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Limiting law excess sum rule for polyelectrolytes
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We revisit the mean-field limiting law screening excess sum rule that holds for rodlike polyelectrolytes. We
present an efficient derivation of this law that clarifies its region of applicability: The law holds in the limit of
small polymer radius, measured relative to the Debye screening length. From the limiting law, we determine the
individual ion excess values for single-salt electrolytes. We also consider the mean-field excess sum away from
the limiting region, and we relate this quantity to the osmotic pressure of a dilute polyelectrolyte solution. Finally,
we consider numerical simulations of many-body polymer-electrolyte solutions. We conclude that the limiting
law often accurately describes the screening of physical charged polymers of interest, such as extended DNA.
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I. INTRODUCTION

The excess of a particular species of ion provides a
measure of the number of molecules of that species taking
part in the screening of a charged source within an electrolyte
[cf. (3) below] [1]. Recently, thermodynamic arguments have
been exploited to allow for changes in excess with applied
force to be inferred from single-molecule force-extension
data [2–9]. In principle, these new measures could provide a
valuable metric for characterizing competing states. However,
excess differences between states can only arise through
nonlinear screening mechanisms [10], and extraction of the
full information contained in these measures (e.g., regarding
local structure) provides a theoretical challenge.

Ramanathan has presented one of the few general analytic
results relating to ionic excess values: Under certain condi-
tions, the mean-field excess sum associated with the screening
of a rodlike polyelectrolyte approaches a fixed, universal value,
independent of electrolyte composition [11]. In this paper, we
provide a derivation of this limiting law that relies only upon
simple thermodynamic and scaling arguments. This approach
avoids technical analysis of the Poisson-Boltzmann equation,
and it also leads to a clarification of the law’s region of
applicability: The limiting law holds only in the limit of
κa → 0, with κ the inverse Debye length and a the rod’s
radius. Away from the limiting region, we show that the excess
sum decreases as the unitless quantity κa increases. We obtain
a good approximation to this κa dependence that holds for
polymers that are not too highly charged; for highly charged
polymers, or high valence electrolytes, the κa dependence
takes on a nonuniversal functional form. Finally, we report on
simulations of full, many-body polymer-electrolyte systems.
These show good agreement with the mean-field results.
Thus, our mean-field estimates of the excess in the rodlike
geometry can often be used in conjunction with experimental
differential-excess data, such as that of [9], to obtain accurate
estimates of the net excess in general conformational states for
polyelectrolytes.
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In the following section we present our proof of the limiting
law, and discuss consequences. In Sec. III, we consider the
behavior at finite κa: There, we discuss, among other things,
simulations of model systems, including models for extended
DNA. In Sec. IV, we conclude with a brief discussion of our
results.

II. LIMITING LAW

A. Derivation

As depicted in Fig. 1, we consider the screening of a
uniformly charged cylindrical rod of length L � a,κ−1 and
linear charge density λ (≡ e/b). We take the rod to sit within
a large, bulk electrolyte of volume V , which can formally be
taken to infinity. The partition sum for a cylindrical volume of
radius R � a, coaxial with the rod is then formally,

Z =
∑
{Nj }

e−β[Fint({Nj })−
∑

i μiNi ], (1)

where Nj is the number of molecules of species j within
the volume, μj is its chemical potential (held fixed by the
bath at infinity), and Fint({Nj }) is the free energy at fixed {Nj }.
Working at constant temperature and pressure, variations in the
chemical potentials are interrelated through the bulk’s Gibbs-
Duhem relation

∑
i cidμi = 0 [1]. Solving for the variation of

the solvent’s chemical potential μW (water, perhaps) in terms
of the variations of those of the solutes gives for the variation
of F ≡ −T log Z , the free energy of the volume,

dF = Lφ(a)dλ −
∑

i

〈ni〉dμi. (2)

Here, φ is the electrostatic potential, the sum is over solute
species only, and ni , the excess of species i, is

ni = lim
R→∞

Ni − ci

cw

Nw

= lim
R→∞

Ni − ciV − ci

cW

{NW − cWV }. (3)

In this last line above, V ∝ R2 − a2 is the volume accessible
to the solution and ci ≡ cci is the bulk concentration of solute
species i, with c some reference concentration scale. We work
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FIG. 1. (Color online) A screened, uniformly charged rod. Inset:
Plot of average number density ρi versus distance from the rod for
both counter- and co-ions (monovalent, single-salt case shown). The
excess ni , defined in (3), is approximately equal to the integral of
ρi − ci over the volume.

here under the dilute assumption, so that μi ≈ T log ci . In
this case, the bracketed term in the bottom line of (3) can be
neglected, and ni is approximately equal to the total number
of molecules of species i near the rod, minus the number that
would be present if the solution resembled the bulk throughout.

