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Generalization of the Gouy-Chapman-Stern model of an electric double layer for a morphologically
complex electrode: Deterministic and stochastic morphologies
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We generalize the linearized Gouy-Chapman-Stern theory of an electric double layer for morphologically
complex and disordered electrodes. An equation for capacitance is obtained using a linear Gouy-Chapman or
Debye-Hückel equation for the potential near the complex-geometry electrode-electrolyte interface. The effect of
the surface morphology of an electrode on an electric double layer is obtained using multiple scattering formalism
in surface curvature. The result for capacitance is expressed in terms of the ratio of Gouy screening length to
the local principal radii of curvatures of the surface. We also include a contribution of a compact layer, which
is significant in the overall prediction of capacitance. Our general results are analyzed in detail for two special
morphologies of electrodes, i.e., a nanoporous membrane and a forest of nanopillars. Variations of local shapes
and global size variations due to residual randomness in morphology are accounted for as curvature fluctuations
over a reference shape element. In particular, the theory shows that the presence of geometrical fluctuations in
porous systems causes an enhanced dependence of capacitance on mean pore sizes and suppresses the magnitude
of capacitance. This theory is further extended to include contributions to capacitance from adsorption of ions
and electrode material due to electronic screening. Our predictions are in reasonable agreement with recent
experimental measurements on supercapacitive microporous and mesoporous systems.
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I. INTRODUCTION

The electrochemical study of curved nanostructured sur-
faces (CNSs) is due to the need to develop efficient energy
generating and storage devices [1] and electromechanical
systems [2] as well as their applications in nanofluidics [3].
Recently, the electrochemical supercapacitive behavior of
porous carbon materials [4], e.g., carbide derived carbons
(CDCs) [1,5], activated carbons (ACs), graphitic carbon, and
carbon nanotubes [2], has attracted intense focus. These
supercapacitive systems, mainly based on the electrical double
layer (EDL), require surfaces with high specific area and
volume with proper pore size and shape control for the
efficient access of ions to obtain high-energy storage as
well as high power. Hence the EDL formed at the complex
nanostructured or disordered interface is a major focus of
research [3,4,6–13].

It is well known that electrochemical capacitance is strongly
influenced by the morphology of nano- and mesoporous elec-
trode materials [14]. Gogotsi and co-worker were successful
in developing a supercapacitor with well controlled pore sizes
in porous CDC material [1,5,15], which shows an anomalous
behavior in the capacitance [16]. These experimental results
show three regimes in the capacitance vs pore size data
[1,5,15]: (i) a nonlinear increase in capacitance, (ii) the transi-
tion from micropore to mesopore capacitance with a minimum,
and (iii) the anomalous increase and a maximum in capacitance
of pores below 1 nm. Huang and co-workers [17–19] proposed
a heuristic model for the capacitance of such a problem with
an assumption of cylindrical pores. They included the effect of
finite pore sizes and proposed three models for three different
pore size regimes: (i) in the micropore regime (<2nm), the
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electric wire in cylinder capacitor model [18]; (ii) in the
mesopores regime (2–50 nm), the electric double cylinder
capacitor model [18]; and (iii) in the macropore regime
(>50 nm) where curvature is no longer significant, the parallel
plate capacitor model. A major advancement in the theory of
porous electrodes has been achieved in recent years [10,20–22]
that is applicable to supercapacitor and capacitive deionization
or water desalination cells [23–25]. These works focused on
the dynamics of ion transport in porous material, which is
usually understood through the Nernst-Planck equation em-
ploying a generalized Furmkin-Butler-Volmer model bound-
ary condition [20]. A classical Gouy-Chapman-Stern (GCS)
model is proposed for macropores where the EDL is thin
compared to pore size. In the case of micropores (where ad-
sorption and overlapping of the EDL is important) a modified
Donnan model is proposed [20–22] with the assumption that
the potential inside the pore is constant. Two limiting regimes,
the supercapacitor regime and the desalination regime [21,26],
are identified in agreement with experiments [23]. However,
these studies do not account for the detailed influence of the
local shape, topology, and roughness. Computer simulations
are becoming standard tools in studying EDLs on planar ge-
ometries [27–29], but recently have been applied to curved and
porous systems [30–33], taking into account ion size, ion-ion
correlation [28,29], and ion-solvent interaction [34,35]. Also
simulations of EDLs have been done that take into account
the dependence of the electrolyte dielectric permittivity on
the local electric fields [36] in spheres and with electrodes
made of closely packed monodisperse mesoporous spheres
[37]. These simulations and theory do not account for the
general geometrical features and morphological fluctuation in
the electrode. Hence there is a need for a systematic rigorous
theory to understand the capacitance of complex and disor-
dered electrodes [38] that interpret capacitance behavior of
such electrodes within the framework of electric double layer
theories [9,10,20,21,39,40].
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The applied electrode material surfaces have ubiquitously
complex morphologies. The modeling of such systems is
difficult and complexity arises due to the pore structure with
interconnected three-dimensional connectivity of pores of
nonuniform shape and size. The morphology of the pores
and particulate materials may be idealized to various forms:
prolate, oblate, ellipsoidal, spheroidal, tubular, etc. These
forms and morphologies can easily be identified by their local
curvatures. The local surface shape at a point α on the surface
is approximated as the deviation from a tangent plane as

zα = 1
2 [x2k1(α) + y2k2(α)], (1)

where k1(α) = 1/R1 and k2(α) = 1/R2 are the curvatures at
a point α and R1 and R2 are the principal radii of curvatures.
Usually a surface may be characterized by two curvatures:
mean and Gaussian. The mean curvature is the average of two
principal curvatures [defined as Hα = 1/2(k1 + k2)] and the
Gaussian curvature is the product of the two principal radii of
curvatures (defined as Kα = k1k2). Various shape configura-
tions may be generated by varying the curvatures through k1

and k2. However, for a real pore the space will be a combination
of these idealized shapes or can be looked upon as fluctuations
in pore structure around one of these idealized shapes and
hence identified with statistical properties of their curvatures.

In this article we develop a (linearized) Gouy-Chapman-
Stern level theory for an arbitrary morphology. The theory is
based on segregation of the compact layer and diffuse layer
regions (see Fig. 1) with an assumption of the validity of
the linearized Poisson-Boltzmann equation in the diffuse layer
region while compact layer corrections are included at the level
of local capacitance density. In Sec. II we explain the effect of
the geometry and topology on the diffuse layer capacitance. In
Sec. III we include the compact layer contribution to the diffuse
layer capacitance on an arbitrary curved surface electrode. In
Sec. IV we develop a theory for the nanostructured electrode
with random morphology, viz., the curvature fluctuation in a
porous system arises due to intrapore roughness and interpore
size variations. General results are applied for a detailed
analysis of the porous membrane and forest of nanorod
electrodes. A comparison with recent experimental data of
the capacitance to pore size is presented in Secs. V and VI. A
summary is given and conclusions are discussed in Sec. VII.
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FIG. 1. (Color online) Schematic model of the EDL formed in an
arbitrary nanoporous electrode showing the Helmholtz layer and the
diffuse layer.

