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Transient formation of bcc crystals in suspensions of poly(N-isopropylacrylamide)-based microgels
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We present a small-angle x-ray scattering study of crystals formed by temperature-sensitive, swollen microgel
particles consisting of poly(N -isopropylacrylamide) copolymerized with acrylic acid and 5 mol % of a cross-
linker. As for hard spheres, the random hexagonal close-packed structure is predominant during crystal growth and
slowly transforms toward the face-centered-cubic structure. However, a transient phase of body-centered-cubic
crystal is observed in an intermediate range of effective volume fractions. We estimate that the studied suspensions
are close to a transition from face-centered-cubic to body-centered-cubic structure that can be understood by the
tendency of the system to maximize the excluded volume and minimize the contact area between the particles.
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I. INTRODUCTION

Microgels are cross-linked polymer particles with diame-
ters in the nm and μm range that respond reversibly to changes
in the environmental conditions by changing their size. This
responsiveness is due to variations in polymer solubility, as
induced by changes in temperature [1], hydrostatic pressure
[2], pH [3], salt concentration [4], or external osmotic pressure
[5]. This transition between swollen and deswollen states [6]
is attractive for many applications [7–9] and also for studying
the effect of particle softness on phase transitions such as
crystallization.

As both the colloidal and polymeric properties of the
particles are relevant for the behavior of microgel suspen-
sions at high concentrations [10], their phase behavior is
not as well understood as that of hard particles, and the
interaction between microgel particles and the dependence
on particle concentration is still not known in detail [11].
Recent work suggests that microgel particles interact via a
Hertzian potential for center-to-center distances slightly below
the particle diameter [12,13], although other works find that
this potential does not provide a good model for the phase
behavior of microgels [14]. From a theoretical point of view,
charged microgels interacting via a Yukawa pair potential for
center-to-center distances above the particle diameter and via
a soft potential for distances below the particle diameter are
predicted to form crystal structures which are different from
those formed by hard-sphere suspensions at sufficiently high
volume fractions [15]. However, our previous neutron and
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x-ray scattering studies on charged microgels [16,17] as well
as experimental results by other groups [18,19] indicate that
the crystal structure is comparable to that of hard spheres even
for very dense packing, where particles have to deform and/or
interpenetrate.

We present data from a small-angle x-ray scattering (SAXS)
study of crystal growth in a slightly charged microgel system of
poly(N -isopropylacrylamide) (pNIPAM) copolymerized with
acrylic acid (AAc). As a result, in addition to the response to
temperature changes by virtue of the pNIPAM, these particles
are also pH sensitive, as AAc gets ionized at pH > 4.3 [20].
We study suspensions at a fixed pH a little above this transition,
such that the particles are slightly charged and show a clear
temperature response. As in hard spheres, we find that random
hexagonal-close-packed (rhcp) crystals grow initially. This is
a random sequence of close-packed hexagonal planes that can
be understood as a random mixture of the packing found in
the face-centered-cubic (fcc) and the hexagonal-close-packed
(hcp) lattice. The appearance of rhcp crystal shows that the
free-energy difference between fcc and hcp lattices is small,
as observed in hard spheres [21,22]. Furthermore, the rhcp
crystal is found to transform slowly toward the fcc crystal
lattice, which appears to be the equilibrium structure, as in hard
spheres [22,23]. However, at intermediate volume fractions,
a body-centered-cubic (bcc) crystal phase appears, which is
not stable and, therefore, disappears as the samples age. This
crystal structure is expected for hard-core Yukawa particles
with an intermediate screening length and at volume fractions
below those where the fcc structure is the ground state of
the system [24]. In contrast, for fuzzy particles with a steric
repulsion the bcc structure is not expected at low volume
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fractions but is predicted to appear in an intermediate range
of volume fractions, between a loosely and a densely packed
fcc phase [25,26]. In analogy to this model, we observe the
transient bcc crystal phase between bands of crystal with rhcp
crystal that slowly converts to fcc. This suggests that our
observations could be related to the predictions of the model
for fuzzy particles. Our observations are also the first of this
type for a microgel suspension.

