R,R′

p)Pl(R′
p)

}
= 0. (7)

To obtain the ground state of the system, one should find from Eq. (7) the distribution of polarization in the particle as the
function of the “external” field E

(0)
i (R). To solve Eq. (7), one can use the method of successive approximations, under the

assumptions that the free particle has no dipole moment and the fluctuating field is long range. We look for the solution in the
form

Pi(Rp) = P
(0)
i (Rp) + P

(1)
i (Rp) + · · · , (8)

which, as it will become clear below, is essentially a series in the small parameter, being the ratio of nonlinear and linear particle
polarizabilities. In the zero-order approximation, the solution is obtained by setting the nonlinear polarizability to zero. Then
the connection between the dipole moment and the external field is linear, P

(0)
i (Rp) = Xij (Rp)E(0)

j (Rp), where Xij (Rp) is the
effective susceptibility tensor of the particle. This leads to the following equation:

1

ε0
(αij )−1Xjl(Rp)E(0)

l (Rp) − k2
0

ε0

∫
Vp

d R′
pGij (Rp,R′

p)Xjl(R′
p)E(0)

l (R′
p)

+
∫
R3

d Rεmk2
0Gik(R,Rp)

k2
0

ε0

∫
Vp

d R′
pGkj (R,R′

p)Xjl(R′
p)E0

l (R′
p)

= E
(0)
i (Rp) −

∫
R3

d Rεmk2
0Gil(R,Rp)E(0)

l (R). (9)
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At large distances |R − Rp|, the photon propagator Gji(R,Rp) falls off very fast (as ∼1/|R − Rp|3). Thus, in the last term of
Eq. (9), the main contribution comes from R inside the volume of the particle and its immediate neighborhood. Because the linear
dimension of the particle is supposed to be much smaller than the characteristic wavelength of the field of vacuum fluctuations,
one can neglect the spatial dependence of E

(0)
j (R) in the last term of Eq. (9):

∫
R3

d Rεmk2
0Gil(R,Rp)E(0)

l (R) ≈
∫
R3

d Rεmk2
0Gil(R,Rp)E(0)

l (Rp). (10)

Integrating both sides of Eq. (9) over the particle volume, and using Eq. (10), we obtain
∫

Vp

d Rp

{
1

ε0
(αij )−1Xjl(Rp) − k2

0

ε0

∫
Vp

d R′
pGij (R′

p,Rp)Xjl(Rp)

+
∫
R3

d R
k2

0

ε0

∫
Vp

d R′
pεmk2

0Gik(R,R′
p)Gkj (R,Rp)Xjl(Rp) − δil+

∫
R3

d Rεmk2
0Gil(R,Rp)

}
E

(0)
l (Rp) = 0. (11)

Since the fluctuating field is, generally speaking, arbitrary and the integration in Eq. (11) is over the volume of the particle
which may have any dimension and shape, one obtains the following expression for the effective susceptibility:

Xjl(Rp) = �−1
ji (Rp)	il(Rp), (12)

with

	il(Rp) = δil +
∫
R3

d Rεmk2
0Gil(R,Rp), (13)

and

�ji(Rp) =
[

1

ε0
(αij )−1 − k2

0

ε0
∫Vp

d R′
pGij (R′

p,Rp) + ∫R3 d R
k2

0

ε0
∫Vp

d R′
pεmk2

0Gik(R,R′
p)Gkj (R,Rp)

]
. (14)

Equations (12)–(14) complete the calculation of the zero-order polarization P
(0)
i (Rp) = Xij (Rp)E(0)

j (Rp).
The first-order correction P

(1)
j (R) is determined by the following equation:

1

ε0
(αij )−1P

(1)
j (Rp) + 1

ε0
βijklP

(0)
j (Rp)P (0)

k (Rp)P (0)
l (Rp) − k2

0

ε0

∫
Vp

d R′
pGij (Rp,R′

p)P (1)
j (R′

p)

+
∫
R3

d Rεmk2
0Gij (R,Rp)

k2
0

ε0

∫
Vp

d R′
pGjl(R,R′

p)P (1)
l (R′

p) = 0. (15)