We take for now the mean-field approximation, and sup-
pose that the dimensionless potential y ≡ eφ/T satisfies the
Poisson-Boltzmann equation [12],

∇2y = −4πlB
∑

i

qicie
−qiy, (4)

where lB = e2

εT
is the Bjerrum length, the sum is over the

present ion species, and the qi are their integer valences [13].
For a general source distribution sitting in a bulk electrolyte,
the corresponding mean-field approximation to the excess of
species i associated with the source is given by the formal
expression

ni = ci

∫
V

(e−qiφ(r)/T − 1)d3r. (5)

In cylindrical coordinates the boundary conditions on y for the
cylindrical geometry are

lim
r→a

r∂ry = −2ξ,

lim
r→∞ y = 0, (6)

where ξ = lB/b is a dimensionless measure of the charge

density of the line. Setting r′ = κr ≡ r ×
√

4πlBc
∑

i ciq
2
i

gives a new system of equations for y, in which the only c

dependence appears in the inner boundary position, a′ ≡ κa.
The potential therefore takes the scaling form

φ ≡ T

e
y(κr; κa; ξ ; {qi,c̄i}), (7)

in the original coordinates.
Recalling that μi = T log(cci), equating the mixed partials

of (2) gives the Maxwell relation

T

c
∂λ

∑
i

ni/L = −∂cφ(r)|a

= − 1

2c
{r∂rφ(r) + a∂aφ(r)}|a, (8)

where (7) has been used in the second line to reexpress the
derivative with respect to c in the first [14]. For thin lines,
the second term on the right side above is zero, and the first
term on the right can be evaluated through the use of the first
boundary condition in (6). Integrating with respect to λ (using
the fact that the effective line charge density is constant above
the critical, bare Manning-threshold value [15,16]) then gives

∑
i

ni =
{ 1

2ξ 2, ξ < |qM |−1( |qMξ |− 1
2

q2
M

)
, ξ > |qM |−1,

(9)

where qM is the valence of the strongest counterion present
(that which condenses onto the line above the Manning
threshold), and ni ≡ (lB/L)ni . The result (9) is the universal,
mean-field limiting law sum rule for rodlike polyelectrolytes: It
holds for any electrolyte, provided the system is in the excess-
salt, low ionic strength limit [17]. As noted above, Ramanathan
arrived at this result previously through an impressive, tech-
nical analysis of the Poisson-Boltzmann equation. However,
only a proof outline was given in [11], and this did not make
explicit that (9) holds only in the κa → 0 limit.

B. Applications

We now discuss two immediate applications of (9). First,
we note that for a single-salt electrolyte, (9) can be used
to determine the two individual ion species excesses: If
the negative species of ion has valence and concentration
(−q−,q+c) and the positive species has valence and concentra-
tion (q+,q−c), local charge neutrality near the macromolecule
requires ξ − q−n− + q+n+ = 0. For ξ > 0, solving with (9)
gives

n− = ξ

q+ + q−

{
1 + q+ξ

2

}
,

n+ = − ξ

q+ + q−

{
1 − q−ξ

2

}
, ξ < q−1

− , (10)

below threshold, and

n− = ξ − q−1
−

q−
+ 1

2q2−
+ 1

2q−(q+ + q−)
,

n+ = − 1

2q−(q+ + q−)
, ξ > q−1

− , (11)

above threshold. These expressions agree with the 1-1 results
of [15,18–20] (obtained through various approximate means),
as well as with the 1-1 and 2-1 subthreshold expressions of [21]
(obtained rigorously via connection to Fredholm-determinant
theory). While the sum rule (9) holds for any electrolyte
composition, we note that a two term expansion for the
individual excesses will not hold in general as it does in the
single-salt case [as in (10) and (11), which are quadratic and
linear in ξ , respectively]. This can be demonstrated through
direct expansion of the {ni}, using the methods of [10,22].