II. EXPERIMENTAL METHODS

A. pNIPAM-AAc suspensions

We study temperature-sensitive particles consisting of
poly(N -isopropylacrylamide) copolymerized with acrylic acid
(2 mol %) and cross-linked with methylene-bis-acrylamide
(5 mol %). As the cross-linker reacts faster than the NIPAM
monomer during polymerization, the particles have a decaying
concentration of cross-linker from the center to the periphery.
The particles were synthesized as described in Refs. [27,28].
Their swelling behavior at pH = 4.5 was determined by
dynamic light scattering measurements; the particles show
a broad volume transition between 25 and 40 ◦C, with a
hydrodynamic radius that decreases from Rh = (159 ± 7) nm
at 20 ◦C to (63 ± 2) nm at 50 ◦C, as shown in Fig. 1. The
volume phase transition is broader than in pure pNIPAM
microgel particles due to the slight charge of the AAc
groups. Viscometry measurements were carried out with dilute
suspensions at pH = 4.5 and 24 ◦C, which corresponds to
a swollen particle state, to relate the polymer concentration,
cp, to the generalized volume fraction, ζ , according to the
Batchelor-Einstein equation [29]. We obtain ζ = kcp, with a
conversion factor k = 0.241 wt. %−1.

The phase behavior of suspensions with polymer concentra-
tions in the range from cp = 1.0 wt. % (ζ = 0.24) up to cp =
6.9 wt. % (ζ = 1.66) was inspected visually (Fig. 2). Crys-
tallization was observed in the range from cp = 1.90 wt. %
(ζ = 0.46) to cp = 2.54 wt. % (ζ = 0.61) and a series of
eight suspensions in this range was prepared for SAXS
measurements. To obtain an overview of the crystallization and
crystal structure with time, samples in quartz capillaries were
prepared 26, 19, 12, 6, and 2 days, as well as 21 and 2 h before
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FIG. 1. Hydrodynamic radius of pNIPAM-AAc particles at pH =
4.5, determined by dynamic light scattering, vs temperature.

weight concentration

crystal glass

cp=1 wt%
ζ=0.24

cp=6.9 wt%
ζ=1.66

cp=2.55 wt%
ζ=0.61

cp=1.90 wt%
ζ=0.46

FIG. 2. (Color online) Phase behavior of pNIPAM-AAc microgel
particles at pH = 4.5 as determined by visual inspection. The opal-
like appearance of the crystal samples is due to Bragg peaks observed
with visible light.

the start of the SAXS measurements. All measurements were
carried out in the fully swollen state at 24 ◦C. In addition, a
series of samples was heated up to 41 ◦C to melt the crystals and
cooled back down to 24 ◦C. The subsequent recrystallization
was monitored for 12 h.

B. SAXS

All samples were measured on the cSAXS beamline of the
Swiss Light Source at Paul Scherrer Institut, Switzerland. The
instrument was set up for a wavelength of 0.1425 nm and a
sample-to-detector distance of 7.12 m to measure the signal
at low values of the scattering vector q = (4π/λ) sin(θ/2),
where λ is the wavelength and θ is the scattering angle. The
two-dimensional (2D) detector has a pixel size of 172 μm
[30] and the beam was collimated to illuminate an area of
≈ 200 × 200 μm2 on the sample. The samples were loaded
in quartz capillaries with an inner diameter of 1 mm and
centered in the beam with a series of short measurements.
Measurements were taken in several locations along the sample
capillary to obtain an overview of the phase behavior of the
sample. Typically, data sets of 20 measurements of 0.1 s each
were taken with the 2D detector. The observed Bragg peaks
were found to be diminished by the x-ray beam after ≈ 0.5 s
probably due to local heating. For this reason, only the first
0.4 s of the measurements was used for the analysis of the
observed crystals. Since the particle diameter is ≈ 270 nm,
only the region of 500 × 500 pixels close to the direct beam
was of interest for determining the form factor and the crystal
structure (0.01 < q < 0.2 nm−1); all the presented analysis is
done with this central part of the detector.