This integral equation can be considerably simplified if we take into account that the propagator is strongly peaked at the point
where its two arguments are equal, and assume that the peak width is small compared to the characteristic scale of the spatial
variation of P

(1)
j (R). Then, to a good approximation, the correction P

(1)
j (R) in the last two terms of Eq. (15) can be replaced by

its value at the peak of the propagator and thus taken out of the integral, and we obtain[
(αij )−1 − k2

0

∫
Vp

d R′
pGij (Rp,R′

p) +
∫
R3

d Rεmk2
0Gil(R,Rp)k2

0

∫
Vp

d R′
pGlj (R,R′

p)

]
P

(1)
j (Rp)

+βijklP
(0)
j (Rp)P (0)

k (Rp)P (0)
l (Rp) = 0. (16)

This yields the first-order correction to the particle polarization in the following form:

P
(1)
j (Rp) = Ajsmn(Rp)E(0)

s (Rp)E(0)
m (Rp)E(0)

n (Rp), (17)

where

Ajsmn(Rp) = −αji β̃irklXrs(Rp)Xkm(Rp)Xln(Rp), (18)

with the renormalized nonlinear polarizability

β̃irkl =
[
δvi − k2

0

ε0

∫
Vp

d R′
pGvn(Rp,R′

p) αni +
∫
R3

d Rεmk2
0Gvl(R,Rp)

k2
0

ε0

∫
Vp

d R′
pGln(R,R′

p) αni

]−1

βvrkl . (19)
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It is worth noting that Eq. (19) indicates the possibility
of increasing substantially the nonlinear polarizability of a
nanoparticle due to the local-field enhancement. A detailed
study of the influence of the local-field effects on the nonlinear
polarizability of nanoparticles is, however, outside the main
focus of the present work, so we will not dwell on it in any
detail here.

As a result, one obtains the following connection between
the dipole moment at the particle and the fluctuating field, in
the lowest approximation in the nonlinearity coefficient β:

Pj (Rp) = Xjl(Rp)E(0)
l (Rp)

+Ajsmn(Rp)E(0)
s (Rp)E(0)

m (Rp)E(0)
n (Rp), (20)

with the effective linear Xjl(Rp) and nonlinear Ajsmn(Rp)
polarizabilities given by Eqs. (12) and (18), respectively. Now,
having established the solution for the particle polarization, we
have all the necessary information for calculating the potential
of interaction between the particle and the surface.

III. THE INTERACTION POTENTIAL

The total energy of the system in the presence of the
fluctuating field of frequency ω, having the sense of an
interaction potential, can be defined as [73]

U (d,ω) = −
∫

Vp

d RpPjEj − δU∞, (21)

where d is the distance between the particle and the surface of
adsorbent, and the last term

δU∞ = −
∫

Vp

d RpPjEj

∣∣∣∣
d→∞

, (22)

denotes the energy of the system when the particle is pulled
away from the surface to the infinity. To calculate the electric
field, one has to substitute the relation (20), connecting the
external field with the induced dipole moment, into the integral
in the Lippmann-Schwinger equation (5). Then, the electric
field at the particle can be expressed as

Ej (Rp) = E
(0)
j (Rp) + Ljk(Rp)E(0)

k (Rp)

+Njsmn(Rp)E(0)
s (Rp)E(0)

m (Rp)E(0)
n (Rp), (23)

where

Ljk(Rp) = k2
0

ε0

∫
Vp

d R′
pGji(Rp,R′

p)Xil(R′
p), (24)

Njsmn(Rp) = k2
0

ε0

∫
Vp

d R′
pGji(Rp,R′

p)Aismn(R′
p). (25)

Then, substituting Eqs. (20) and (23) into Eq. (21), one obtains
the interaction potential

U (d,ω) = �j l(d)E(0)
l (Rp)E(0)

j (Rp)

+	lsmn(d)E(0)
l (Rp)E(0)

s (Rp)E(0)
m (Rp)E(0)

n (Rp),

(26)

where

�lk(d) = −
∫

Vp

d RpXlk(Rp) −
∫

Vp

d RpXlj (Rp)Ljk(Rp),

(27)

	ismn(d) = −
∫

Vp

d RpXij (Rp)Njsmn(Rp)

−
∫

Vp

d RpAismn(Rp)

−
∫

Vp

d RpLik(Rp)Aksmn(Rp). (28)

The first term in Eq. (26) is determined solely by the linear
response, while the second term stems from the finite nonlinear
polarizability.