II. MODEL OF ELECTRIC DOUBLE LAYER
NEAR CURVED SURFACES

The double layer is usually divided into two regions: the
compact double layer (referred to as the Helmholtz double
layer) comprised between the electrode and the surface of the
closest approach and the diffuse double layer extending from
the surface of the closest approach to the bulk of the solution.
The overall potential drop φ0 between the electrode and
the bulk solution may be written as φ0 = (φsurface − φOHP) +
(φOHP − φbulk). Now differentiating the overall potential drop
with the combined charge density σ (equal to the sum of the
Helmholtz and the diffuse layer charges) at the interface we
have

∂φ0

∂σ
= ∂(φsurface − φOHP)

∂σ
+ ∂(φOHP − φbulk)

∂σ
,

(2)
c−1

DL = c−1
H + c−1

G ,

where the term on the left-hand side of Eq. (2) is the inverse
differential capacitance of the double layer cDL. The first and
second terms on the right-hand side of Eq. (2) are the inverse
differential capacities of the compact Helmholtz layer cH and
the diffuse double layer cG, respectively.

Historically, it was von Helmholtz [41], who first conceived
of the idea that adsorption of opposite charge ions from
solution on an electrode surface with an excess or deficiency
of charge results in a situation like a parallel plate capacitor
of opposite charge with a thickness of a few nanometers. The
capacitance density of the Helmholtz layer (HL) [8] is

cH = ε0εH

rH

, (3)

where ε0 is the dielectric constant of free space, εH is
the HL relative dielectric constant, and rH is the thickness
up to the outer Helmholtz plane (OHP). Gouy [42] and
Chapman [43] included the fact that the ions are mobile in
the electrolyte solution due to thermal motion and developed a
mathematical treatment based on the combined application
of Boltzmann’s energy distribution equation and Poisson’s
equation. However, the Gouy-Chapman model is known to
overestimate the EDL capacitance for a planar electrode. The
divergence was overcome by Stern [44] by combining in
series both the HL capacitance cH and the Gouy-Chapman
capacitance of a planar electrode cG as c−1

DL = c−1
H + c−1

G ,
where cG = εκeff/4π and κeff = κ cosh(eβφ2/2), where φ2 =
(φOHP − φbulk). The Debye-Hückel screening length κ−1 =

D = (εkBT /4πe2�n0

i z
2
i )1/2, where T is temperature, kB is

the Boltzmann constant, ε is the dielectric constant of bulk
electrolyte, n0

i is the number density of ith ion with charge
zie, and e is the electronic charge. Nagy et al. showed that
the dielectric constant in the HL capacitance εH should be the
average of the inner layer and diffuse layer dielectric constants
due to the polarization charges induced on the boundary of the
Helmholtz and diffuse layers [27].

A general theory developed by Duplantier [45] for the free
energy of the EDL of two interacting curved surfaces with a
given orientation. This theory clearly shows that the interaction
term has exponential decay exp(−κd) with the shortest
separation distance d in the unit of the Debye screening length
κ−1. Note that the free energy of the two interacting surfaces in
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the electrolyte are related to the capacitance of these surfaces
through the Lippmann equation [46]. Goldstein et al. drew
a similar conclusion from the EDL near two modulated or
rough surfaces [47]. The screened potential in the EDL decays
exponentially with distance from a rough surface [47,48]
and major deformation in equipotential surfaces near the
electrode surface is limited up to a few Debye lengths, hence
the shape and morphology of two well separated electrodes
will influence their own contribution to the capacitance
behavior. This implies that surfaces in electrolytes placed
at a distance much larger than κ−1 (with nonoverlapping
diffuse layers) act effectively as two independent surfaces and
can be theoretically treated as two independent semi-infinite
boundary value problems (where the bulk boundary condition
is represented by a plane equipotential surface away from the
arbitrary electrode surface).

The potential in the EDL can be obtained using the
Poisson-Boltzmann equation (PBE). Tessier and Slater [49]
have shown the validity of the PBE when the system size
is reduced to nanoscopic and mesoscopic dimensions. The
solution of Poisson’s equation for the potential φ relative to the
bulk electrolytes can be obtained under the condition of strong
or weak potential approximations. Hence the simplifying
assumption used in our work is that the region near an electrode
is divided into two regions. One is a strong electric field region
where a major change in electric potential occurs, i.e., the
compact layer. This change continues in the region beyond
the compact layer with a relatively weak electric field, i.e.,
the diffuse layer region (hence assumed to obey the linearized
Gouy-Chapman equation or the Debye-Hückel equation). The
linearized PBE for the potential φ(r) relative to the bulk
solution is written as

(∇2 − κ2)φ(r) = 0, (4)

where the interfacial potential with respect to the bulk
is taken as constant and the bulk electrolyte equipotential
surface is a plane with the potential assumed to be zero.
The solution of the Helmholtz equation or Debye-Hückel
equation for arbitrary geometries and boundary conditions
(Dirichlet, Neumann, or Robin) is known in the form of
multiple scattering expansions [45,50–53]. Also the multiple
scattering expansion in the curvature results accounting for the
arbitrary geometry of the surface is analyzed for the diffusion
problems [48,53–57]. Adapting a similar methodology to solve
the electrostatic potential of the electric double layer, we will
obtain the capacitance of the EDL near surfaces of arbitrary
shapes in the Debye-Hückel or the linearized Gouy-Chapman
regime.

Using Gauss’s law, the local charge density σG in the
diffuse electric double layer is σG = (ε/4π )(∂φ/∂n), where
φ is the potential relative to the bulk solution and ∂/∂n ≡
n̂ · ∇ is the normal derivative (with unit normal vector
n̂ on the surface). Differentiating σG with respect to φ2

gives the specific differential capacitance of a diffuse double
layer cG = dσG/dφ2 in terms of the electrostatic potential
as

cG = ε

4π

d

dφ2

(
∂φ

∂n

)
, (5)

where ε is the dielectric constant of the bulk electrolyte
and ∂φ/∂n = n̂ · ∇φ is the inward normal derivative of the
potential to the surface at the OHP and is a functional of
surface potential.