III. RESULTS AND DISCUSSION

The particle form factor, P (q), was measured with a
dilute sample at cp ≈ 0.01 wt. % (ζ ≈ 0.0024). The obtained
scattering profile, shown in Fig. 3(a), was analyzed using
the form-factor model of Stieger and Richtering [31,32].
We used the same form-factor model in earlier small-angle
neutron-scattering measurements carried out with the same
type of particles [33]. Within this model, the particle consists
of a compact core, treated as a hard sphere, and a fuzzy
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FIG. 3. (Color online) (a) SAXS measurement of the particle form factor taken with a sample at cp ≈ 0.01 wt. % (ζ ≈ 0.0024). The red
line shows the fit obtained with the form-factor model of Stieger and Richtering; see text for details. (b) (Symbols) Structure factor of a fluid
sample at cp ≈ 1.90 wt. % (ζ = 0.46) compared with (red line) the Percus-Yevick structure factor.

corona of polymer strands sticking out into the solvent that
is accounted for by convoluting the spherical core with a
Gaussian with variance σ 2. In reciprocal space, the form factor,
P1(q), is obtained as the form factor of a sphere with radius
R and constant scattering length density representing the core
multiplied by a Gaussian with variance (1/σ )2:

P1(q) =
[

3(sin qR − qR cos qR)

(qR)3
exp[−(σq)2/2]

]2

. (1)

We also account for core polydispersity with a Gaussian size
distribution of width σpol,

D(R) = 1√
2πσpolRav

exp

[
− (R − Rav)2

2σ 2
polR

2
av

]
. (2)

Inhomogeneities inside the cross-linked pNIPAM-AAc parti-
cles also contribute to the form factor. Their correlation length
is expected to correspond to the mesh size, ξ , of the polymer.
This can be estimated from the number of particles, Np, the
volume of one particle, Vp, and the number of cross-linker
molecules, Nx-link, in the sample: ξ = (Np Vp/Nx-link)1/3 ≈
5 nm. A Lorentzian term is, therefore, added to the form factor:
Ichain(q) = Ichain(0)/[1 + (ξq)2]. The complete expression for
the form-factor model is given by

P (q) =
∫ ∞

0
dR D(R)P1(q) + Ichain(q). (3)

From the fit we obtain the values for the core radius,
Rav = (89.2 ± 0.6) nm, the fuzzy shell size, σ = (21.9 ±
0.6) nm, and the polydispersity, σpol = 0.096 ± 0.006. The
total particle radius is obtained as RSAXS = Rav + 2σ =
(133.1 ± 1.8) nm. This is smaller than the hydrodynamic
radius Rh = (152 ± 7) nm obtained at 24 ◦C, possibly due to
the hardly detectable contribution of the outskirts of the fuzzy
particle corona to the SAXS intensity.

The form factor is used to obtain the structure factor
S(q) = I (q)/P (q), with I (q) the scattered intensity of the
investigated crystal samples. Figure 3(b) shows a comparison
of the structure factor obtained for a sample at ζ = 0.46 in the
supercooled fluid state with the corresponding Percus-Yevick
(PY) structure factor [34]. The measured S(q) was multiplied
by a factor to fit the height of the first peak of the PY structure

factor. The positions of the first and second peak agree with PY
expectations. However, there is a clear disagreement at high q,
which may be due to the errors in the form-factor measurement
for q > 0.08 nm−1 [see Fig. 3(a)] and their propagation when
obtaining S(q).

The initial evolution of the samples was followed with
capillaries that were filled right before the measurement.
The time taken for crystals to appear was determined by
performing measurements at times between those mentioned
in the previous section; they are listed in Table I. The
samples with intermediate effective volume fraction in the
range 0.5 < ζ < 0.6 were found to crystallize within a few
hours, while those with lower or higher ζ took considerably
longer. This behavior is analogous to that expected from
hard spheres, where the fastest nucleation density rates, J ,
are observed close to the melting point at volume fraction
φm = 0.54 at the upper end of the φ-range of crystal-fluid
coexistence [35]. The driving force for nucleation, given by the
difference of the chemical potentials of the fluid and the crystal
state, 	μ, increases with volume fraction and, therefore, J is
also expected to increase. However, J reaches a maximum,
as the kinetics of the incorporation of particles into crystal
nuclei is slowed down [36]. Moreover, a simulation study
of hard spheres indicates that the surface tension, γ , of the
crystal-fluid interface of hard spheres depends on 	μ such that
the free-energy barrier for nucleation increases for φ � φm and
causes J to decrease [37].