Second, we note that upon integrating the Maxwell relation
(8) with respect to both λ and c, we obtain

L

∫ λ

0
φ(r; λ′)|adλ′ = −T log c

∑
i

ni + F0({qj ,cj },λ,T )

= F . (12)
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Here, we have used the fact that the excess sum is independent
of c for thin lines and F0 is a c-independent integration
constant [23]. We now consider a large volume V consisting
of NM thin lines (with cM ≡ NM/V � L−3), in contact via
water-permeable membrane with an exterior solute-free bath
solution. Adding together the free energy of the solute, the
free energy of charging (12) for each of the NM lines, and
finally the configuration entropy of the lines, differentiating
with respect to V we obtain for the osmotic pressure � of the
volume,

�V

T
=

∑
i

Ni + NM

(
1 −

∑
i

ni

)
, (13)

with ni the excess per line. The last term above provides
a correction to the ideal gas law that reflects the fact that
a macromolecule and its screening cloud act as a single
composite object, contributing only one T V −1 to the osmotic
pressure of a solution. Although we have derived (13) here
by making use of results that hold for thin lines only, this
relationship between the osmotic pressure and the excess sum
actually holds for general geometries [24]. Plugging (9) into
(13) we obtain an estimate for the osmotic pressure of a dilute
polyelectrolyte solution—a result that is also discussed in [25].

III. BEHAVIOR AT FINITE RADIUS

At finite a, it follows from (7) and (8) that the mean-field
excess sum develops a c dependence through the quantity
κa ∝ √

ca (with no other independent dependence on either
c or a appearing in the sum). Exact analytic results relating
to this dependence are difficult to obtain. To gain insight,
we turn now to a consideration of numerical solutions to
(4) and also non-mean-field simulation results. We obtained
numerical solutions to (4) using the one-dimensional (1D)
finite difference method and the Newton-Raphson scheme.
We performed extensive Monte Carlo simulations based on
the primitive model, using MMM1D to evaluate charge
interactions [26], with enforced periodic boundary conditions
along the axial direction in order to mimic an infinitely long
line charge (period 22 nm). We set the radius of the cylinder
to a = 2 Å and the radius of the free ions to 1 Å, both
small values in order to reduce steric effects. We took 105

steps for equilibration, and averaged over 106 steps to obtain
equilibrium charge density profile estimates. Further, for each
data point, we ran three independent simulations in order to
obtain variance estimates.

Data representative of our numerical results are presented in
Fig. 2. In Fig. 2(a), numerically integrated excess sums for (4)
are plotted against ξ for both 1-1 and 2-1 salts for the thin line
geometry. These are in agreement with the analytic values (9),
up to small errors above threshold, likely due to the imperfect
condensate characterization that results from discretization of
(4). In Fig. 2(b), we plot the excess sum from (4) against κa for
ξ = 1.0. In this case, the 1-1 salt is at threshold, while the 2-1
salt is above. They thus approach differing κa → 0 values;
our numerical checks and previous analytic work [27] both
suggest that this approach is continuous. We have also plotted
in Fig. 2(b) a second order expansion for the sum, obtained

using the methods of [10,22]. This is,

lim
κa→∞||λ→0

∑
i

ni ∼ 1

2
ξ 2

[
1 −

(
K0(κa)

K1(κa)

)2]
, (14)

where the Ki are modified Bessel functions [28]. Notice that
(14), which one would naively expect to hold only at large κa

(where the source charge density is weak and the expansion
converges quickly for all ξ ), is actually exact at κa = 0, below
the Manning threshold. Consequently, as shown in Fig. 2(b),
the approximation (14) provides a quantitatively accurate
approximation at most κa, below threshold. One can also use
(14) to estimate the sum above threshold [replacing 1

2ξ 2 in (14)

with (
|qMξ |− 1

2

q2
M

)—the superthreshold limiting law sum value],
provided ξ is not too large: e.g., this was done to obtain the
solid curves in Fig. 2(b). As an application, consider the case
of single-stranded DNA at physiological salt concentrations,
where 2a ≈ κ−1 ≈ 1 nm. The excess sum here is roughly∑

i ni ≈ (
|qMξ |− 1

2

q2
M

)[1 − (K0(0.5)
K1(0.5) )

2] ≈ (
|qMξ |− 1

2

q2
M

) × 0.7, with
ξ ≈ 2.1—that is, under physiological conditions, the sum is
roughly three-quarters its limiting law value. Plugging this
into (13) gives a finite-salt approximation for the osmotic
pressure of a dilute single-stranded DNA solution. Further,
using the charge-neutrality condition, this form can also be
used to obtain estimates for the individual ion excess values,
in single-salt solution.

