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Computational study of the propagation of the longitudinal velocity in a polymer melt contained
within a cylinder using a scale-bridging method
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The “constitutive equation”–free scale-bridging method connecting nonequilibrium molecular dynamics and
continuum fluid mechanics, that had hitherto been applied only to a parallel-plates geometry, is extended to study
the flow of a polymer melt in a cylindrical pipe subject to a velocity in the direction parallel to the cylinder’s axis.
The system, initially at rest, is given a velocity at the cylinder’s surface, and the evolution of the velocity profile
within the fluid is studied, along with the time taken for the velocity to propagate toward the cylinder’s axis. The
said time of propagation is found to increase with the boundary velocity—a fact in contrast with the case of a
Newtonian fluid for which the time of propagation is expected to be independent of the boundary velocity. For a
fixed value of the boundary velocity, the propagation time is found to increase with the cylinder radius according
to a power law with an exponent that is smaller than the corresponding exponent for a Newtonian fluid. For the
lower values of the boundary velocity and the lower values of the radius studied, a velocity overshoot is observed
at the cylinder’s axis—a manifestation of elastic behavior of the fluid.
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I. INTRODUCTION

Viscoelastic fluids are fluids that possess both viscous
and elastic properties. Examples of viscoelastic fluids include
polymeric liquids, colloids, and metals at very high tempera-
tures. Many biological fluids including blood are viscoelastic
as well. These fluids exhibit complex flow behaviors that
are connected to microscale dynamics. Investigation of these
peculiar flow behaviors has a wide range of applications in
various scientific and technological fields, including biological
science, chemical engineering, materials science, and mechan-
ical engineering. Traditionally, computer simulations of flow
properties of fluids resort to either continuum fluid mechanics
or molecular dynamics (MD). Continuum fluid mechanics
relies on a “constitutive relationship” between stress and flow
details (e.g., flow state and flow history), which in general,
for a viscoelastic fluid, is hard to establish for an arbitrary
flow. On the other hand, since MD resorts to an atomistic
model, with full-fledged MD simulations the computational
requirements scale nearly linearly with system size, rendering
the method practically inapplicable for flow at large length
scales. Over the years several hybrid methods [1–5] have
been developed that connect different regions of the fluid
system where part of the system is simulated using MD and
the rest using continuum fluid mechanics. These methods
prove to be an excellent tool in investigating flow patterns in
small molecule fluids where a “constitutive equation”–based
continuum fluid mechanics (e.g., the Navier-Stokes equations
for a Lennard-Jones fluid) correctly describes the flow of the
fluid in one region but in other regions that have a large gradient
of the velocity or the density field an MD simulation is more
appropriate. Rheology of a polymer melt is characterized by
nonlinear viscoelasticity [6,7] and memory effects [8], once
again making the construction of a constitutive relationship
difficult, which resulted in a considerable amount of effort put
forth during recent years in developing multiscale methods
to simulate the flow behavior of polymer melts. The hybrid
methods mentioned previously are challenging to apply to

viscoelastic fluids like a polymer melt, since the continuum
part of the simulation relies on a constitutive equation. In
a previous paper [9], we proposed a constitutive equation–
free scale-bridging method that involves the simulation of
only parts of the system using nonequilibrium molecular
dynamics (NEMD) simulations, where the different parts only
occasionally exchange information through a continuum fluid
mechanics scheme. The said method was applied to the bead-
spring model for a polymer melt embedded in a parallel-plates
geometry subject to antisymmetric velocity boundary condi-
tions, and its validity was checked by comparing the results
with those obtained through a full-fledged NEMD simulation
of the system. A variant of the constitutive equation–free
scale-bridging method was used by Yasuda and Yamamoto
in a series of papers [10–12] that involved the study of flow
in polymeric fluids confined in a parallel-plates geometry.
Ilg et al. [13–15] have developed thermodynamically guided,
“time-scale bridging” multiscale simulation methods which
they successfully applied to flow of unentangled polymer
melts.

Although initially the main goal of the scale-bridging
method was to save computation time by simulating only parts
of the system, it turns out that the utility of the method goes
far beyond that original goal. To be specific, the method can
be applied to incompressible fluids in arbitrary geometries
as long as at every point within the system the fluid locally
undergoes a pure shear (i.e., no elongation or compression).
If the geometry in question is not a periodic structure, in
order to perform a full-fledged MD simulation one needs to
incorporate an atomistic model of a boundary wall [4,5,7] as
well, which presents an additional component of complexity
to the simulation scheme. In our scale-bridging scheme,
the MD simulation boxes representing the different parts of
the fluid system are subject to the Lees-Edwards periodic
boundary condition, thereby precluding the need of modeling
a wall enclosing the whole geometry. In a situation as such,
our scale-bridging method is deemed a natural choice for
simulating flow in the system if one chooses to start from an
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atomistic model of the fluid. Moreover, for a system possessing
some symmetry, one could utilize that symmetry to achieve an
even greater computational gain through the scale-bridging
scheme. In the present work, we show how to extend the
scale-bridging method to a fluid embedded in a cylindrical
geometry and subject to a boundary velocity on the cylinder’s
surface in the direction parallel to the cylinder’s axis. Since
the said system possesses cylindrical (azimuthal) symmetry,
the effective computational gain achieved through the use of
the scale-bridging method is one order of magnitude higher
compared to the situation where the method is used for a
parallel-plates geometry.