In all studied samples, the random hexagonal close-packed
(rhcp) lattice is found to form from fluid states obtained either
by shear-melting crystals while filling the capillaries or by
heating the sample to 41 ◦C followed by cooling down to
the swollen state at 24 ◦C. Bragg rings with peak positions
expected for rhcp crystal are observed in many samples; an
example is shown in Fig. 4(a). A hexagonal pattern of Bragg
reflections is also observed in many samples, as shown in
Fig. 4(b); this suggests the formation of hexagonal crystal
layers on the wall of the sample capillary by heterogenous
nucleation such that hexagonal planes are oriented perpendic-
ular to the x-ray beam. This behavior is analogous to hard
spheres, which spontaneously form rhcp crystal on a flat wall,
as the wall strongly reduces the free-energy barrier for crystal
nucleation [38].
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TABLE I. The effective volume fraction, ζ , polymer concentration, cp , rhcp lattice parameter a (nearest-neighbor distance), time for
crystallization, and the dominant crystal structure observed in the youngest and the oldest crystalline samples for all studied samples, together
with the parameter α [Eq. (4)] giving the randomness of the rhcp crystal. As samples were remeasured in irregular intervals, only a rough
estimate of the crystallization time can be given.

cp (±0.005) ahcp (±2) tcrystal crystal structure, α (±0.05)

ζ (±0.005) (% wt.) (nm) (h) early final

0.460 1.900 320 14 ± 9 rhcp 0.50 rhcp 0.65
0.480 2.000 317 14 ± 9 rhcp 0.50 rhcp 0.60
0.510 2.110 302 2.5 ± 1 rhcp 0.50/bcc rhcp 0.60
0.520 2.180 297 2.5 ± 1 rhcp 0.50/bcc rhcp 0.70
0.540 2.250 295 2.5 ± 1 rhcp 0.60/bcc rhcp 0.65
0.570 2.350 292 0.5 ± 0.5 rhcp 0.50/bcc rhcp 0.70
0.590 2.460 289 2.5 ± 1 rhcp 0.58 rhcp 0.63
0.610 2.550 283 30 ± 10 rhcp 0.60 rhcp 0.72

The structure factor of rhcp crystal, Srhcp(q), is given by
Bragg peaks and Bragg rods, which are due to the random
stacking of hexagonal planes sketched in Fig. 4(c). The Bragg
rods are oriented perpendicular to the hexagonal planes, along
the direction of random stacking, the qz direction in Fig. 4(d).
The positions of the Bragg rods and Bragg peaks in the (qx,qy)
plane are given by the Bragg peaks of a single hexagonal
plane, and the intensity variation along the rods (qz direction)
is given by a continuous intensity variation depending on
the randomness of the stacking of the hexagonal planes. The
condition for Bragg peaks is fulfilled for the second Bragg ring
[green dots in Fig. 4(d)], while Bragg rods are observed for the
first and third rings in Fig. 4(d). Close packing of hexagonal
planes allows for three different positions of the planes, labeled
A, B, and C in Fig. 4(c). Two neighboring hexagonal planes
are, therefore, always shifted by either r1 or r2, also shown
in Fig. 4(c). The sequence of the hexagonal plane positions
is random in rhcp crystal. This randomness is measured by
the parameter α: given that the shift from a first to a second
hexagonal plane is given by translation vector r1, α gives the
probability that the shift from the second to the third plane is
also given by r1. Thus, α = 0 corresponds to an alternating
stacking with translation vectors r1 and r2 giving, e.g., the
sequence AB AB AB . . . of the hexagonal planes sketched in
Fig. 4(c). Therefore, the hexagonal close-packed (hcp) lattice
is obtained with α = 0, while α = 1 corresponds to the face-
centered-cubic (fcc) lattice with the stacking ABC ABC . . . .
A completely random stacking is given by α = 1/2. The
variation of the structure factor along the stacking direction
given by q̂z was determined as a function of α in Ref. [39];
an earlier treatment of the problem is found in Ref. [40]. The
result is