We use the method of the Green’s function in order to
obtain the various orders of the scattering terms depending
on the surface curvature (detailed calculations are shown in
Appendix A). The capacitance density at a point α of the
surface in terms of the Green’s function is obtained using
Eq. (5) as

cG(α) = εκ2

4π

∫
V

d3r ′ ∂G(α+,r ′)
∂nα

= εκ2

4π

∫
V

d3r ′
[

2
∂G0(α,r ′)

∂nα

− 22
∫

∂G0(α,β)

∂nα

∂G0(β,r ′)
∂nβ

dSβ

+ 23
∫

∂G0(α,β)

∂nα

∂G0(β,γ )

∂nβ

∂G0(γ,r ′)
∂nγ

dSβdSγ − · · ·
]
, (6)

where G is the Green’s function (GF) and G0 is the free space
GF (other symbols are defined in Appendix A). The use of
Eq. (1) for the local surface geometry approximation and the
expansion of various terms in Eq. (6) for the convergence of
the screening length power series are applicable in a strong
screening regime, viz., the Debye-Hückel screening length
κ−1 is smaller than any scale of the radius of curvature. Local
and global curvatures in the geometric and topological features
of the surface are expected to play a role in the formation of
the electric double layer near a curved surface. The expansion
is obtained in powers of κ−1/R, where R is a typical radius
of curvature. The convergence of the screening length power
series is applicable in a strong screening regime, viz., the

Debye-Hückel screening length κ−1 is smaller than any scale
of the radius of curvature. The expansions will be obtained in
powers of κ−1/R, where R is a typical radius of curvature. The
local shape of the interface is given by mean Hα and Gaussian
curvatures Kα at the point α on the surface. Expressions of the
various orders of the scattering terms are obtained in terms of
two curvatures. The capacitance density of the diffuse layer is
(see Appendix A for details)

cG(Hα,Kα) = εκ

4π

[
1 − 1

κ
Hα − 1

2κ2

(
H 2

α − Kα

) + · · ·
]
.

(7)

052303-3



RAMA KANT AND MAIBAM BIRLA SINGH PHYSICAL REVIEW E 88, 052303 (2013)

Equation (7) is retained up to second order in the curva-
ture expansion where two curvatures satisfy (H 2 − K) =
1/4 (1/R1 − 1/R2)2 and (H 2 − K) � 0. Equation (7) clearly
shows that the geometric dependence of the capacitance is
controlled by the second and third terms through H and K . If
H = 0 and K = 0, the diffuse layer capacitance simplifies to
the flat surface (for small applied potential) Gouy-Chapman
capacitance [58]. The local capacitance result for an arbitrary
curved electrode has three terms. The first term is dependent
on the solution properties, the second term is dependent on
geometry (independent of ionic concentration), and the third
term represents the coupling between geometrical and solution
properties. As mention earlier, the EDL interface consist of two
layers: a compact and a diffuse double layer. The diffuse double
layer is separated from the electrode surface by the compact
double layer. Thus we to have calculate the ionic capacitance
with compact layer size corrections. In order to calculate the
ionic capacitance of the diffuse layer in the curved geometry
at the OHP, we have to account for the adjusted curvature
due to the presence of a compact layer surface parallel to the
original electrode surface. Since the compact layer surface is
outside the electrode material (here, in solution), we consider
the boundary of the compact layer surface to be at a distance
of rH in the normal direction from the electrode surface. The
relation of the adjusted mean curvature H ′ and the adjusted
Gaussian curvature K ′ on the parallel compact layer surface
compared with the original electrode surface with mean and
Gaussian curvatures H and K is given by [59]

H ′ = H − KrH

1 − 2HrH + Kr2
H

, K ′ = K

1 − 2HrH + Kr2
H

, (8)

where the local surface quantities H = (1/R1 + 1/R2)/2 and
K = 1/R1R2 on the surface of electrode. For negligibly small
rH , we have H ′ ≈ H and K ′ ≈ K . Substituting H ′ and K ′ into
Eq. (7), we can obtained the ionic capacitance with compact
layer size correction cG.

We illustrate how to obtained the ionic capacitance using
Eq. (7) in conjunction with Eq. (8) through its application to a
cylindrical pore and a rod geometry. There are two curvatures
for a cylindrical pore: The mean curvature H = 1/2r is
constant and the Gaussian curvature K = 0. Similarly, for a
cylindrical rod, H = −1/2r while K = 0. In Fig. 2 we show
two cases of capacitance, viz., the linearized Gouy-Chapman
(LGC) model capacitance for curved surfaces (dotted lines)
and the LGC capacitance after Helmholtz layer size correction,
which we call the adjusted LGC (AGC) capacitance for curved
surfaces (solid lines); that is, for a cylindrical pore the adjusted
curvature is H ′ = 1/[2(r − rH )] and for a cylindrical rod the
adjusted curvature is H ′ = −1/[2(r + rH )]. The diffuse layer
capacitance given by Eq. (7) may be represented for simple
curved surfaces as

cG = c0

(
1 + a

lD

ra

+ b
l2
D

r2
a

)
, (9)

where c0 = ε0εD/lD is the planar capacitance density and (a,b)
are pairs of dimensionless numbers depending on the shape
of a nanoelectrode, viz., (0,0) for a plane, (−1/2,−1/8) for
a cylindrical tube, (1/2,−1/8) for a cylindrical rod, (−1,0)
for a spherical cavity, and (1,0) for a sphere. The effective
adjusted radius is due to the compact layer (ra = r ± rH ) on
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FIG. 2. (Color online) Theoretical capacitance density vs diame-
ter plots for cylindrical pore and rod electrodes. The LGC capacitance
curved surface (dotted lines) and adjusted LGC capacitance (solid
lines) after inclusion of the Helmholtz layer size correction for pore
(red line) and rod (blue line) geometries. The plots are generated
using rH = 0.35 nm, εH = 6, and ε = 38 for an organic electrolyte
at 298 K.

curved surfaces, where the plus and minus signs are assigned
to convex (e.g., a sphere or a cylindrical rod) and concave (e.g.,
a cylindrical tube or a spherical cavity) surfaces, respectively.

Figure 2 shows the plot for the capacitance of these simple
geometries and their dependence on size 2r . Here we show that
the morphological influence of idealized geometries on capac-
itance is mainly due to the diffuse layer. The LGC and AGC
capacitance curves for the pore have smaller values compared
to the flat surface. In the case of a rod (red lines) we see that
the LGC value increases with reduced rod diameter while for
the AGC capacitance this increase weakens due to the larger
adjusted rod diameter. This finding for the LGC capacitance is
similar to Compton and co-workers’ report of enhancement
of capacitance in the diffuse layer for hemispherical and
cylindrical electrodes [39,60]. However, with increasing sizes,
all electrodes reach a curvature-independent capacitance value
and merge with the planar capacitance limit. It is important to
emphasize that our theory will be applicable to a porous system
for pore sizes 2r > 2rH + lD , i.e., sufficient to accommodate
the compact as well as the diffuse layer inside them (the
nonoverlapping EDL). An extension of the capacitance curves
below the pore diameter 2rH + lD will require accounting
for contributions from the Donnan contribution [20,21], the
ion-ion correlation [10], and the material space charge [61,62].

Another important quantity of physical interest is the
total diffuse layer capacitance of a nanostructured electrode
CD . This is obtained by integrating the local diffuse layer
capacitance density cG in Eq. (7) with respect to the interfacial
surface as

CG =
∫

dS cG = εκ

4π

[
A − 1

κ
H̄ − 1

2κ2
(H̄ 2 − K̄) + · · ·

]
.