Further, to obtain the physical interacting potential, one
has to perform the statistical averaging of Eq. (28) over
the vacuum fluctuations of the electric field [72,73]. The
calculation of the physical interaction potential thus involves
computing fluctuation field correlators 〈E(0)

i (Rp)E(0)
j (Rp)〉ω

and 〈E(0)
i (Rp)E(0)

j (Rp)E(0)
k (Rp)E(0)

l (Rp)〉ω. We use the ran-
dom phase approximation, which allows one to express four-
point correlators through two-point ones [77,78]:

〈
E

(0)
i (Rp)E(0)

j (Rp)E(0)
k (Rp)E(0)

l (Rp)
〉
ω

≈
∑

Perm(i,j,k,l)

〈
E

(0)
i (Rp)E(0)

j (Rp)
〉
ω

〈
E

(0)
k (Rp)E(0)

l (Rp)
〉
ω
,

(29)

where the summation is over all possible permutations of
the indices. Because of the homogeneity and isotropy of the
vacuum state, the correlator 〈E(0)

i (Rp)E(0)
j (Rp)〉ω should be

proportional to the unit tensor δij [73]. Then, one can express
the spectral density of the correlator as

〈
E

(0)
i (Rp)E(0)

j (Rp)
〉
ω

= 2
3h̄(ω/c)3δij sgn(ω), (30)

where sgn is the signum function. This result is valid in
the framework of the near-field approximation (when the
retardation processes are neglected); that is, ω � c/R.

It should be noted that the van der Waals interaction arises
due to fluctuations of dipole moments inside the particle as well
as due to the vacuum fluctuations of the electromagnetic field
[72,73]. In the self-consistent approach developed here, these
two mechanisms are described by the external (with respect
to the particle) field, which can represent both the field of
vacuum fluctuations and the field induced by fluctuations of the
dipole moment inside the particle. Since all electromagnetic
field correlators are defined by the medium in which the field
propagates, we suppose that correlators of both fields (the field
of vacuum fluctuations and the field induced by dipole moment
fluctuations) can be expressed via the electrodynamic Green’s
function of the medium in which the particle is situated.

To find the final expression for the interaction energy, one
has to integrate the averaged spectral component of the energy
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(26) over the entire frequency range,

U (d) =
∫ ∞

0
〈U (d,ω)〉ωf (ω)dω, (31)

using the Bose distribution function for virtual photons,

f (ω) = 1

eh̄ω/kT − 1
. (32)

With the help of Eqs. (26)– (32), one can compute the potential
of interaction between the adsorbent and the particle for any
geometry of the problem.

IV. NUMERICAL ANALYSIS OF THE ADSORPTION
POTENTIAL PROPERTIES

To illustrate the approach developed above, and to show
some important properties of the adsorption potential, we
apply our theoretical scheme to calculate the interaction poten-
tial for the sufficiently general case of an ellipsoidal particle.
Taking into account the range of the distances involved and
assuming that the adsorbent particle has a nanometer-scale
size, the photon propagator can be approximated by its
near-field contribution [59,70,71]. In this approximation, the
direct part of the propagator takes the form

Dij (r,r ′,ω) = 1

4π

[
c2

ω2R3
δij − 3c2

ω2R3
eReR

]
, (33)

where R = |r − r ′| and eR = R/R, while the indirect part is
given by

Iij (R,R′,ω) = Dil(R,R′
M,ω)Mlj (ω), (34)

Mlj (ω) = εs(ω) − εm

εs(ω) + εm

⎛
⎜⎝

−1 0 0

0 −1 0

0 0 1

⎞
⎟⎠ . (35)

R′
M = (x ′,y ′,−z′) and εs(ω) is the dielectric constant of

the adsorbent. The medium is supposed to be vacuum (or air)
characterized by the dielectric constant εm = 1.