Srhcp(q) = Shex(qx,qy) α(1 − α){1 − cos[q · (r1 − r2)]}
/{1 − 2α + 3α2 − 2α2[cos(q · r1) + cos(q · r2)]

+α2 cos[q · (r1 − r2)]

+ (2α − 1) cos[q · (r1 + r2)]}, (4)

where Shex(qx,qy) is the structure factor of one hexagonal
plane in two dimensions, which, therefore, only depends on
qx and qy . Equation (4) is valid for the first and third ring
of Bragg rods [red and blue dots in Fig. 4(d)]. However, it

does not apply for the second ring, where the condition for
Bragg peaks, exp[iq · r1] = exp[iq · r2], is fulfilled and the
denominator of Eq. (4) always vanishes. In this case, Eq. (4)
becomes [39]

Srhcp(q) = Shex(qx,qy)
1

M

sin2[(M/2)q · r1]

sin2[(1/2)q · r1]
, (5)

where M is the number of hexagonal planes that are stacked
on top of each other and is a measure of the sharpness of
the Bragg peaks. For crystallization in the bulk, samples are
expected to be polycrystalline, as crystal grains nucleate with
random orientations. Therefore, we calculate the radial average
of Srhcp(q) with a probability distribution p[cos(θ )] = 1/(4π )
for −1 < cos(θ ) � 1, where θ is the angle between the Bragg
rods and the incident beam direction k̂i ; hence, cos(θ ) = q̂z ·
k̂i . The resultant structure factor is

Spoly−rhcp(q)

= FDW(q)
∫ 2π

0
dφ

∫ π

0
dθ sin(θ ) p[cos(θ )] Srhcp(q), (6)

where we have included a Debye-Waller factor, FDW(q) =
exp(−q2 〈u2〉 / 3), to take into account local particle fluctua-
tions. The average displacement of the particles is set to 〈u〉 =
0.1a, where a is the lattice constant. The angles θ and φ are po-
lar coordinates of q = q [sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )],
and the direction of the Bragg rods is assumed to be given
by q̂z = (0,0,1). As mentioned above, hexagonal patterns
of Bragg peaks are observed in many samples, which is
expected for heterogeneous crystallization on the capillary
walls. In these cases, the choice p[cos(θ )] = δ[cos(θ ) − 1],
corresponding to θ = 0, usually gives a good fit to the
measured S(q).

The structure factor of the crystal appearing after sample
preparation can be described with a stacking probability
α ≈ 0.5, as shown in Figs. 4(e) and 4(f). The rhcp crystal
lattice accounts for all peaks, and the intensities of the first
two peaks are well reproduced. Lorentzian curves are used for
the fits, as with this peak shape we reproduce the background
caused by disorder within and between crystal grains to some
extent. The peak width at half-maximum is approximated as
	q ≈ 0.06q, which is comparable but slightly larger than the
q resolution of the instrument. The resolution is given by
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FIG. 4. (Color online) (a,b) Detector images taken at (a) ζ = 0.61 with Bragg rings and (b) ζ = 0.59 with a hexagonal pattern of Bragg
peaks. (c) The three stacking positions A, B, and C for hexagonal particle planes for close-packed crystals. See text for details. (d) Sketch of
the scattering intensity in q space obtained from a rhcp lattice. The reciprocal-lattice points of the hexagonal plane are highlighted by dots,
and Bragg rods are shown by fading vertical bars. (e,f) Azimuthally averaged structure factor of rhcp crystals formed in young samples with
(e) arhcp = (289 ± 2) nm, α = 0.60 ± 0.05, ζ = 0.61 prepared ≈ 2 h before the measurement and (f) arhcp = (302 ± 2) nm, α = 0.50 ± 0.05,
ζ = 0.51 after melting with a temporary increase of temperature to 41 ◦C. The red curves represent the rhcp fits. The vertical lines show the
Bragg peak positions of a single hexagonal plane.