(10)

The morphological quantities A = ∫
S
dS (geometric

area), H̄ = ∫
S
HdS (integral of mean curvature), and
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H̄ 2 = ∫
S
H 2dS (integral of the square of mean curvature) and

the topological quantity K̄ = ∫
S
K dS (integral of Gaussian

curvature) can be calculated for both regular and random
geometries. Here K gives the intrinsic property and depends
on how the distance is measured on the surface; H gives the
extrinsic property and depends upon the local curvature at
each point with no knowledge of the three-dimensional space
in which it is embedded. The topological information for a
surface is obtained through a Gauss-Bonnet theorem [63] as
K̄ = ∫

S
dS/R1R2 = 4π (Nc − Nh), where Nc is the number

of connected surfaces (i.e., the number of membranes or
electrodes) and Nh is the number of handles (genus or holes)
for various topologies of individual membranes or electrodes
on the surface. Here Nh = 0 for spheres, Nh = 1 for tori, etc.
The electrode potential dependence from the above result
(10) can be found in the observation of Daikhin et al. [64]
that the result for the nonlinear Poisson-Boltzmann theory
of capacitance at a rough electrode-electrolyte interface is
related to the result for the linear version of the PBE. The
effective nonlinear contribution of the PBE may be included
in the linear solution by replacing the inverse Debye length κ

with a potential-dependent inverse effective Debye or Gouy
length κeff = κ cosh(eφ2/2kBT ) [58,65].

The capacitance of the EDL at the GCS level is usually ob-
tained using an analogy of capacitors in series. Here we assume
the validity of the ansatz of combining two components of
capacitances in series as in Eq. (2). Two limiting situations for
the local capacitance are observed due to different functional
dependences of the charge on the electrolyte concentration
and electrode potential. Two components of capacities are
estimated in our analysis by dividing the region near an
electrode into two regions. One is a strong electric field
region where the capacitance is estimated using the Helmholtz
formula. The region beyond the compact layer is the diffuse
layer and has a relatively weak electric field. The diffuse
layer capacitance is estimated through the AGC model for
the curved interface. This approximation provides a workable
simplicity to our model. Combining Eqs. (7), (8), and (2) we
obtain the adjusted (linearized) Gouy-Chapman-Stern (AGCS)
capacitance density for an arbitrary geometry electrode as a
function of the mean and Gaussian curvatures:

cDL(H,K) = cH c0
[
1 − H ′lD − (H ′2 − K ′)

(
l2
D

/
2
)]

cH + c0
[
1 − H ′lD − (H ′2 − K ′)

(
l2
D

/
2
)] ,

(11)

where c0 = εκ/4π and cH = εH ε0/rH , where εH is the
electrolyte dielectric constant in the HL, ε0 is the permittivity
of the vacuum, and rH is the effective thickness of the
Helmholtz or compact layer. Here H ′ and K ′ are obtained at
the Helmholtz surface [see Eq. (8)], respectively. The diffuse
layer starts beyond the compact layer, hence the curvature
adjusted at the Helmholtz layer is used in our calculation.
The limiting case of planar EDL capacitance is obtained
when H ′ → 0 and K ′ → 0. The effective or adjusted radii of
curvatures at the diffuse layer are accounted for by subtracting
rH from or adding rH to the radii of curvatures depending
on the local convexity of the surface. Combining compact
layer capacitance with AGC capacitance partially removes
point particle limitations as well as the divergence under the

R/lD → 0 limit. The local AGCS capacitance in Eq. (11)
has three terms in the square brackets. The first term in
square brackets is dependent on the solution properties, the
second term is dependent on geometry through the local mean
curvature, and the third term represents the coupling between
geometrical and solution properties. The third term has mixed
mean and Gaussian curvatures, viz., H ′2 − K ′, which is equal
to zero for spheres and hence measures the deviation from
the local asphericity and follows the constraint H ′2 − K ′ � 0.
Hence the local coupling between the geometry and ionic
solution emerges due to deviation in the local asphericity of
surface.

III. CAPACITANCE FOR RANDOM MORPHOLOGY
ELECTRODES

Randomness arising due to disorder in porous material
can be of three types: Pore roughness can be looked upon
as (i) intrapore shape fluctuations along the contour of the
pore, (ii) interpore size fluctuations over different pores,
and (iii) fluctuations in the length of pores. The first two
contributions of randomness can be accounted for through
fluctuations in mean curvature. Some examples are as follows:
CDCs have intrapore fluctuations, template carbon materials
may have both intrapore fluctuations and interpore pore size
fluctuations, and ACs and hierarchical porous graphitic carbon
material [66] may have intrapore curvature fluctuations, pore
size fluctuations, and pore length fluctuations. Fluctuations in
the length of pores affect mostly the dynamic response of the
pores [65,66]. This case is not required in calculations as one
is not looking into the dynamical aspect of this problem.

The most appropriate method for characterizing the com-
plex disordered structure is based on the statistical approach.
Depending upon the nature of disorder in the nanostructured
or porous electrode, one can have various distributions of
curvature. We assume in our model an electrode with small
random surface roughness around its reference geometry
that is characterized in terms of an ensemble average mean
and Gaussian curvatures, viz., 〈H 〉 and 〈K〉. The surface
roughness is characterized in terms of their deviations from the
reference curvature, H − 〈H 〉 and K − 〈K〉, with ensemble
average mean values 〈H − 〈H 〉〉 = 0 and 〈K − 〈K〉〉 = 0 but
finite variance 〈(H − 〈H 〉)2〉 (a fourth-order term in the prin-
ciple curvature, 〈(K − 〈K〉)2〉, is assumed to be negligible).
In order to calculate the capacitance of disordered systems,
we take the statistical ensemble of various configurations in
curvature space (for which the curvatures are distributed). Now
the ensemble average capacitance density of the diffuse layer
is obtained from Eq. (7) as

〈cG〉 = c0

[
1 − lD〈H 〉 − l2

D

2
(〈H 2〉 − 〈K〉) + · · ·

]
, (12)

where 〈·〉 represent an ensemble average over all possible
random surface configurations and lD = κ−1. Equation (12)
has three terms: The first term is dependent on only the
solution’s ionic concentration, the second term is purely
dependent on the ensemble average mean curvature, and the
third term is due to coupling between the ionic solution and
electrode morphology. The mean capacitance density 〈cG〉 of
the diffuse EDL will be strongly affected whenever the radii
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of curvatures are comparable to the diffuse layer thickness,
which is a strong function of electrolyte concentration.