Flow of viscoelastic fluids embedded in a cylindrical geom-
etry is a common scenario in both biology and engineering and
is hence extensively studied, and its examples include blood
flowing through veins and arteries [16,17], ultrafiltration [18],
and protein and DNA transport through membrane channels
[19]. In the present work we apply the extended scale-bridging
method to the same model for a polymer melt that we used
in the previous work [9], and study how a sudden change
of the boundary velocity from zero to a constant finite value
propagates toward the axis of the cylinder. We study how
the propagation time varies with the value of the boundary
velocity and the system size, and compare the results with
those expected for a Newtonian fluid embedded in the same
geometry and subject to the same velocity boundary condition.
The following sections are organized as follows: Section II
gives a brief overview of different constitutive equations for
viscoelastic fluids along with a brief review of the constitutive
equation–free scale-bridging method applied to a parallel-
plates geometry. Section III discusses the condition under
which the method can be extended to a different geometry, and
then gives details of how the method is extended to a cylindrical
geometry with a boundary velocity parallel to the axis—the
focus of this paper. Section IV gives details of what we study
in this paper as an example boundary condition and presents
simulation results. Section V discusses the dependence of the
simulation results on the macro time step and the system
resolution chosen, while Sec. VI discusses the computational
gain achieved in the presence of the cylindrical symmetry. In
Sec. VII we conclude with a summary and discussions.

II. CONSTITUTIVE EQUATIONS FOR VISCOELASTIC
FLUIDS: OVERVIEW OF THE CONSTITUTIVE

EQUATION–FREE SCALE-BRIDGING METHOD
IN A PARALLEL-PLATES GEOMETRY

In the previous work [9] we considered one-dimensional
flow, i.e., where the macroscopic velocity �v has only one non-
vanishing component vx, which in turn is a function of the y co-
ordinate only. The continuum equation connecting the change
in velocity and the stress tensor in this situation is given by

ρ
∂vx

∂t
= ∂σxy

∂y
, (1)

where ρ is the density of the fluid.
For one-dimensional flow, the constitutive equation that

connects the shear stress σxy and the shear rate ∂vx

∂y
for a

Newtonian fluid [20] is

σxy = μ
∂vx

∂y
, (2)

where μ is the constant viscosity of the fluid. Putting the
above relation in (1), one obtains the Navier-Stokes equation
for one-dimensional flow [20]:

ρ
∂vx

∂t
= μ

(
∂2vx

∂y2

)
. (3)

The most straightforward extension of Eq. (2) to a non-
Newtonian fluid is to allow the viscosity to be dependent on
the shear rate, the simplest such dependence being a power
law [21] of the form

μ ∝
∣∣∣∣∂vx

∂y

∣∣∣∣
n

. (4)

If n > 0, we have a dilatant or shear-thickening fluid. If n < 0,
then fluid is pseudoplastic or shear thinning.

The first step toward extending Eq. (2) to a viscoelastic
fluid is the well-known Maxwell model [22], which contains
an extra term on the left-hand side of the equation as follows:

σxy + λ
∂σxy

∂t
= μ

∂vx

∂y
, (5)

where λ is the relaxation time. For a steady state, the shear
stress σxy is a constant, and hence the above equation yields
Eq. (2) for a Newtonian fluid. On the other hand, for a sudden
change in the shear stress, the term λ

∂σxy

∂t
on the left-hand side

of Eq. (5) dominates, and by integrating (5) with respect to time
one obtains λσxy = μγ , which is the equation for an elastic
solid with a shear modulus of μ/λ, γ being the net shear.
A further extension of the Maxwell model is the constitutive
relation proposed by Jeffreys [23],

σxy + λ
∂σxy

∂t
= μ

∂vx

∂y
+ η

∂

∂t

(
∂vx

∂y

)
, (6)

η being a constant. This equation is capable of reproducing the
delayed elastic motion for a sudden change in the shear stress.
Further generalizations to models with multiple relaxation
times have been proposed as well [24–27]. Another model
for viscoelastic fluids is obtained through the generalization
of the Maxwell model along a different route that involves
fractional time derivatives of the shear stress and the shear
rate [28,29],

σxy + λa ∂aσxy

∂ta
= μλb−1 ∂b−1

∂tb−1

(
∂vx

∂y

)
. (7)

In the above equation describing the fractional Maxwell model,
the constants a and b are fractional calculus parameters
satisfying 0 � a � b � 1, and once again λ and μ are the re-
laxation time and the viscosity, respectively. While a = b = 1
yields the regular Maxwell model, a = 0 and b = 1 yields the
regular Newtonian fluid.

When the flow of a viscoelastic fluid is computed using
a constitutive relation, a suitable model must be chosen that
is appropriate to the physical properties of the system (e.g.,
the identity of the fluid, temperature, boundary conditions
in terms of velocity or stress), and the values of all the
different parameters in the model must be specified in advance.
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However, no comprehensive set of methods exists that allows
one to systematically choose the most appropriate constitutive
equation and the values of the parameters for any given
viscoelastic fluid and any set of system properties. Within our
previous scale-bridging method, as briefly described below,
the shear stresses at different parts of the fluid are directly
calculated through nonequilibrium MD simulations starting
from an atomistic force model, thereby precluding the need
of a constitutive equation on the continuum level, which gives
the method a distinct advantage over other methods that rely
on a constitutive equation.