dq/q = dθ/θ + dλ/λ, where θ is the scattering angle, and the
wavelength spread dλ/λ ≈ 2 × 10−4. The contribution dθ/θ

depends on the distance of a detector pixel from the direct
beam position; for the first peak observed at q ≈ 0.026 nm−1

we have dθ/θ ≈ 0.04, and dθ/θ ≈ 0.025 for the second peak
at q ≈ 0.042 nm−1. As in the fluid sample above, the error
in S(q) increases considerably for q > 0.04 nm−1, where the
statistical error in the data increases due to the sharp dropoff
of the form factor shown in Fig. 3(a). As rhcp crystals are a
random mixture of fcc- and hcp-like packing of hexagonal
planes, the observed formation of rhcp crystal shows that
the free-energy difference between fcc and hcp crystal is
small in the studied suspensions of pNIPAM-AAc particles.
However, we find that older samples transform toward the fcc
stacking, as shown in Fig. 5. The best fit to the measured
S(q) is obtained with α ≈ 0.7 for samples that have aged
for 19 to 26 days. The fit in the figure (red line) includes the

corresponding rhcp calculation. The shoulder on the right-hand
side of the first peak at q ≈ 0.026 nm−1 is a sign for fcc
stacking, as the (1,1,1) and (2,0,0) reflections of fcc crystal
appear at q ≈ 0.026 nm−1 and q ≈ 0.030 nm−1, respectively,
for a nearest-neighbor distance of 299 nm [Fig. 5(a)]. Again,
the appearance of fcc crystal is analogous to the behavior of
hard spheres, whose equilibrium crystal structure is given by
the fcc lattice. The hard-sphere-like behavior may be due to
the relatively high stiffness of the particles with a cross-linker
concentration of 5 mol %, and softer particles might show a
different behavior.

However, contrary to the hard-sphere-like behavior de-
scribed above, an additional crystal structure is observed
in several samples with concentrations in the range 0.50 <

ζ < 0.58. This additional crystal structure is most probably
body-centered-cubic (bcc) and appears together or somewhat
after the appearance of the rhcp crystal. In older samples,
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(a) (b)

FIG. 5. (Color online) Azimuthally averaged structure factors S(q) of crystal with predominant fcc stacking. (a) arhcp = (299 ± 2) nm, ζ =
0.52, α = 0.70 ± 0.05, and (b) arhcp = (280 ± 2) nm, ζ = 0.61, α = 0.72 ± 0.05. Both samples were prepared 26 days before the measurement.
The red lines represent the rhcp fit. The vertical lines show the Bragg peak positions of a single hexagonal plane.

the bcc crystal phase is not observed, suggesting that this
is not a stable phase of the studied pNIPAM-AAc particles.
Our evidence for bcc crystal comes from two peaks in the
radially averaged S(q) curves and the 2D pattern of Bragg
peaks visible in some samples, which cannot be obtained with
fcc, hcp, or rhcp lattices with a particle density close to the
one observed in the rhcp crystal. The sample with ζ = 0.57
is an example of this type of behavior. The corresponding
S(q) taken 3.5 h after melting the sample with a temperature
change to 41 ◦C is shown in Fig. 6(a). The peaks at q ≈ 0.039
and 0.047 nm−1 can be accounted for with a bcc lattice, but
not with the rhcp lattice that is found to coexist with the bcc
crystal. Thus the red line in Fig. 6(a) represents a superposition
of the scattering from a bcc and a rhcp lattice. We expect the
particle densities in the bcc and the rhcp lattice to be about
the same, as they coexist at constant osmotic pressure. From
the observed peak positions, we obtain the lattice constants
for the bcc lattice, abcc = (325 ± 2) nm, and the rhcp lattice,
arhcp = (289 ± 2) nm. Recalling that there are two particles
per conventional unit cell in either crystal structure, we obtain
particle number densities of nbcc = 2