The deviation in an ensemble average capacitance density
is proportional to the difference of the curvature of the surface
and the ensemble average curvature. The capacitance deviation
of the diffuse layer δcG = cG − 〈cG〉 is

δcG = c0
[
lD(H − 〈H 〉) − (

l2
D

/
2
)
(H 2 − 〈H 2〉)

+ (
l2
D

/
2
)
(K − 〈K〉)]. (13)

The average deviation of capacitance is zero, i.e., 〈δcG〉 = 0.
The mean square deviation of the difference of the capacitance
density is obtained from Eq. (13) as〈

δc2
G

〉 = c2
0l

2
D〈(H − 〈H 〉)2〉 + O(H 4). (14)

An important feature of practical surfaces is the presence of
small surface roughness characterized as small fluctuations
in surface curvatures about its reference geometry. We have
truncated higher-order curvature contributions in Eq. (14). It
is obvious from Eq. (14) that the ensemble average of the
square of capacitance deviation is directly proportional to the
ensemble average of the square of deviation in mean curvature.
Rewriting Eq. (14) in terms of a coefficient of morphological
fluctuations or relative variance of the mean curvature γ 2 =
〈(H − 〈H 〉)2〉/〈H 〉2 we have

〈
δc2

G

〉 =
(

ε

4π

)2

γ 2〈H 〉2 + O(H 4), (15)

where γ is a coefficient of morphological fluctuations and
is a measure of relative deviation from the mean curvature.
This variance in capacitance density is independent of the
concentration of electrolyte. The coefficient γ < 1 for weakly
fluctuating interfaces and γ 
 1 for strongly fluctuating
interfaces.

As mentioned before, porous materials have complex
spatial structures and are characterized by using morphological
measures, viz., the mean (microscopic) geometric area of an
electrode A, the ensemble average mean curvature 〈H 〉, the
ensemble average square of mean curvature 〈H 2〉, and the
ensemble average of Gaussian curvature 〈K〉. For random
ergodic fields [67] that are statistically homogeneous over
various configurations, the (large) surface average over mor-
phological quantities, viz., H̄ /A, H̄ 2/A, and K̄/A (as defined
earlier), can be related to the ensemble average morphological
quantities as 〈H 〉 ≡ limA→∞ H̄ /A, 〈H 2〉 ≡ limA→∞ H̄ 2/A,
and 〈K〉 ≡ limA→∞ K̄/A.

These morphological measures are in general useful in
characterizing the structure of various materials, e.g., foams,
gels, membranes, and granular and porous electrode systems.
These measures can be calculated for both deterministic
and stochastic geometries and are related through integral
geometry to Minkowski functionals [68]. The ensemble
average morphological measures now can be related through
the above integral of mean curvature, the integral of mean
square curvature, and the integral of Gaussian curvature.
Hence, for a large nanostructured surface, Eqs. (10) and
(12) are related through 〈cG〉 ≡ limA→∞ CG/A. Since the
reciprocal of compact and diffuse layer local capacitance is
additive in nature we will perform averaging over an ensemble
of random configurations. The ensemble average (inverse)

capacity is now

〈1/c〉 = 〈1/cH 〉 + 〈1/cG〉 = 1/cH + 〈1/(〈cG〉 + δcG)〉.
(16)

Using binomial expansion of the relative deviation in capacity,
it simplifies to

〈1/c〉 = 1/cH + 1/〈cG〉 + 〈
δc2

G

〉/〈cG〉3 + O
(〈
δc4

G

〉)
. (17)

Equation (17) for the random morphology electrode can be
written as the ensemble average of the inverse of capacitance
as

cDL =
〈

1

c

〉−1

=
(

1

〈cS〉 + β2

〈cG〉
)−1

, (18)

where 1/〈cS〉 = 1/cH + 1/〈cG〉 and 〈cS〉 is the mean compact
and diffuse layer capacitance density for average surface mor-
phology. The relative mean square fluctuation in capacitance
β2 = 〈δc2

G〉/〈cG〉2 is

β2 = γ 2l2
D(H̄ /A)2{

1 − (H̄ /A)lD − [(H̄ 2/A) − (K̄/A)]
(
l2
D

/
2
)}2 , (19)

where γ represent the extent of fluctuations in surface
morphology.

Using an assumption of ergodic field [67], Eq. (18) in
combination with Eqs. (12) and (15) simplifies to the mean
EDL capacitance in two components. The nonfluctuating
contribution 〈cS〉 from this equation is represented as

〈cS〉 = (1/cH + 1/〈cG〉)−1

= cH c0
{
1 − (H̄ /A)lD − [(H̄ 2/A) − (K̄/A)]

(
l2
D

/
2
)}

cH + c0
{
1 − (H̄ /A)lD − [(H̄ 2/A) − (K̄/A)]

(
l2
D

/
2
)} .

(20)

The contribution from the fluctuating component β2/〈cG〉 in
the capacitance that arises due to the stochastic nature of the
morphology is

β2

〈cG〉 = 1

c0

γ 2l2
D(H̄ /A)2{

1 − (H̄ /A)lD − [(H̄ 2/A) − (K̄/A)]
(
l2
D

/
2
)}3 .

(21)

Equation (18) in combination with Eqs. (20) and (21) is the
generalized average capacitance density cd for an arbitrary
random geometry. This expression relates the capacitance to
the surface to the average mean and Gaussian curvatures of the
random morphology electrodes. Hence the capacitance density
cd of the complex morphology electrode is dependent on an
overall surface morphological and topological characteristics,
viz., H̄ , H̄ 2, and K̄ .

A. Porous membrane with fluctuating pore sizes

The complex nature of the nanoporous electrode [20,21]
may result in various distributions of surface shapes (curva-
tures) and pore lengths. In this section we model the influence
of intrapore and interpore size fluctuations. Interpore size
fluctuations arise due to the presence of polydispersity in pore
sizes, which is often much larger than for intrapore fluctua-
tions. Hence the nature of pore size and shape fluctuations is
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critical in determining the capacitance of porous electrodes.
For narrowly distributed pore sizes, e.g., CDC micropores
with a mean pore size less than 2 nm, only the intrapore local
surface fluctuations are significant. Low intrapore fluctuations
are possible without choking the pore in the electrode. For
broadly distributed mesopores not only is the fluctuation in
interpore sizes important, but also the intrapore curvature
fluctuations; hence there could be simultaneous contributions
from both. The porous materials have pores of various sizes and
shapes, e.g., activated carbons; such systems are approximated
as membrane electrodes with micropores and mesopores.

Here we confine our analysis to the simple case of
nanoporous materials as a porous membrane model that has
an array of cylindrical pores. These pores are allowed to
fluctuate weakly, so the topology of the membrane electrode
is not changed. Typical geometrical features of the membrane
are characterized by pore separation distance w, membrane
thickness (pore length l), the outer macroscopic geometric
area of the membrane electrode 2A0, and the number of pores
Nh. In order to calculate Nh, we assume a simple model of the
membrane with a hexagonal array of cylindrical pores whose
number of pores is given by Nh = 2A0/[

√
3(2r + w)2] [69],

where r is the radius of the cylindrical pore. Since the number
of pores per unit area is usually very large, on the order of 1012,
the area of two planar surfaces 2(A0 − πr2Nh) connecting two

ends of the pores of the membrane is small and hence can
be neglected. The major part of the area contribution comes
from the area inside the pores. The total internal area of such
a porous surface is given by the area of the individual pore
times the number of pores in the membrane electrode, which
is A ≈ 2πrlNh. For a cylindrical pore, the mean curvature
H = 1/2r is constant and the average mean curvature is
H̄ /A = ∫

HdS/A = 1/2r . Similarly, the square of mean
curvature is H 2 = 1/4r2 and the average square of mean cur-
vature is H̄ 2/A = ∫

H 2dS/A = 1/4r2. The average Gaussian
curvature of a porous membrane is calculated using the Gauss-
Bonnet theorem as K̄/A = ∫

KdS/A = 4π (Nc − Nh), where
Nc is the number of connected surfaces. For a single membrane
electrode, the connected component Nc = 1 and K̄/A =
(2/rl)(1 − Nh)/Nh ≈ −2/rl (for the large Nh electrode).