As part of the scale-bridging scheme, the system is divided
into several slices of equal thickness �y, and each slice is
represented by a MD simulation box. Each such simulation box
at a given time is subject to the shear rate ∂vx

∂y
at the middle of

the slice, and is accordingly subject to Lees-Edwards periodic
boundary conditions in the y direction, while regular boundary
conditions are applied in the x and the z direction, respectively.
Independent MD simulations are done in the simulation boxes
through a coarse time interval �t , and the shear stress σxy is
calculated in each box using the virial expression

σij = (1/V )

[
−nkBT δij +

∑
α

{
r−1
α U ′

α(rα)rαirαj

}]
, (8)

where V is the volume of the MD simulation box, Uα(rα) the
net potential between the two particles belonging to the particle
pair labeled by α, and rα the distance between the two particles
in the pair. U ′

α(rα) is the derivative of the potential with respect
to the distance rα . The shear stress σxy calculated using (8) in
turn represents the shear stress at the corresponding slice. At
the end of the coarse time interval �t the velocities at all the
interfaces between successive slices are updated using a finite
difference form of (1). This updates the shear rate ∂vx

∂y
of each

slice, and hence that in the corresponding MD simulation box
as well. For the next set of MD simulations corresponding to
the next �t , for each simulation box the starting configurations
of the constituent particles is the same as the configuration at
the end of the previous �t , which ensures that memory effects
are properly captured. At the end of this next �t , velocities
are updated once again, and so forth, the process repeating
itself through the duration of the simulation. The fact that the
linear dimension of the MD simulation box may be taken to
be much smaller than the thickness �y of each slice leads to
a prospective saving of computation time, since that way we
effectively simulate only parts of the whole system. Denoting
the length of the MD simulation box by L, we can define the
scale factor f as f = �y/L, which is an approximate measure
of the ratio of the computation time required to simulate all
parts of the system to the computation time required to simulate
only parts of the system through the scale-bridging scheme. In
principle, though, f can be taken to be smaller than 1 as well,
in case the whole system is small enough and we are interested
in finer resolutions of the continuum velocity profiles obtained.

III. EXTENSION OF THE SCALE-BRIDGING
METHOD TO A DIFFERENT GEOMETRY

In our scale-bridging method applied to a parallel-plates
geometry, each MD simulation box that represents a part of

the system is subject to Lees-Edwards periodic boundary con-
ditions which effectively impose a finite shear rate across the
simulation box. Since both the volume of the simulation box
and the number of particles within the box are fixed, the density
of the fluid is fixed as well, i.e., the fluid is incompressible so
that �∇ · �v = 0 holds for the continuum velocity at any point in
the fluid. Hence, we could extend our scale-bridging method to
general geometries involving flow of an incompressible fluid
where each part of the system undergoes a pure shear, since
in that case every part could still be represented by a MD
simulation box subject to the appropriate Lees-Edwards peri-
odic boundary conditions. This excludes situations involving
elongation or compression of any parts of the system. This
implies that for two-dimensional flow (we take the velocity �v
to depend on x and y, but not z) the conditions that

∂vx

∂x
= 0

(9)
∂vy

∂y
= 0

must be met. The general relation connecting the change in
a velocity component vi at any point within the fluid to the
stress components is given by

ρ
∂vi

∂t
= ∂σij

∂rj

, (10)

where Einstein’s summation convention is implied.

A. The scale-bridging method for the
present cylindrical geometry

In the present work we consider a situation involving an
incompressible fluid embedded in a cylinder of radius R with
the surface of the cylinder moving parallel to the axis of the
cylinder (which we call the z axis, following convention),
as shown in Fig. 1. The system is infinite in extent in both
directions parallel to the z axis.

FIG. 1. (Color online) The geometry of the present problem and
the direction of the velocity at the surface.
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FIG. 2. (Color online) A cross section of the cylindrical geometry.

The radial and the azimuthal coordinates are denoted by
r and θ , respectively, as shown in the perpendicular cross
section of the system sketched in Fig. 2. We take the fluid
to be initially at rest and give the surface of the cylinder a
sudden constant velocity in the z direction, so that the velocity
boundary condition is

vz(r = R,t � 0) = 0
(11)

vz(r = R,t > 0) = v0.

We are interested in studying the propagation of the velocity
through the fluid toward the cylinder’s axis. In this case the
only nonvanishing component of the velocity of the fluid will
be the z component vz, which will be independent of both z and
θ and will be a function of r and time t only. The continuum
equation connecting the change in vz and the stress tensor in
this situation is given by

ρ
∂vz

∂t
= 1

r

∂(rσzr )

∂r
. (12)

For a Newtonian fluid with a constant viscosity μ, by using
σzr = μ

∂vz

∂r
, we retrieve from (12) the Navier-Stokes form for

the change in vz for the geometry and boundary conditions at
hand, namely,

ρ
∂vz

∂t
= μ

(
∂2vz

∂r2
+ 1

r

∂vz

∂r

)
. (13)

Since in our present problem we focus on our viscoelastic
polymeric fluid, Eq. (13) is not expected to hold. In order
to apply our extended scale-bridging method to the present
problem, we decompose our cylindrical geometry into N

coaxial cylindrical shells each of thickness �r . The cross
section of the scheme is shown in Fig. 3.

As shown, without losing generality we take the grid points
on the positive x axis and the continuum velocity (which is
parallel to the z axis in this case) is updated with time at each
grid point. A gauss point containing an MD simulation box is
taken midway between every two successive grid points. Since
the gauss points are on the positive x axis, the shear stress σzr

at the gauss points is given by σzr = σzx .
Now, there are (N + 1) grid points in total. For the grid

point on the cylinder surface at a distance R from the center
(the one farthest to the right in Fig. 3), the continuum velocity
is provided through the velocity boundary condition (11).
For each of the rest of the grid points except the one at
the very center, we can arrive at a scheme to update its
continuum velocity vz using Newton’s second law. For the
grid point under consideration, let us take its distance from

FIG. 3. (Color online) Schematic of the scale-bridging scheme
applied to the present cylindrical geometry. The black dots are the
grid points, and each small cube midway between two successive
grid points is a gauss point where a cubic MD simulation box is taken
as a representative of the system between the two grid points. The
continuum velocity is in the z direction, the positive z direction being
perpendicular to the plane of the page and out of the page.

the center to be r . We consider an annular cylinder of fluid
of height h having an inner radius of ri = r − (�r/2) and an
outer radius of r0 = r + (�r/2), thus containing one gauss
point on the inner surface and the outer surface each. The
net force on this annular cylinder in the positive z direction
will be F = 2πh[ro(σzr )o − ri(σzr )i]. The volume of the same
annular fluid cylinder is π [r2

o − r2
i ]h, and hence the mass is

π [r2
o − r2

i ]hρ. Equating the expression of the force to the mass
times the acceleration ∂vz

∂t
of the annular cylinder, and writing

that acceleration in finite difference form we get, after slight
rearranging,

�vz

�t
= 1

ρr

[
ro(σzr )o − ri(σzr )i

�r

]
. (14)

It is worth noting that (14) is essentially the finite difference
form of (12). In terms of the stresses calculated at the gauss
points in Fig. 3, we can rewrite (14) as

�vz = 1

ρr

[
ro(σzx)o − ri(σzx)i

�r

]
�t, (15)

which is the relation we use to update the velocity vz at the
grid point.