For a fixed particle shape, and fixed values of the dielectric
constants, the shape of the interaction potential depends
only on the ratio β̃/α of nonlinear and linear polarizabil-
ities. For numerical estimates throughout this section, we
have set this ratio to be β̃/α = 2.13 × 10−10 erg−2. This
corresponds to the known value of the third-order nonlinear
susceptibility for Si [79]. The dependence of the properties
of the interaction potential on β̃ will be discussed later in
Sec. VI.

It has to be noted that, according to Eq. (20), the nonlinear
polarizability β̃ is renormalized by local-field effects, so
it differs from the “bare” nonlinear polarizability β and,
generally speaking, depends on the shape and dimension
of the particle. For numerical estimates below, we use the
experimental data for β̃ obtained for nanoparticles.

Further, as follows from Eqs. (31)– (35), the interaction po-
tential is affected by the frequency dependence of the particle
susceptibility and of the dielectric constant of the substrate.
Since the main focus of our work is to demonstrate the effect
of the nonlinear polarizability leading to the formation of
the repulsive part of the potential, we did not aim at making
quantitative estimates for specific materials. At not too high

temperatures the main contribution to the integral in Eq. (31)
comes from low frequencies, so in our numerical analysis we
have used the low-frequency values of the dielectric constants
of both the nanoparticle and the adsorbent. At the same time,
according to Eq. (12), the particle susceptibility, characterizing
its linear response to an external field, remains frequency
dependent. We note that a similar procedure has been used
in Ref. [73] (Chap. 2, pp.23–32) for the estimate of the van der
Waals potential of interaction between two particles, and it has
been shown that the formula for the potential can be expressed
through the static polarizabilities of the constituent materials.
Such a calculation, of course, neglects the peculiarities of the
dispersion curves of real materials, but still leads to the results
that are qualitatively correct.

The results of our calculations, for different particle shapes
and different relations between the dielectric constants of
the particle, the adsorbent, and the medium, are presented
in Figs. 2–6. The analysis of those results allows one to
reach several conclusions on the properties of the adsorption
potential:

(i) The interaction potential at large distances between the
particle and the surface is attractive, and becomes repulsive at
short distances;

(ii) The interaction potential strongly depends on the
material of the nanoparticle;

(iii) The interaction potential strongly depends on the shape
and dimensions of the particle.

The dependence of the interaction potential on dielectric
constants of the particle and substrate is shown in Fig. 2. One
can see that the binding energy increases monotonically with
the increase of the dielectric constant of the particle material
(with the same adsorbent). The position of the minimum of the
interaction potential depends on the coefficient of nonlinearity
(see the estimates for the applicability range of the theory
in Sec. VI). One should note that the spatial position of
the potential minimum (the equilibrium distance) depends on
the dielectric constant of the substrate and increases with the
decrease of the dielectric constant.

The dependences of the normalized force and the interac-
tion potential on the particle dimensions and on the distance
to the surface are shown in Fig. 3. In atomic force microscopy
(AFM) experiments it is common to present the properties of
the dispersion interaction as a graph of the interaction force
F normalized by the particle radius Rp. Our results for the
form of the curves describing the dependence of F/Rp on
the distance to the surface d, shown in Fig. 3(a), as well as
the characteristic distances at which the repulsive nature of the
interaction becomes pronounced, qualitatively agree with the
results of Ref. [80] where long-range repulsive forces between
a nanoparticle and a surface have been studied by means of
AFM.

Figure 3(b) shows that the minimum of the potential is
formed at the distance roughly corresponding to the linear
dimension of the particle. Particles of larger radius have deeper
minima of the interaction potential (i.e., larger binding energy).
Indeed, in the framework of the point dipole approximation, the
interaction potential is proportional to the total dipole moment
induced at the particle, which depends on the particle radius
as ∼R3. In our approach, effects of finite size are taken into
account. These effects lead to inhomogeneity of the local field
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FIG. 2. (Color online) The interacting potential for a spherical particle with the radius Rp = 5 nm. Different curves correspond to different
values of the dielectric constants of the adsorbent (εs) and the particle (εp). Curves 1–3 in the left panel correspond to εs = 3 and εp = 20
(curve 1), εp = 16 (curve 2), εp = 11.8 (curve 3). Curves 4–6 in the right panel correspond to εs = 1.5 and εp = 16 (curve 4), εp = 11.8 (curve
5), and εp = 7 (curve 6).

inside the particle that plays a prominent role in the formation
of the interaction potential. Due to this inhomogeneity, the
dependence of the interaction potential on the particle radius
becomes slightly weaker than R3. This leads to a nearly
size-independent depth of the potential normalized per particle
volume.