Knowledge of various morphological measures for a given
model allows us to illustrate the use of Eq. (18) or (20) under
the smooth surface limit γ → 0, hence taking the ion with the
effective ion size in the HL or thickness of the HL rH , and the
diffuse layer of the EDL is assumed to start after the Helmholtz
layer. The effective or adjusted pore radii for the diffuse layer
are accounted for by subtracting the HL thickness rH from
the pore radius r , i.e., r − rH . Substituting the morphological
quantities in Eq. (20), an explicit equation for the smooth pore
membrane is obtained as

〈cS〉P = cH c0
[
1 − lD/2(r − rH ) − l2

D

/
8(r − rH )2 − l2

D

/
l(r − rH ) + l2

D

/
Nhl(r − rH )

]
cH + c0

[
1 − lD/2(r − rH ) − l2

D

/
8(r − rH )2 − l2

D

/
l(r − rH ) + l2

D

/
Nhl(r − rH )

] . (22)

Similarly, the relative mean square fluctuation in capacitance β2 due to curvature fluctuations in pore sizes or roughness along
the contour of pores is

β2

〈cG〉 = 1

c0

γ 2 l2
D

/
4(r − rH )2[

1 − lD/2(r − rH ) − l2
D

/
8(r − rH )2 − l2

D

/
l(r − rH ) + l2

D

/
Nhl(r − rH )

]3 . (23)

It may be noted from Eqs. (22) and (23) that for two
components of the capacitance the density equation for
mesopores and macropores cDL = (1/〈cS〉P + β2/〈cG〉)−1 has
a contribution from the Helmholtz layer, the diffuse layer,
and morphological parameters, viz., the pore radius r , pore
length l, number of pores Nh, and coefficient of fluctuation γ .
The capacitance of porous surfaces has the form of a rational
polynomial, viz., the Padé approximant [70], in the inverse
adjusted pore size r − rH . Equation (22) shows that the ionic
concentration-dependent Debye length lD and adjusted pore
size r − rH are length scales that affect the capacitance of the
porous membrane. Our model, in comparison to that proposed
in Refs. [20,21], explicitly accounts for the morphological de-
tails of nanostructured electrodes and geometrical fluctuation
in them, though the simplicity of the model is preserved using
the Debye-Hückel assumption. However, in the simultaneous
presence of micropores along with mesopores and macropores,
an additional adsorption contribution needs to be accounted for
from the modified Donnan model [20,21] to capacitance (e.g.,

in porous activated carbon electrode). As mentioned earlier, the
diffuse layer contributions in Eqs. (22) and (23) have a solution
property-dependent term, a geometry-dependent term, and a
coupling term between the solution and geometry. For adjusted
pore size r − rH = 1 nm, the relative importance of these
three terms for lD ≈ 1 nm (for 0.1M electrolyte solution)
is 1, 1

2 , 1
8 .

In Figs. 3(a) and 3(b) we analyze the effect of the Helmholtz
layer thickness and the effect of the change of concentration (or
Gouy length) in the absence of the fluctuations in the contour
of the pore (γ → 0), respectively. Figure 3(a) shows the AGCS
capacitance density plots for the porous membrane electrode,
but without pore diameter fluctuations (γ = 0). The curves
show the effect of HL thickness on overall capacitance. These
plots are obtained using Eq. (22) and show two regions of
capacitance behavior (the macropore limit where capacitance
is constant and the mesopore where the capacitance decreases
with a decrease of pore size) and a crossover between them.
The point particle nature of ions in a diffuse layer allows
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FIG. 3. (Color online) Capacitance plots for a porous membrane
electrode with cylindrical pores obtained from Eq. (22) for a 1:1
organic electrolyte with ε = 38 at 298 K. (a) Effect of compact layer
thickness rH on the capacitance profile. The plots are generated using
concentration c = 1M , εH = 6, and rH = 0.35, 0.4, and 0.5 nm.
(b) Effect of concentration on capacitance. The plots are generated
using rH = 0.35 nm and εH = 6, while the concentrations used in
various curves are 0.01M , 0.1M , and 1M .

us to extrapolate our capacitance vs pore size plot in the
narrow pore size regime; however, this continuum model for
the electrical double layer capacitance is valid up to a pore size
with a cutoff 2rH + 
D , hence a prediction below this value
(micropore) will require a dominant Donnan contribution
(including adsorption) [20,21] from the electronic capacitance
of the electrode [61,71,72]. These observations have been
indicated in several experiments, but not captured by heuristic
models [1,15,18]. The capacitance becomes independent of
the pore size beyond 2 nm, while the experiments show a
dependence up to 10 nm. This could be due to the exclusion of
roughness or morphological fluctuations in porous electrodes.

Figure 3(b) shows the effect of concentration and pore
size on the GCS capacitance density. Three curves are
obtained for different concentration of electrolytes (or lD).
The conclusions that can be drawn from these curves are
that for high concentration results κr > 1 the pore size cutoff
2r = 2rH + κ−1 decreases to a smaller pore size and the model
is applicable to lower pore sizes and for low concentration
results κr < 1 there is a simultaneous increase in pore size
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FIG. 4. (Color online) Effect of the morphological fluctuations
in a porous membrane system on capacitance vs mean pore size
plots. (a) Small fluctuation in pores sizes with γ = 0, 0.3, 0.6, and
0.9. (b) Large fluctuation in pores sizes with γ = 2, 4, 6, and 8. All
plots are generated using rH = 0.35 nm and εH = 6 for a 1:1 organic
electrolyte with ε = 38 at 298 K.

cutoff value and gradual reduction of capacitance density. An
anomalous increase in capacitance is observed in CDC where
pore size is less than 1 nm [15], but this cannot be explained
purely on the basis of ionic capacitance. The experimental
capacitance density in Refs. [1,15,18] has a sudden rising
region followed by a gently rising with increasing pore size and
a crossover between these two regions. This is an interesting
finding for a system with unimodal pore size, however, this is
not seen in Figs. 3(a) and 3(b) as no influence of the fluctuation
in pore sizes is included. The influence of fluctuation in
capacitance behavior will be shown in Fig. 4.