Updating the velocity at the center of the circle (i.e., at
the cylinder axis) has to be treated as a special case. This is
because unlike all the other grid points the center is a point
that is not situated between two gauss points. We consider
the innermost fluid cylinder of height h and radius (�r/2),
containing on its surface the gauss point farthest to the left
in Fig. 3. The entire surface of this cylinder is exposed to a
shear stress that is equal to (σzr )o—the same as the shear stress
(σzx)o at the said gauss point. The net force on this cylinder is
F = 2πh[(�r/2)(σzr )o], and the net mass is π (�r/2)2hρ. As
before, Using Newton’s second law to arrive at an expression
of the acceleration of the innermost fluid cylinder and then
taking its finite difference form, we write, after simplifying,
the equation to update the velocity vz (which is taken to be
the velocity at the cylinder axis as well) of the central cylinder
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under consideration,

�vz = 4(σzx)o
ρ(�r)

�t. (16)

For every macro time step �t (given by �t = 100δt , δt

being the length of one MD time step), nonequilibrium MD
simulations are done in each MD simulation box situated
between two successive grid points, with each such box
subject to a shear rate ∂vz

∂x
calculated from the finite difference

expression

∂vz

∂x
≈ (vz)o − (vz)i

�r
, (17)

where now the subscript o refers to the grid point on the
right, and the subscript i refers to the grid point on the left.
Accordingly, Lees-Edwards periodic boundary conditions are
imposed on each MD simulation box along the x direction,
and regular periodic boundary conditions are imposed in both
the y and z directions. At the end of the coarse time step �t the
grid velocities are updated using (15) and (16), which updates
the shear rates imposed on the different gauss points using
(17), and a new set of MD simulations are started for the next
coarse step �t , and the process repeats. At the beginning of
every coarse time step �t , in any MD simulations box the
configuration of polymer chains is taken to be the same as
that obtained at the end of the previous �t , which ensures that
memory effects are properly captured. Once again, if the length
of the MD simulation box is denoted by L, for the present
geometry we can define the scale factor f as f = �r/L.
In the present situation, though, because of the cylindrical
symmetry of the system, the effective computational gain is
much larger compared to the parallel-plates case. Details of
the computational gain are discussed in Sec. VI.

At this point, it is worth discussing the singularity of the
partial differential equation (12) at r = 0. The said equation
has an r in the denominator on the right-hand side and hence
∂vz/∂t becomes singular at r = 0. Incidentally, this singularity
is a “removable singularity.” Equation (12) can be rewritten as

ρ
∂vz

∂t
= ∂σzr

∂r
+ σzr

r
. (18)

If the shear field is to be continuous everywhere, then the
cylindrical symmetry implies that at the axis, (∂vz/∂r) = 0,
which in turn implies that right at the axis the shear rate and
hence the shear stress will be zero at all times.

Hence, as r → 0, the shear stress σzr → 0 as well, in such a
way that the limiting value of ∂vz/∂t as expressed through (18)
is actually finite as r → 0. Since we only use a finite difference
scheme where the innermost MD box is taken at the midpoint
of the innermost radial line segment, we are not supposed to
run into any problems arising due to the singularity of Eq. (12)
at the cylinder axis.

B. The atomistic polymer melt model and details
of the NEMD simulation

The model for the polymer melt along with the MD simula-
tion details of the present work are taken to be the same as those
in the previous work [9] applied to the parallel-plates geometry.
The model is the standard bead-spring model, with each
polymer chain consisting of 120 beads, every two adjacent

beads being connected through a finitely extensible nonlinear
elastic (FENE) spring described by the potential UFENE =
−(kR2

0/2) ln[1 − (r/R0)2]. Additionally, every pair of beads
within the system interacts through a shifted, purely repulsive
Lennard-Jones potential ULJ = 4ε[(σ/r)12 − (σ/r)6] + ε for
r < 21/6σ and ULJ = 0 otherwise, where ε has units of energy
and σ that of length. Each MD simulation box is a cube of
length 14.1σ , containing 20 polymer chains, making the total
number of beads in the box 2400. The system is taken at a
constant temperature, the value of which in dimensionless units
is taken to be T ∗ = kBT /ε = 1. The integration time step for
the MD is taken to be δt = 0.0008τ , where the characteristic
time τ is defined as τ = σ

√
m/ε, m being the mass of a single

bead. In turn, each coarse time step is taken to be �t = 100δt .
Thermostating is performed by rescaling the velocities of the
beads at the end of every MD time step, assuming a linear
velocity profile in accordance with the shear rate ∂vz

∂x
imposed

on the box. The MD step is chosen to be small since the
condition �t 
 δt should be met within our scale-bridging
scheme, and we choose a small enough value of �t as well to
start with, in order to ascertain that it is small compared to the
time scale of the velocity and shear-rate variations within the
system.