a3
bcc

= (58.3 ± 1.0) μm−3

and nrhcp = 2√
2a3

rhcp
= (58.6 ± 1.2) μm−3, which indeed agree

with each other supporting the proposed coexistence of rhcp
and bcc lattices. Furthermore, a set of Bragg peaks fitting a
bcc lattice is observed in the 2D detector image of the same
measurement, as shown in Fig. 6(b). The highlighted Bragg
peaks fit the peaks expected from a bcc lattice with an incident
beam along the (1, 1, 0) direction in the conventional unit
cell of bcc. The (1,1,0) plane is the densest plane in the bcc
lattice and its formation on the wall can therefore be expected.
However, our time-resolved measurements show that the bcc
crystal is not present in samples older than ∼ 10 h, suggesting
that the system is close to coexistence of fcc and bcc, with the
bcc lattice being only metastable. Evidence for the coexistence
of fcc and bcc was found before in a light-scattering study [19],
where only the first peak of the bcc crystal was observed.

We estimate the free energy of fcc and bcc crystal using
the foam model for particles with a hard core surrounded by
a soft corona [25,26]. The model relies on two competing
effects controlling the crystal structure made by this kind of
particle. On the one hand, the maximum packing fraction rule,
at play in the presence of pure excluded-volume interactions,

(a) (b)

FIG. 6. (Color online) (a) Measured structure factor at ζ = 0.57 showing peaks corresponding to rhcp and bcc crystals. The red curve
shows the structure factor expected for a superposition of rhcp (45%), with arhcp = (289 ± 2) nm, α = 0.5 ± 0.05, and bcc (55%) crystal,
with abcc = (326 ± 2) nm. The magenta vertical lines show the Bragg peak positions of a single hexagonal plane, while the green lines show
bcc Bragg peak positions. (b) Detector image of the measurement shown in (a) with a logarithmic color scale. The original detector image is
shown on the left, and the same image with the bcc-like Bragg peaks highlighted in red is shown on the right. The position of the bcc peaks is
calculated with an incident beam direction ki = (1,1,0) in the bcc reciprocal lattice.

052308-6



TRANSIENT FORMATION OF bcc CRYSTALS IN . . . PHYSICAL REVIEW E 88, 052308 (2013)

favors a close-packed structure, as the configurational entropy
of the system is maximum in this situation. On the other hand,
the principle of contact area minimization, at play since the
interaction between the particles scales with the contact area
between them, favors the formation of more loosely packed
structures such as the bcc or the A15 lattice, which is a bcc
lattice with eight basis atoms in the unit cell. According to the
foam model, the corresponding contributions to the system
free energy are given by Eqs. (2) and (5) in Ref. [25]:

FX
bulk = −kBT log

[
αX

(
βX

n1/3
− 1

)3
]

, (7)

FX
surface = lN0kBT

R

γ Xn−2/3

n−1 − 4π/3
, (8)

where αX, βX, and γ X, given in Table II, are geometrical
constants for lattice X ∈ {fcc, bcc}, n is the particle number
density, R is the total particle radius, and N0 is the number of
polymer strands in the corona of the particles. The parameter
l is a length defining the overlap of two interacting particles
and defines the strength of their steric repulsion.

We estimate N0 from the fraction of polymer present in the
corona according to the measured form factor. In real space, the
polymer density of a particle, dpolymer, relative to the polymer
density in the core, dpolymer,core, is given by the compact core
convoluted with a Gaussian. This relative polymer density can
be calculated as a function of the position, r , for a particle with
center of mass at r = 0:

dpolymer(r)

dpolymer,core
= 1

(
√

2πσ )3

∫ ∞

0
dr ′ r ′2

∫ π

0
dθ sin(θ )

∫ 2π

0
dϕ �(Rav − r ′) e

− |r′−r|2
2σ2

=
2
(
−e

− (r−Rav)2

2σ2 + e
− (r+Rav)2

2σ2

)
σ − √

2π r Erf
[

r−Rav√
2σ

]
+ √

2π r Erf
[

r+Rav√
2σ

]
2
√

2π r
(9)

with �(Rav − r ′) the Heaviside function representing the core
and Erf the error function. Note that σ defines the width of the
corona. From here, we can calculate the fraction of polymer
contained in the corona as 4π