In order to see the effect of morphological fluctuation on
capacitance density, we plot the capacitance of a porous mem-
brane electrode. The pore shape and size can fluctuate along
the contour of the pore. Figure 4 shows the effect of surface
morphological fluctuations on the capacitance of a porous
membrane electrode. Figure 4(a) describes the capacitance
vs mean pore size in the presence of small fluctuations in the
micropore regime. We observe from the curves that as we
increase the value of the surface morphological fluctuation
parameter γ , the sudden rise region becomes weaker while
the slow rise region develops a slightly faster rise. All the
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curves merge around 2 nm and no effect of small fluctuations
is seen beyond this. Thus the small fluctuations in micropores
are important up to 2 nm. Figure 4(b) shows the effect
on capacitance due to large fluctuations in the mesopore
regime. As we increase γ , the value of capacitance is lowered
compared to the smooth porous electrode. The effect of large
fluctuations is seen for pore diameters much larger than
2rH + lD . Increasing the mean pore size in the mesopore
regime reduces the influence of fluctuation and finally all the
curves merge around 10 nm. No curvature effect is seen beyond
10 nm, which suggests that large morphological fluctuations
enhance the capacitance dependence on mean pore size up
to 10 nm. This is in agreement with several experimental
reports of capacitance vs pore size data (see the comparison
with experimental data). The small fluctuation (γ < 2) affects
the micropore regime while large fluctuations (γ > 2) affect
the capacitance in the mesopore regime. For pore diameter
less than 2 nm, the slope of the rapid rise region is almost
the same. In the case of mesopores the fluctuation results
in a decrease of capacitance. The larger the fluctuation is,
the larger the pore size up to which the effect is seen. The
capacitance increases rapidly in the transition region between
micropores and mesopores followed by a gradual increase
in the mesoporous regime and a limiting plateau value of a
flat electrode is observed at large mesopores. Hence large
morphological fluctuations play an important role in the
enhancement of the capacitance density dependence on mean
pore size.

B. Forest of nanorods with morphological fluctuations

In this section we obtain the capacitance for the forest
of nanorods and compare it to that of nanopores. These two
systems differ only in the convexity of their electrode surface.
Such geometries are often employed in Li-ion batteries [73]
and Al nanowire supercapacitors [74]. The typical dimension
of the forest of nanorod electrodes is characterized by rod
separation distance w, electrode thickness (rod length l),
geometric area A0, and number of rods Nr . In order to
calculate Nr we assume an electrode with a hexagonal array
of cylindrical rods whose number of rods is given by Nr =
2A0/[

√
3(2r + w)2], where r is the radius of the cylindrical

rod. The total area of such a structured surface of a forest
of nanorods is given by the area of an individual rod times
the rod density Nr , which is A ≈ 2πrl Nr . Our theory is
applied to the nanoforest electrode with inter-rod separation
w, which can accommodate a compact as well as a diffuse
layer between them, viz., w 
 2rH + lD . The capacitance
for an array of cylindrical rods is obtained by replacing
H̄ /A = (−1/2r) and H̄ 2/A = (−1/2r)2 and the adjusted rod
size for the diffuse layer is obtained by adding the compact
layer thickness to the rod radius: r + rH . Here the diffuse
layer starts after a distance r + rH from the center of each
rod. The average Gaussian curvature of the nanorods forest
is calculated using the Gauss-Bonnet theorem as K̄/A =∫

K dS/A = 4π (Nc − Nh)/A. Using Eq. (20) we obtain the
mean capacitance for Nr electrically connected forests of
nanorods, with Nc = Nr , Nh = 0, and K̄/A = (2/rl):

〈cS〉R = cH c0
[
1 + lD/2(r + rH ) − l2

D

/
8(r + rH )2 + l2

D

/
l(r + rH )

]
cH + c0

[
1 + lD/2(r + rH ) − l2

D

/
8(r + rH )2 + l2

D

/
l(r + rH )

] . (24)

The relative mean square fluctuation in capacitance that arises due to surface fluctuations over rods is obtained using Eq. (21) as

β2

〈cG〉 = 1

c0

γ 2l2
D

/
4(r + rH )2[

1 + lD/2(r + rH ) − l2
D

/
8(r + rH )2 + l2

D

/
l(r + rH )

]3 . (25)

Figure 5(a) shows plots of the effect of HL thickness on the
GCS capacitance density vs rod diameter in a forest of nanorod
electrodes where γ = 0. The plots are made using Eq. (24).
As we increase the HL thickness, the value of capacitance
decreases. The HL increases the adjusted radii of curvature of
rods, resulting in a decrease in capacitance contributions from
the diffuse layer. Figure 5(b) shows the effect of diffuse layer
thickness, which increases with a decrease in the concentration
of electrolyte, leading to a decrease in capacitance. Thus, for
nanorods with the larger adjusted radii of curvature, the effect
will largely be seen in the capacitance for the dilute solution.
In the case of a concentrated solution, it simply increases the
capacitance, but no enhancement in capacitance is seen in
microrods.

Figure 5(b) shows the effect of concentration on the capac-
itance of an assembly of nanorod electrodes using Eq. (24)
(the γ = 0 case). Unlike the cylindrical pore geometry,

the capacitance of rod geometry is enhanced with a reduction
in diameter. The overall capacitance is very much like the
Helmholtz capacitance, but it is enhanced mainly for small
rod diameter. An increase in concentration results in higher ca-
pacitance. We compare the capacitance obtained in the porous
membrane electrode with nanorods with the same surface area,
but different (local) convexity can have a qualitatively different
capacitance dependence on size. These are purely geometric
effects of the surface curvatures. Thus it can be concluded
that membrane electrodes with cylindrical nanopores have
different capacitance as compared to the forest of cylindrical
nanorods, although both have the same geometrical surface
area. We see from the plots that the curvature strongly affects
the diffuse layer capacitance. Similar studies by Compton
and co-workers [39,60] have shown that for hemispherical
and nanotube electrodes, there is enhanced diffuse double
layer capacitance due to an increase in curvature. In fact, our
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FIG. 5. (Color online) Capacitance plots for an assembly of
cylindrical rods with no morphological fluctuation (γ = 0) obtained
from Eq. (22). (a) Influence of the compact layer thickness rH ,
e.g., 0.34, 0.4, and 0.7 nm. (b) Influence of the electrolyte molar
concentration, e.g., 0.01M , 0.1M , and 1M . All the plots are generated
using rH = 0.34 nm. Here εH = 6 for a 1:1 organic electrolyte with
ε = 38 at 298 K.

analytical model calculations also show such an increase in
diffuse double layer capacitance. However, the introduction
of the compact (Helmholtz) layer capacitance in series with
the diffuse layer capacitance reduces the total capacitance.
Here the overall capacitance is controlled by the smaller of
the two. It is important to note that the curvature effect is very
much reduced in the case of nanorod electrodes, unlike the
diffuse layer capacitance without adjusted radius correction.
Furthermore, as we decrease the concentration and hence
increase the Debye length, we see the curvature effect on
capacitance reduced. The diffuse layer is extended in the
low concentration regime and may require accounting for
overlapping of the EDL [75,76].