IV. THE DETAILS OF THE PRESENT FLOW PROBLEM
AND SIMULATION RESULTS

For the velocity boundary condition given in (11), we expect
the continuum velocity at the axis of the cylinder to approach
the surface velocity as time goes on, i.e., lim

t→∞ vz(r = 0) = v0.

A measure of the time taken for the velocity to propagate
from the cylinder’s surface to the axis is the half time t0,
defined as the time taken for the continuum velocity on the
axis to become equal to half of the velocity v0 at the cylinder
surface. If the fluid were a Newtonian fluid, it follows from
the form of (13) that t0 would be independent of v0, i.e., the
time of propagation would be independent of the boundary
velocity. At the same time, it also follows from (13) that for
a Newtonian fluid the variation of t0 with the radius R of the
cylinder would be t0 ∝ R2 (the proof is in the Appendix). With
our polymer melt taken within the cylindrical geometry of the
present problem, we wish to study the variation of the half time
with both the boundary velocity and the cylinder radius and
want to compare the results with those for a situation involving
a Newtonian fluid.

A. Velocity profiles in the polymer melt for a sample
system size and boundary velocity

From now on, all results for simulations done with a
polymer melt are reported in dimensionless units, i.e., with
distance reported with respect to σ and time reported with
respect to τ , as defined in Sec. III B. The dimensionless units
are denoted with an asterisk (∗). In this section we present some
results for the scale-bridging simulations done with N = 25
cylindrical shells and a scale factor of f = 1.0, making the
radius of the cylinder to be R∗ = 352.5. The greater the value
of the surface velocity v0, the smaller the statistical fluctuations
in the velocity calculated relative to the average (continuum)
velocity, and hence the less noisy is the velocity data. A natural
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FIG. 4. The evolution of the normalized velocity at different
values of the distance r∗ from the axis of the cylinder for R∗ = 352.5
and v∗

0 = 8.81. The solid squares correspond to r∗ = 338.4, the
hollow squares to r∗ = 310.2, the hollow triangles to r∗ = 267.9,

and the hollow circles to r∗ = 0 (the axis).

velocity scale of the polymer melt can be estimated by dividing
the root-mean-square value of the end-to-end chain distance
in the system by the stress relaxation time. The value of the
said end-to-end distance in dimensionless units for a chain size
of 120 is of the order of 101 [30], and the value of the said
stress relaxation time in dimensionless units is of the order of
104 [31], making the said natural velocity scale of the order of
10−3. In order to obtain velocity data with low noise, we start
with a high value of v∗

0 = 8.81 for our first set of simulations.
Figure 4 shows the evolution of the velocity normalized

with respect to the boundary velocity at different values of the
distance from the cylinder’s axis. A running average of the
velocity is performed over every 1000 macro time steps to fur-
ther smoothen out the noise. Among all the plots, the velocity
at the axis trails behind the most, as expected. Figure 5 shows
the plots of the velocity profiles, namely, the velocity plotted
against the distance from the axis at different time instants.
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FIG. 5. Velocity profiles at different values of t∗ for R∗ = 352.5
and v∗

0 = 8.81. The solid squares correspond to t∗ = 800.0, the
hollow circles to t∗ = 1600.0, the solid circles to t∗ = 2400.0, and
the hollow triangles to t∗ = 3200.0.
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FIG. 6. The evolution of normalized velocity at the axis for
different values of v∗

0 for R∗ = 352.5. The solid squares correspond
to v∗

0 = 0.88, the hollow squares to v∗
0 = 1.76, the hollow triangles

to v∗
0 = 3.53, and the hollow circles to v∗

0 = 8.81.

B. Dependence of the half time on boundary velocity
for a fixed cylinder radius

In this section we report results for different values of the
boundary velocity v∗

0 for a fixed value of the radius, namely,
R∗ = 352.5. The different values of v∗

0 used are v∗
0 = 0.88,

1.76, 3.53, 5.29, 8.81, 12.33, and 17.62, respectively. Figure 6
shows the evolution of the normalized velocity v/v0 at the
axis with time for a few different values of v∗

0 . There are
two interesting observations to be made here. First, unlike the
case with a Newtonian fluid, the velocity evolution profiles
are clearly dependent on the boundary velocity. In particular,
the greater the value of the boundary velocity is, the slower
is the velocity evolution at the axis, i.e., the greater is the
half time. Second, for the two lowest values of the boundary
velocity (namely, v∗

0 = 0.88 and 1.76), there is clearly a
velocity overshoot, i.e., instead of asymptotically approaching
the boundary velocity from below, the velocity at the axis
reaches a maximum value that is greater than the boundary
velocity and then approaches the value of the boundary
velocity from above. This velocity overshoot is due to the
viscoelastic nature of the polymer melt.

The half time t∗0 is calculated through linear interpolation
between two successive data points that contain velocity values
below and above the halfway mark, respectively, and the half
time is plotted against v∗

0 in Fig. 7. It clearly depicts the fact
that the half time increases considerably with the value of the
boundary velocity, e.g., the half time for v∗

0 = 17.62 is about
four times the half time for v∗

0 = 0.88, a fact in sharp contrast
with what would happen for a Newtonian fluid (for which
the half time is expected to be independent of the boundary
velocity). In regard to the finding that with the polymer melt
the half time increases with the boundary velocity, we argue
that it is caused by the fact that for larger boundary velocities
the shear rates produced within the fluid are larger as well,
leading to smaller effective viscosities consistent with the shear
thinning behavior exhibited by polymer melts [32,33]. In turn,
a smaller effective viscosity leads to a slower propagation of
the change in velocity from one part of the system to another. It
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FIG. 7. The half time plotted against the boundary velocity for a
cylinder radius value of R∗ = 352.5. The half time increases with the
boundary velocity, in contrast with Newtonian behavior where the
half time is expected to be independent of the boundary velocity.

is worth noting here though that the shear thinning in polymer
melts refers to a reduction of a steady-state shear viscosity with
increasing shear rates. In our present work which relates to a
transient state, the velocity evolution within the system cannot
be determined using the steady-state viscosities, since during
the transient state the polymer melt exhibits memory effects,
the reason that in this situation the scale-bridging method is
needed to start with. Nevertheless, the finding that the half
time increases with the boundary velocity is consistent with
shear thinning.