∫ ∞
Rav

dr r2 dpolymer(r). Using
Rav = (89.2 ± 0.6) nm and σ = (21.9 ± 0.6) nm from the
form-factor fit presented above, we estimate a fraction of poly-
mer in the corona of ≈ 0.3. In addition, we estimate the number
of polymer strands in the particle as Ns ≈ Nx-link, where Nx-link

is the number of cross-linker molecules in a particle. Hence
Ns ≈ xBIS dsusp Vp/(k M) ≈ 1.7 × 105, where we have used a
value of the conversion constant, k = 24.1, a mass density
of the suspension, dsusp ≈ 1.02 g/cm3, and an average molar
mass per monomer, M = 114.387 g/mol, obtained from the
molar masses of the monomers, MNIPAM = 113.158 g/mol,
MAAc = 72.063 g/mol, and MBIS = 154.167 g/mol, and the
corresponding monomer molar fractions, xNIPAM = 0.93,
xAAc = 0.02, and xBIS = 0.05. The result is the number of
polymer strands in the corona, N0 ≈ 0.3 Ns = 5.0 × 104.

To calculate the total free energy, we also need to know
the overlap thickness, l, of the coronas of two interacting
particles. This, however, is not known. As a result, we can only
estimate FX

surface. We do so by choosing an R in the range from
RSAXS = (134.2 ± 1.8) nm to Rh = (152 ± 7) nm, and an
overlap thickness, l, between 0.5 and 15 nm. We then find that
the total free energy of the bcc lattice is lower than that of the
fcc lattice by 3–9 %, suggesting that the formation of a transient

TABLE II. Values of the geometrical factors αX , βX , γ X , and
the particle density, n, for Fbulk and Fsurface according to the foam
model [25]. See text for details.

lattice αX βX γ X n (μm−3)

fcc 25/2 2−5/6 5.345 58.6 ± 1.2
bcc 22

√
3 2−5/3

√
3 5.306 58.3 ± 1.0

bcc structure in our microgel suspension could be related
to the repulsion between the fuzzy outskirts of the particles
and the natural tendency to reduce the associated surface free
energy. Further support of this fact is that the formation of
the transient bcc structure is only observed at intermediate
ζ -values, consistent with the foam model expectation that this
structure would form between an expanded and a compressed
fcc structure. Despite this fact, we observe that the fcc structure
is the one that prevails at all studied ζ , suggesting that
the entropic contribution to the free energy resulting from
the volume inaccessible for the center of mass of the particles’
core dominates the total free energy of the system. In addition,
we also note that the foam model may not have the correct bal-
ance between Fbulk and Fsurface, as it uses generic expressions
for the contributions to the free energy and does not take the
details of the polymer density inside the microgel [Eq. (9)] into
account.

IV. CONCLUSIONS

The presented SAXS study shows that the fcc crystal
structure is the equilibrium structure of suspensions of
pNIPAM-AAc microgel particles with a 5 mol % cross-linker.
Random hcp crystal forms spontaneously due to the small
free-energy cost of having stacking faults of hexagonal crystal
planes. This behavior is analogous to that of hard spheres
and consistent with what was observed in suspensions of
ionic vinyl-pyridine microgel suspensions [17]. However, the
formation of bcc crystal we observe is incompatible with
hard-sphere-like behavior and could result from the influence
of an area-minimizing principle suggested by the foam model
[25,26]. As the rhcp crystal, the bcc crystal appears to form
predominantly by heterogeneous nucleation on the wall of the
sample capillaries. We believe the bcc structure is metastable
because it disappears as the samples age. Furthermore, it only
forms within a certain ζ -range below and above which we only
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observe the formation of rhcp crystal; this is also qualitatively
consistent with the foam model, which predicts that indeed the
bcc lattice is bounded between an expanded and a compressed
fcc lattice. Studies of the phase behavior in dependence of
the cross-linker concentration are needed to reach a more
detailed understanding of the behavior of microgels and other
soft particles and to quantitatively assess whether the elegant
area-minimizing principle of the foam model is at play in this
type of system.
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