As mentioned above, the interaction potential strongly
depends on the particle shape, which is illustrated in Fig. 4
Specifically, calculations of interaction potential for nanopar-
ticles of oblate ellipsoidal shape (with semiprincipal axes
hx = hy , and different values of the ratio hz/hx < 1), with
the fixed particle volume equal to that of a sphere with the
radius of 10 nm show that the interaction potential has a
deeper minimum for the particles with smaller ratio hz/hx .
The minimum of the potential forms at the distance about the
linear dimension of the particle, which becomes smaller for
a smaller ratio hz/hx . The same calculations of interaction
potential for nanoparticles of prolate ellipsoidal shape (ratio

hz/hx > 1) show that in this case the depth of the potential
minimum is smaller than for the case of oblate ellipsoids. This
depth decreases with the increase of hz/hx . The distance at
which the potential minimum is formed is larger in this case
and increases with the increasing ratio hz/hx .

One can see that the interaction potential strongly depends
on the shape and dimension of the particle. Namely, the
interaction between oblate particles and the adsorbent is
stronger than in the case of prolate particles, which can be
explained by the higher polarizability of oblate ellipsoids near
a flat surface in comparison to prolate ellipsoids made of the
same material. The minimum of the potential is located at the
distance of about the smallest linear dimension of the particle
(so this distance is smaller in the case of oblate ellipsoids).
When the particle shape changes from oblate to prolate
ellipsoid at fixed volume, the potential with a deep minimum
characteristic for oblate particles transforms smoothly into the
potential with a shallow minimum typical for prolate particles.
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FIG. 3. (Color online) (a) Normalized force (F (d)/R). (b) Normalized interacting potential [U (d)/Vp, where Vp is the particle volume] for
a spherical particle (εp = 11.8) at the adsorbent (εs = 3), for different values of the particle radius: Rp = 5 nm (curve 1), Rp = 10 nm (curve
2), Rp = 15 nm (curve 3).
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FIG. 4. (Color online) Interaction potential for nanoparticles of
ellipsoidal shape (with semiprincipal axes hx = hy , with the fixed
particle volume equal to that of a sphere with the radius of 10 nm,
for an oblate ellipsoid (curve 1, hz/hx = 1/2, hx ≈ 12.6 nm), a
sphere (curve 2), and a prolate ellipsoid (curve 3, hz/hx = 2, hx ≈
7.93 nm). The dielectric constant of the particle is εp = 11.8 and that
of the adsorbent is εs = 3.

V. THE ADSORPTION POTENTIAL IN THE PRESENCE
OF A SURFACE PLASMON POLARITON

PROPAGATING ALONG THE INTERFACE

Let us consider the case when a nanoparticle interacts with
a metallic surface in the presence of a propagating surface
plasmon polariton. To find the interaction potential in this
case, one should calculate the appropriate form of the indirect
part of the Green’s function describing the metallic substrate
along which the surface plasmon polariton is propagating.
The explicit form of the Green’s function in the so-called k-z
representation is [81]

Iij (k,z,z′,ω)

= 2πieiβ1(z+z′)

⎛
⎜⎝

(β1/εm)Rp 0 kRp

0 (k2
0/β1)Rs 0

−kRp 0 −(k2/β1)Rp

⎞
⎟⎠ ,

(36)

where z is the coordinate of the field source plane, z′ is the
coordinate of the plane containing the observation point, Rp =
β2−εsβ1

β2+εsβ1
and Rs = β1−β2

β1+β2
are the Fresnel reflection coefficients

for p- and s-polarized light, respectively, and

β1 =
√

k2
0 − k2, (37)

β2 =
√

εsk
2
0 − k2. (38)