We observe in Fig. 7 the pattern that the half time tends to
reach a saturation value as v∗

0 gets smaller. The limiting value
of the half time for small v∗

0 can be estimated by extrapolating
the plot to the t∗0 axis. We perform a parabolic fit using the
three lowest values of v∗

0 , and obtain the said limiting value
of the half time to be t∗0 ≈ 961. This is a way around an
attempt to calculate the limiting value of the half time by
directly performing simulations at a very low v∗

0 , since at some
point for small enough values of v∗

0 the fluctuations in v∗
become comparable to the actual values of v∗, making a direct
estimation of the velocity profiles and the half time difficult.

In order to study how well the velocity evolution profiles
agree with the profile obtained using a corresponding
Newtonian scheme, we resort to Eq. (13) for a Newtonian
fluid. For the given polymer melt model, namely, FENE
chains with a chain size of 120 at a dimensionless density of
ρ∗ = 0.85, the value of the dimensionless zero-shear viscosity
is μ∗ ≈ 130 [31]. Putting this value in the dimensionless
form of (13), we numerically calculate the normalized
velocity evolution at the axis for the value of the radius
under consideration, namely, R∗ = 352.5. This is plotted in
Fig. 8, along with the normalized velocity evolution of our
polymer melt for the v∗

0 = 0.88 case. We observe that the
evolutions of the normalized velocities hardly agree. Unlike
the polymer melt, the Newtonian plot shows no overshoot, and
the Newtonian half time of t∗0 = 163 is much smaller than the
polymer melt half time of t∗0 = 974. This corroborates that the
velocity evolution of the polymer melt cannot be calculated
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FIG. 8. Evolution of the normalized velocity at the cylinder axis
for R∗ = 352.5. The hollow squares correspond to the polymer melt
system subject to a boundary velocity of v∗

0 = 0.88. The solid line cor-
responds to a Newtonian fluid with a dimensionless viscosity of μ∗ =
130, which is equal to the zero-shear viscosity of the polymer melt.

using the Navier-Stokes formalism for a Newtonian fluid. It is
worth noting here that even in the limit v∗

0 → 0, the velocity
evolution profile cannot be expected to be inferred using the
Newtonian scheme. This is due to the fact that even for small
values of shear rates involved, the polymer melt still possesses
a long stress relaxation time, making it exhibit strong memory
effects that play a role in its rheology. In contrast, a classical
Newtonian fluid is essentially memory-free in the sense that
the shear stress at any point only depends on the then shear rate.

C. Dependence of the half time on cylinder radius
for a fixed boundary velocity

This section pertains to results for scale-bridging simula-
tions done with still N = 25 cylindrical shells and a fixed
value of the boundary velocity v∗

0 , but for different values of
the scale factor, namely, f = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75,

and 2.0, making the corresponding values of the cylinder
radius to be R∗ = 176.3, 264.4, 352.5, 440.6, 528.8, 616.9,

and 705.0, respectively.
Figure 9 shows the time evolution of the velocity at

the cylinder’s axis normalized with respect to the boundary
velocity v∗

0 = 1.76 for different values of the cylinder radius.
The time taken for the surface velocity to propagate to the
cylinder axis increases with cylinder radius, as expected, thus
leading to an increase in the half time. Another interesting
observation is that there is a velocity overshoot at the axis,
but the overshoot (relative to the boundary velocity) decreases
with increasing cylinder radius.

For a Newtonian fluid the half time is expected to vary with
cylinder radius as t0 ∝ R2. In order to investigate if a similar
power law behavior of the form t0 ∝ Rξ exists in the present
polymer melt case, we make a log-log plot of the half time
versus the cylinder radius, shown in Fig. 10. For v∗

0 = 1.76,
a straight line fit of the plot gives a value of the exponent to
be ξ = 1.47 ± 0.01, which is considerably smaller than the
corresponding value of 2 for a Newtonian fluid. A similar
scheme with simulation data for a higher value of the boundary

052311-7



SUBHRANIL DE PHYSICAL REVIEW E 88, 052311 (2013)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  5000  10000  15000  20000  25000

v/
v 0

t*

FIG. 9. The evolution of the normalized velocity at the cylinder
axis for different values of the cylinder radius for v∗

0 = 1.76. The
filled triangles correspond to R∗ = 176.3, the hollow triangles to
R∗ = 352.5, the hollow circles to R∗ = 528.8, and the hollow squares
to R∗ = 705.0. The half time increases and the velocity overshoot
decreases with cylinder radius.

velocity, namely, v∗
0 = 8.81, yields a higher value of the

exponent, ξ = 1.84 ± 0.04, which is still smaller than the
Newtonian value of 2. We have already observed that a lower
boundary velocity leads to faster variations of velocities and
shear rates within the polymer melt (thus leading to a smaller
half time)—in other words, the said variations occur at a
time scale that is even shorter compared to the long stress
relaxation times of the fluid, leading to more pronounced
memory effects. This is consistent with the fact that the
scaling exponent obtained for a low v∗

0 is even more deviated
from the Newtonian exponent of 2.

It is worth mentioning here that in the regime of very
low v∗

0 , where the whole range of shear rates involved will
be accordingly low as well, determining the velocity profiles
requires enormous computational resources. For a situation
like that, resorting to a computational method like the ones
elaborated in Refs. [13–15] may be more appropriate.
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FIG. 10. Log-log plot of half time versus cylinder radius. The
filled squares correspond to v∗

0 = 1.76, yielding an exponent value
of 1.47 ± 0.01, and the hollow squares correspond to v∗

0 = 8.81,
yielding an exponent value of 1.84 ± 0.04.