In Fig. 2(c) we plot a snapshot of the simulated (non-mean-
field) counterion density as a function of radius for four salt
concentrations. The inset shows the integrated excess for each
of these four concentrations. Although the charge density
profiles differ significantly across salt concentrations, the
integrated sums show only a weak concentration dependence,
in qualitative agreement with (9) and (10), which have no salt
concentration dependence (for the concentrations shown here,
κa is small in each case). In Fig. 2(d), we plot the simulated
excess totals versus ξ at a fixed, small salt concentration. This
again shows qualitative (and often quantitative) consistency
with (9)–(11), even at high ξ . Finally, in Figs. 2(e) and 2(f),
we plot the excess sum versus κa for ξ = 2.1 and 4.2—
relatively large values approximating those of single- and
double-stranded DNA, respectively. The solid lines in these
figures are numerical Poisson-Boltzmann values, while the
dashed lines are approximations from (14). As κa → 0,
the excess sums approach values consistent with (9)–(11)
in both cases. At finite κa, the approximate form performs
reasonably well for single-stranded DNA, but performs poorly
for the double-stranded DNA model. Evidently, (9)–(11) can
be expected to provide accurate excess sum estimates in the
κa → 0 limit for many physical systems (even those with
high charge density), while (14) provides an accurate, analytic
approximation to the finite κa excess sum only for small to
moderately charged (ξ � 2) systems.

IV. DISCUSSION

To summarize, we have considered the excess sum associ-
ated with an isolated, rodlike polyelectrolyte. Ramanathan’s
prior derivation of the sum rule (9) made use of a contact
identity relating the excess sum to the local ion number
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FIG. 2. (Color online) Numerical Poisson-Boltzmann [(a), (b)] and Monte Carlo simulation [(c)–(f)] results (length scales as noted in text).
(a) Excess sum vs ξ at a = 0 for 1-1 and 2-1 salts: numerical (dotted), values from (9) (solid), and an extended quadratic form (dashed).
(b) Excess sum vs κa at ξ = 1.0 for 1-1 (at threshold) and 2-1 (above threshold) salts: numerical (dotted); approximate analytic form (14)
(solid). (c) Snapshot excess counterion density vs r at ξ = 0.32 for four 1-1 salt concentrations. Inset shows net excess vs c for these four
concentrations together with values from (9) and (10) (dashed). (d) 1-1 salt, excess vs ξ at c = 7.5 mM: simulation values (dotted), values
from (9)–(11) (dashed). (e),(f) Excess sum vs κa at ξ = 2.1 and 4.2—values corresponding to single- and double-stranded DNA, respectively:
simulation (dotted), numerical Poisson-Boltzmann (solid), and approximate form (14) (dashed). The approximation (14) performs well only at
small to moderate values of ξ .

density at a polymer’s surface [11,19]. Working backwards
from the limiting law, the contact identity of [19] implies
that the ion number density at the polymer’s surface also
approaches a universal limiting value for rodlike polymers
(the two statements are equivalent). Thus, our derivation of the
limiting law also provides an efficient proof of this other result.
Many other interesting results can also be derived efficiently
using our approach. For example, at large r it is known that
the potential due to a polymer takes the form φ ∼ 2λeffK0(κr),
with λeff a constant coefficient often referred to as the line’s

effective charge [25]. From (7), we see immediately that λeff

must be independent of c—a result that is consistent with
known exact results in the 1-1 salt case [20,25].

Away from the limiting region, our simulations show good
agreement with the mean-field results, even at high charge
densities, for monovalent salts. This suggests that the limiting
law often accurately characterizes physical systems. We intend
to carry out further simulation tests, varying ion sizes and
valences—two quantities that often directly control diver-
gences from mean-field behavior [29,30]—in the near future.
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