To use the method developed in this work, one should
find the form of the Green’s function in the coordinate
space. Performing the Fourier transformation over the in-plane
coordinates, one obtains [81]
¯
ij (x,x ′,y,y ′,z,z′,ω)

= 1

(2π )2

∫ ∞

0
2πieiβ1(z+z′)Iij (k,z,z′,ω)e−ik·(r−r′)d2k, (39)

where r = (x,y) is the coordinate of the observation point and
r′ = (x ′,y ′) is the coordinate of the point of field source lo-
cation. To calculate the Green’s function ij (x,x ′,y,y ′,z,z′,ω)
in an arbitrary Cartesian coordinate system, one can rotate the
initial coordinate system (in which the x axis is set along the
direction of the wave vector k) around the z axis, which is
achieved by the rotation matrix

Sij =

⎛
⎜⎝

cos α sin α 0

− sin α cos α 0

0 0 1

⎞
⎟⎠ , (40)

α being the angle between the R and k axes. The Green’s
function in a new coordinate system (with the x axis along
the direction given by the vector R = r − r ′, and the z axis
coinciding with that of the “old” coordinate system) takes the
form

ij = S−1
ik · ¯

kl · Slj . (41)

Explicitly, this yields

ij (R,z,z′) = 1

(2π )2

∫ 2π

0
dα

∫ ∞

0
qij (k,α,z,z′)e−ikR cos αkdk,

(42)

where

qij (k,α,z,z′) =

⎛
⎜⎝

I11 cos2 α + I22 sin2 α (I11 − I22) sin α cos α I13 cos α

(I11 − I22) sin α cos α I11 sin2 α + I22 cos2 α I13 sin α

I31 cos α I31 sin α I33

⎞
⎟⎠ . (43)

Performing the integration over the polar angle α, one obtains

ij (R,z,z′)

= 1

4π

∫ ∞

0
kdk

×

⎛
⎜⎝

I11(k)[J0(μ) − J2(μ)] + I22(k)[J0(μ) + J2(μ)] 0 2iI13(k)J1(μ)

0 I11(k)[J0(μ) + J2(μ)] + I22(k)[J0(μ) − J2(μ)] 0

2iI31(k)J1(μ) 0 2I33(k)J0(μ)

⎞
⎟⎠ ,

(44)

where Jn(μ) is the Bessel function of the first kind, and μ = kR.
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It is instructive to split the integral over the wave vector k

as follows:∫ ∞

0
(· · ·)dk =

∫ k0

0
(· · ·)dk +

∫ ∞

k0

(· · ·)dk. (45)

The first term on the right-hand side of Eq. (43) is associated
with the field modes which propagate without decay, which
follows from the fact that β1 > 0 for k < k0, while the second
term is related to the exponentially decaying field modes.
Following Ref. [81], one can calculate the contribution to

ij from the decaying modes via contour integration in the
complex k plane. By the contour integration one picks up the
contribution from the pole at k = ksurf , where the pole location
is determined by the dispersion relation of the surface plasmon
polariton [82],

β2(ksurf,ω) + εs(ω)β1(ksurf,ω) = 0. (46)

Since I11(k,ω), I13(k,ω), I31(k,ω), and I33(k,ω) all have a pole
in k (when εs < 0), all the tensor components of ij (R,z,z′)
contain the corresponding contributions. Since the main
contribution to the integral over the decaying modes stems
from the pole, in the further analysis we use the approximation∫ ∞

0
(· · ·)dk =

∫ k0

0
(· · ·)dk + 2πiRes(ksurf), (47)

where Res(ksurf) denotes the value of the residue at the pole.
Using Eqs. (37) and (38), from the pole condition in Eq. (46)
one obtains the well-known dispersion relation for surface
polaritons on a flat surface [82]:

ksurf = k0

√
εs

1 + εs

. (48)

A straightforward computation of the pole contributions to
the integral in Eq. (44) yields the following expression for
Green’s tensor [81]

ij (R,ω) = 4πe
− εmk0(z+z′ )

(εm+εs )1/2
k3

0(εmεs)2

(εm + εs)3/2
(
ε2
m + ε2

s

)
⎛
⎜⎝

J0(μsurf )+J2(μsurf )
2 0 i

√
εpεsJ1(μsurf)