V. DEPENDENCE ON THE CHOICE OF THE MACRO
TIME STEP AND THE SYSTEM RESOLUTION

A. The macro time step �t

There remains a possibility that the macro time step �t we
used is too long in the sense that we might lose a substantial
amount of information regarding the changing velocities and
shear rates within the cylinder during each �t . In order to
verify that this is not true, we take the case of f = 1.0
(R∗ = 352.5) and take the largest and the smallest boundary
velocities, namely, v∗

0 = 17.62 and v∗
0 = 0.88, respectively,

and run the scale-bridging simulation with a much shorter
macro time step given by �t = 10δt , which is ten times
shorter than the default macro time step used. The results
for the velocity evolution at the axis obtained with the two
different time steps used are shown in Figs. 11(a) and 11(b),
respectively. As manifest in the plots, for each value of the
boundary velocity, the velocities obtained at the axis using
the two different values of �t agree within the statistical
fluctuations.
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FIG. 11. (a) The evolution of the normalized velocity at the
axis for v∗

0 = 17.62 and R∗ = 352.5 using two different values of
�t . The hollow squares correspond to �t = 100δt and the hollow
circles correspond to �t = 10δt . (b) The evolution of the normalized
velocity at the axis for v∗

0 = 0.88 and R∗ = 352.5 using two different
values of �t . The solid squares correspond to �t = 100δt and the
hollow squares correspond to �t = 10δt .
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B. The system resolution N

One obvious question with the data obtained through
our scale-bridging scheme is whether the system resolution,
namely, the number of slices N the cylinder is decomposed
into, is large enough to produce reliable velocity profiles. In
order to test this, we took two system realizations we have
already simulated using N = 25, namely, (a) v∗

0 = 8.81 and
R∗ = 705.0, and (b) v∗

0 = 8.81 and R∗ = 352.5. For each of
the two cases (a) and (b), we now simulated the same system
using a greater system resolution, namely, N = 50. The plots
in Figs. 12(a) and 12(b) show that for each case the velocities
calculated using the two different values of N at the same
location within the cylinder agree very well within statistical
fluctuations, thus leading us to believe that N = 25 is already
a reliable degree of system resolution.
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FIG. 12. (a) The evolution of the normalized velocity at the
axis for v∗

0 = 8.81 and R∗ = 705.0 calculated using two values
of the system resolution N . The hollow squares correspond to
r∗ = 211.5 using N = 25, the × symbols correspond to r∗ = 211.5
using N = 50, the hollow circles correspond to r∗ = 0 (the cylinder
axis) using N = 25, and the + symbols correspond to r∗ = 0 using
N = 50. (b) The evolution of the normalized velocity at the axis
for v∗

0 = 8.81 and R∗ = 352.5 calculated using two values of the
system resolution N . The hollow squares correspond to r∗ = 105.8
using N = 25, the × symbols correspond to r∗ = 105.8 using
N = 50, the hollow circles correspond to r∗ = 0 (the cylinder axis)
using N = 25, and the + symbols correspond to r∗ = 0 using
N = 50.

VI. COMPUTATIONAL GAIN FACTOR

We define the computational gain factor as the ratio of the
computation time required to perform a full-fledged MD simu-
lation of the whole system to the computation time required to
simulate the same system using our scale-bridging scheme.
Since the MD utilizes linked lists, the computation time
required to directly simulate a part of the fluid is approximately
proportional to its volume. Hence the computational gain fac-
tor can be taken to be the ratio of the fluid volume that needs to
be simulated within a full-fledged MD scheme to the combined
volume of all the MD simulation boxes used to simulate the
system using the scale-bridging scheme. For a parallel-plates
system, the computational gain factor is the same as the scale
factor f defined before. However, the cylindrical symmetry for
the system chosen in the present work lets us achieve a greater
computational gain factor, which in this situation reduces to
the ratio of the circular cross-sectional area of the cylinder to
the combined cross-sectional area of all the MD boxes used
for the scale-bridging simulation of the cylinder. Hence the
computational gain factor g will be given by

g = πR2

NL2
. (19)

Since �r = R/N and �r/L = f , relation (19) can be
written as

g = πNf 2. (20)

From the above relation we can calculate the computational
gain factors achieved in the scale- bridging simulations
reported in this paper. The largest computational gain factor
was achieved for N = 25 and f = 2.0, the said largest value
being about 314. The gain factor had its smallest value of
about 20 for N = 25 and f = 0.5. As we can see, there is a
considerable computational gain even when f < 1, due to the
cylindrical symmetry of the system.

The above gain factors assume the same MD time step for
a corresponding full-fledged MD simulation of the system. On
the other hand, if we take into account the fact that the MD
time step used in the scale-bridging simulations of the present
work is about five times smaller than the standard MD time
step used in FENE systems, even then the smallest and largest
gain factor achieved turn out to be about 4 and 63, respectively.

VII. SUMMARY AND CONCLUSIONS

We extended the “constitutive equation”–free scale-
bridging method previously applied to a parallel-plates ge-
ometry to study the flow of a viscoelastic polymer melt
contained within a cylinder and subject to a boundary velocity
directed parallel to the cylinder’s axis. Similar to the original
version of the method, the present version developed as well
connects MD and continuum fluid mechanics while it takes
into account the memory effect exhibited by the polymer
melt. In addition, similar to the original version, the extended
version as well is conducive to a saving of computation
time through MD simulations of only parts of the system.
We studied a situation where the velocity at the cylinder’s
surface is initially zero and then acquires a constant finite
value, and calculated the half time defined as the time taken
for the velocity at the axis to become half of the boundary
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velocity. Thus the half time is a measure of the time taken
for the change in velocity to propagate from the boundary
to the axis. Using our scale-bridging method adopted for the
cylindrical geometry, we performed two sets of simulations.
In the first set, we studied the variation of the half time with
the boundary velocity for a fixed cylinder radius. We observed
that the half time increases significantly with the boundary
velocity—manifesting that the propagation of the change in
velocity from the boundary to the axis is slower for higher
values of the boundary velocity. This is in contrast with the
case with a Newtonian fluid, for which the propagation time is
expected to be independent of the boundary velocity. The said
behavior obtained with the polymer melt is consistent with an
effective viscosity that is lower for a higher shear rate, in other
words, shear thinning, a behavior polymer melts are known
to manifest. It turns out that the normalized velocity evolution
cannot be modeled with a Newtonian fluid with the appropriate
viscosity, since the melt is fraught with strong memory effects
due to its long stress relaxation time, which is true even for
low shear-rate values.

In the second set of simulations we kept the value of the
boundary velocity constant and studied the dependence of the
half time on cylinder radius. This dependence is expected to
be of the form t0 ∝ R2 for a Newtonian fluid. Assuming a
similar power-law dependence of the form t0 ∝ Rξ in the case
of the polymer melt, we calculated the value of the exponent
ξ, which turned out to be smaller than the Newtonian value
of 2. The value of ξ turns out to be more deviated from the
Newtonian value when the boundary velocity is smaller. We
argue that this is due to the fact that for a lower boundary
velocity the time scale of velocity and shear rate variations
is even shorter compared to the long stress relaxation time of
the melt, as observed, thus leading to even stronger memory
effects. As a by-product of the simulations mentioned above,
we observed a velocity overshoot behavior at the axis for low
boundary velocities and small values of the cylinder radius.
It is well known that when a polymer melt is first subject
to a shear rate, it initially undergoes an overshoot in shear
stress [8,34,35], a behavior arising from the elastic aspect
of the viscoelasticity of the melt. The velocity overshoot we
observed in our simulations is also a manifestation of elasticity
of the polymer melt.

The situation chosen here is different from a steady-state
situation, like the flow under a steady pressure gradient, where
the scale-bridging method, although still useful, is deemed
redundant. This is due to the fact that for any steady-state
flow, a constitutive relationship between shear rates and
corresponding steady shear viscosities (like the ones presented
in the plots in Fig. 1(a) in Ref. [32] and Fig. 1(a) in Ref. [33])
can be directly used to determine the flow profiles. As a
contrast, for a transient (unsteady) flow situation like the
one chosen in the present work, a steady-state constitutive
relationship is expected to fail since the flow properties
are fraught with memory effects. To our knowledge, this
is the first time a constitutive equation–free scale–bridging
method connecting molecular dynamics and continuum fluid
mechanics has been applied to any geometry other than the
parallel-plates geometry. Since the method does not require
a constitutive equation for the fluid, it can be used to study
the flow of viscoelastic fluids for a wide range of geometries

and boundary conditions given an atomistic model for the
fluid. The situation studied in this paper, namely, longitudinal
flow of a viscoelastic fluid embedded in a cylinder, is a
common situation in both nature and engineering. For studying
a transient (unsteady) flow problem in a cylindrical geometry
starting from an atomistic model, the scale-bridging method is
deemed a natural choice since a full-fledged MD simulation of
the whole system necessitates the modeling of a wall enclosing
the geometry as well. Moreover, the cylindrical symmetry of
the system leads to an effective computation time gain that is
much higher compared to the parallel-plates case. It is also
worth noting that the scale-bridging method is not limited
to only polymer melts composed of linear polymer chains.
Starting with the appropriate atomistic model, our multiscale
method can be used to study the flow behavior of other complex
fluids [30] as well, including branched polymers, wormlike
micelles, and colloidal fluids.
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APPENDIX

The velocity boundary condition given by Eq. (11) can be
written as

vz(r = R,t) = v0H (t), (A1)

where H (t) is the Heaviside step function. When the above
boundary condition is applied to a cylindrical geometry of
radius R containing a given Newtonian fluid, let us assume
that the resulting velocity within the fluid is given by

vz = f (r,t), (A2)

which must solve the Navier-Stokes equation (13). Now, it can
be shown through straightforward substitution that since (A2)
is a solution to (13),

vz = f (nr,n2t) (A3)

will be also a solution to (13) as well, where the number n is
an arbitrary scale factor.

Hence we can infer that for the same fluid contained within
a cylinder of a different radius Rn given by

Rn = nR, (A4)

if we apply the velocity boundary condition

vz(r = nR,t) = v0H (n2t) (A5)

to the cylinder’s surface, then the resulting velocity within the
fluid will be given by the relation (A3). Now the half time
corresponds to the time evolution of the velocity at the axis,
and for the cylinder of radius Rn, the said velocity will be given
by vz(r = 0,t) = f (0,n2t), and hence the half time tn for the
cylinder of radius Rn will be given by

tn = n2t0, (A6)

where t0 is the half time for the cylinder of radius R.
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Now, for any constant b > 0, H (bt) = H (t) [36]. Hence
H (n2t) = H (t), and the velocity boundary condition at the
surface of the cylinder of radius Rn, namely, relation (A5),
is deemed the same as the one for the cylinder of radius R,
namely, (A1). Hence using (A4) and (A6) we conclude that for
the cylinder of radius Rn, if the cylinder surface is subject to
a velocity given by vz(r = Rn,t) = v0H (t), the corresponding

half time will vary with the cylinder radius as

tn/t0 = R2
n

/
R2

or

tn ∝ R2
n.

Hence proved.
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