0 J0(μsurf )+J2(μsurf )
2 0

−i
√

εpεsJ1(μsurf) 0 −εpεsJ0(μsurf)

⎞
⎟⎠ , (49)

where μsurf = ksurfR.
Using the above equation for the indirect part of the Green’s

function, we have computed the interaction potential for the
case of an excited surface wave. The results of this calculation,
in comparison to the case of the interface without excitations,
are shown in Fig. 5. As one can see, the excitation of surface
wave leads to a drastic enhancement of the particle-surface
interaction. Particularly, in the case considered here, the
adsorption energy increases up to ten times when the surface
plasmon polariton is excited.
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FIG. 5. (Color online) The interaction potential for a spherical
particle of the radius r = 5 nm at a “free” golden surface (curve 1) and
in the presence of a propagating surface plasmon polariton (curve 2).

VI. SUMMARY AND DISCUSSION

We have presented a theoretical approach for calculating the
interaction between a finite-size nanoparticle of an arbitrary
shape and the surface of a solid. Our method is rather general
since it is based on macroscopic electrodynamics (specifically,
it is constructed in the framework of the self-consistent
local-field method [59] and exploits the concept of effective
susceptibility [60]) and does not depend on the microscopic
details of the problem. One of the key points of our approach
is the account taken of the nonlinear component of the particle
polarization; the necessity of doing this is dictated by the
strong local-field enhancement which takes place at small
distances between the particle and the surface. Our theory
is a generalization of the approach of Refs. [35,36] to the case
of finite-size particles. We show that the proposed approach
allows one to obtain the interaction potential that contains
both short-range repulsion and the long-range attraction, thus
yielding an adequate description of the adsorption physics. Our
numerical analysis for the case of ellipsoid-shaped particles
shows that the interaction potential strongly depends on the
geometry (shape and size) of the particle.

The main feature of the particle-surface interaction poten-
tial in our approach is the presence of the repulsive part, which
is naturally caused by the finite nonlinear polarizability of the
particle. The repulsive part is generated due to the contribution
in the energy proportional to the fourth power of the particle
polarization. It is thus clear that the repulsion generated by the
above mechanism will substantially depend on the strength of
nonlinearity, and will be negligible in the limit of extremely
weak nonlinearity. Here a natural question arises, namely, what
are the values of the nonlinearity strength that are necessary
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FIG. 6. (Color online) Dependence of the interaction potential on
the dimensionless nonlinear polarizability b = β̃/(αC), C = 2.13 ×
10−6 erg−2, for a spherical nanoparticle of 5 nm radius. Curves 1–4
correspond to the values b = 10−3, 10−4, 10−5, 10−6, respectively.
The dielectric constants of the adsorbent (εs) and the particle (εp) are
set to εs = 3 and εp = 11.8.

for the proposed mechanism to work, and how are those values
related to the typical parameters of real materials.

To analyze the dependence of the interaction potential
on the nonlinearity strength, it is convenient to introduce
the dimensionless nonlinearity parameter b = β̃/(αC), where
C = 2.13 × 10−6 erg−2 is chosen in a such way that b = 10−4

corresponds to the known values of nonlinearity in silicon
[79,83]. In Fig. 6, we illustrate the change of the typical
shape of the interaction potential with the decrease of the
parameter b, for some hypothetic nanoparticle of 5 nm radius.
One can see that, as expected, the decrease of nonlinearity
leads to a shift of the potential minimum to the region of small
distances, and ultimately leads to a complete disappearance of
the repulsive part. One can conclude that in the case shown in
Fig. 6, the nonlinear mechanism of the “Casimir repulsion”
works for sufficiently large nonlinearity values b � 10−5,
when the potential minimum forms at distances larger than the
particle radius, and the short-range repulsion due to chemical
bonds between the particle and the adsorbent surface can be
neglected. It is worthwhile to note that the actual nonlinearity
strength in silicon nanoparticle b = 10−4, falls within this
range where our theory is applicable; moreover, in this case
the binding energy can be estimated as Umax ∼ 0.04 eV, which
is consistent with the typical values of the binding energy
in the physical adsorption. All that allows us to conclude
that the proposed nonlinear mechanism of generating the
repulsive part of the adsorption potential can be relevant in
realistic setups. In contrast to other mechanisms considered,
e.g., in Refs. [48–50], which rely on special geometries
or special tuning of the material constants, the proposed
nonlinear mechanism is generic. Nanosize objects are usually
characterized by sizable values of nonlinear polarizability
[83], so one may expect that this mechanism will always be
responsible for a substantial part of the repulsive interaction.
The present theory becomes inapplicable only in the case
of weak nonlinearity, when the contribution of nonlinear
effects provides a repulsive core at distances smaller than the

particle radius, so that one has to take into account chemical
interactions.

As mentioned above, the properties of the repulsive part
of the Casimir-Lifshitz potential are under active discussion
in the literature (see Refs. [43–51]). Particularly, in Ref. [47]
the existence of repulsive Casimir-Lifshitz forces acting at
relatively large distances (about 10 nm) has been demonstrated
experimentally. Although the existence of long-range repulsive
forces is in line with our theoretical proposal, we cannot make
a direct comparison of those experimental results with our
theory, because the experiment has been performed on large
objects (spheres of 38.9 μm radius), while our theoretical
approach is only applicable to nanosized particles since we
make use of the near-field approximation.

At the same time, it should be noted that our approach
neglects the influence of higher multipole moments, which is
often necessary for nonpointlike particles [84–87]. In order
to account for the contribution of multipole moments into the
Casimir-Lifshitz potential, one can either include the higher
multipoles into the theory simultaneously with the nonlinear
polarizability, or reformulate the theory in terms of induced
local currents; the detailed treatment of this problem is beyond
the scope of the present work. Our main goal here was
to show that the presence of nonlinear polarizability may
lead to the formation of the repulsive part of the adsorption
potential even in the absence of the contributions from higher
multipoles.

In order to compare our findings with the known results
of theoretical studies [84–87] of repulsive dispersion forces,
in Fig. 7 we present the normalized interaction potential in
the so-called PFA (proximity-force approximation) units. For
instance, in Ref. [85] a repulsive dispersion interaction has
been obtained as a result of taking into account multipole
moments. Comparing our results for the repulsive interaction
caused by nonlinearity to those of Ref. [85] (see the curve
labeled “small-sphere limit” in the inset of Fig. 7), one can
see that irrespective of the specific nature of the repulsive
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FIG. 7. (Color online) The normalized interaction potential ρ =
U (d)/(R/L2) in terms of a ratio to the PFA [85], where R is the
particle radius and L is the distance between the adsorbent surface and
the particle surface, for a spherical particle of the radius Rp = 10 nm
with εp = 11.8 at the adsorbent with εs = 3. The inset shows the
results of Ref. [85].
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interaction, the qualitative behavior of the U (d)/(R/L2) curve
remains the same. At the quantitative level, the effects of
nonlinearity yield larger contribution at small distances. This
comparison emphasizes once again that the method developed
here is valid for nanosized particles.

In the limit of a pointlike object, the interaction potential
transforms into the potential describing the interaction of
a molecule with a solid surface by means of the mode
softening mechanism considered in Refs. [31,32]. Since a
nanoparticle is characterized by a broad excitation spectrum,
such a mechanism of the adsorption potential formation might
be valid for nanoparticles as well.

When the nonlinear porarizability is neglected (β → 0), the
adsorption potential transforms to the van der Waals adsorption
potential for a nonpoint particle, which, in turn, becomes the
usual − 1/d6 potential of the van der Waals interaction in the
case of a pointlike particle [72].

We have also applied our approach to study the particle-
surface interaction in the presence of the surface plasmon
polariton propagating along the interface, and have shown that
the excitation of the surface wave leads to a sharp increase of
the binding energy.

The developed approach can be useful for the study of
the interaction between biological nanosized objects (e.g.,
viruses) and nanostructured surfaces. Our studies corroborate
the ideas discussed in Ref. [25], namely that interaction with
a nanostructured surface bearing an excited surface plasmon
polariton can lead to selective adsorption of nano-objects,
which, particularly, can serve as a base for developing
innovative antiviral therapy methods.
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