Figure 6 shows the effect of morphological fluctuations on
the capacitance of the forest of nanorods. By increasing the
curvature fluctuation parameter γ , the capacitance behavior
of the nanorods changes qualitatively from smooth nanorod
capacitance behavior to nanoporous capacitance behavior. For
γ = 2, the curve approaches nearly a horizontal line of a
planar electrode and effectively no curvature effects are seen.
The curves show a decrease in capacitance with an increase in
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FIG. 6. (Color online) Effect of morphological fluctuations on
the capacitance of a nanorod forest electrode. Here the fluctuation
parameter is varied as γ = 0.3, 0.6, 0.9, 2, 4, 6, and 8. All the plots
are generated using rH = 0.25 nm and ε = 6 for 0.05M H2SO4 with
ε = 78.6 at 298 K.

the value of γ and the curves appear similar to porous electrode
capacitance with a gradual fall in smaller rod thickness. The
physical reason is that for an assembly of nanorod electrodes
with large curvature fluctuations on the nanorods result in the
formation of pits or a porelike structure, which makes the
capacitive response behave like a porous system.

IV. VOLUMETRIC CAPACITANCE OF THE NANOPOROUS
MEMBRANE AND NANOFOREST OF RODS

Figure 7 shows the volumetric capacitance of a nanoporous
membrane and a nanoforest of rods without morphological
fluctuations. The expression of volumetric capacitance may
be obtained by multiplying the area specific capacitance
given by Eqs. (20), (22), and (24) with a surface area
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FIG. 7. (Color online) Volumetric capacitance of the nanoporous
membrane and nanoforest of rods with different porosity �. The
black, red, and blue lines correspond to � = 0.3, 0.4, and 0.5,
respectively. All the plots are generated using rH = 0.34 nm. Here
εH = 6, ε = 38, l = 15 nm, and lD = 0.7 nm.
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to macroscopic volume ratio. The detailed expression of
volumetric capacitance of a nanoporous membrane and a
forest of nanorods is given in Appendix B. Figure 7 shows
the dominance of a specific area effect over the geometric
effect emphasized in earlier plots (see Figs. 2, 3, and 5) of
the capacitance. The solid and dashed lines correspond to
the volumetric capacitance of a nanoporous membrane and
a nanoforest of rods, respectively. The plots show clearly that
the volumetric capacitance of a nanoforest of rods is larger
than the volumetric capacitance of nanoporous membranes
with the same volume. However, both geometries show the
same trend of increasing capacitance for smaller pore or rod
size due to increasing area for fixed porosity. We conclude
that the area effect dominates the shape effect of the electrode
when we consider the volumetric capacitance. It is found that
increasing the porosity in the nanoporous membrane enhances
the volumetric capacitance, while in the case of a forest of
nanorods it suppresses the volumetric capacitance.

V. COMPARISON OF THEORETICAL RESULTS
WITH EXPERIMENTAL DATA

Figure 8 shows the theoretical and experimental capac-
itance behavior of the organic electrolyte tetraethylammo-
nium tetrafluoroborate (TEABF4) in CH3CN in different
pore size regimes and concentrations. Data were taken from
Refs. [1,15,18]. The dielectric constant of the solvent CH3CN
is taken to be 38 [8] at 298 K. The bare ion diameters of TEA+
and BF4

− are 0.68 and 0.46 nm, respectively [77]. We use
in our calculations for the compact layer dielectric constant
εH = 5.3 [8] and the bare ion radius of TEA+ is used as the
compact layer thickness rH = 0.34 nm. The plots are obtained

FIG. 8. (Color online) Theoretical capacitance curves for a
porous membrane electrode model of the electrode with and without
morphological disorder. Experimental data points are from Refs.
[1,15,18] for various nanocarbons obtained by different methods
with different morphology. The solid black line is for 1.5M TEABF4

organic electrolyte in acetonitrile with ε = 38 at 298 K, εH = 5.3,
rH = 0.34 nm, and γ = 0. The dashed black line is the same case as
the solid but with γ = 2. The solid red line is for a 1.4M concentration
and γ = 6, with the rest of the parameters the same. The solid blue
line is for a 1M concentration and with the rest of the parameters
the same. Here NMAC stands for natural material precursor activated
carbon and SMAC for synthetic material precursor activated carbon.

using Eq. (20) for smooth pores and Eq. (18) in combination
with Eqs. (22) and (23). The theoretical plots for capacitance
clearly indicate a fall in capacitance for smaller pore electrodes
in an organic electrolyte. The solid black line is for 1.5M

electrolyte and electrode without morphological disorder, i.e.,
γ = 0. The dashed black line is for the same concentration
of electrolyte but with small morphological fluctuations γ

(=2), viz., the CDC electrode material has a narrow pore
size distribution, hence we use small value of γ (=2) in
the theoretical curves. Similarly, the two lower curves (solid
red and blue lines) have the template carbon (TC) electrode
material, but differ in electrolyte concentration. Since the TCs
have a large pore size distribution morphological disorder
parameter γ (=6) is used to fit the experimental capacitance
data. Two electrolyte concentrations of 1.4M and 1M are
compared with the experimental data to illustrate the point
that capacitance is dependent on the electrolyte concentration.
The TEABF4 in CH3CN at 1.4M has a higher capacitance
than the 1M TEABF4 in CH3CN for porous electrodes with
γ = 6. In agreement with the theoretical prediction, the effect
of morphological fluctuation is seen up to 10 nm in the
experimental data [see the data set for TC (1M TEABF4)
in Fig. 8].

The experimental comparison can further improve with
inclusion of the contributions from electronic space charge ca-
pacitance of the electrode materials [61,62,71] and adsorption
as these contributions will be important in the understanding of
the anomalous rise region and its maximum. This is discussed
in the following section.

VI. ANOMALOUS CAPACITANCE IN MICROPORES:
ADSORPTION AND ELECTRODE MATERIAL

CONTRIBUTIONS

In recent experiments [1,15,16,78] an anomalous increase
in the capacitance with a decrease of the pore size (less than
1 nm) and a peak (maximum) at a particular pore size is
observed. This feature is observed in both organic electrolytes
[78] and ionic liquids [16]. Several attempts have been made
to explain the pore size dependence of the capacitance in
micropores. The increase in capacitance with decreasing pore
size is explained in terms of the ion desolvation mechanism in
an organic electrolyte [78] and the electrostatic image energy
contribution to the free energy of the transfer of ions [79,80].
An atomistic molecular dynamics simulation for an ionic liquid
confined inside a idealized nanotube also showed the increase
in capacitance as the diameter of the tube decreases with ion
size [31,33] but underestimated the experimental capacitance
value due to the neglect of the electronic screening contribution
[33]. A similar study was recently made on disordered carbon
nanopores [81] accounting for potential-dependent adsorption
while providing a model of charge storage in nanoporous
materials. For a mesoscopic pore size the classical density
functional theory [82,83] and molecular dynamic simulation
[84] predicted that the specific capacitance oscillates with the
pore size and is similar to the mean spherical approximation
model [85].

Another approach for estimating the adsorption contribu-
tion to capacitance in micropores is based on the equilibrium
distribution of ions between micropores and macropores. This
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approach is called the modified Donnan model and is based
on the assumption of a constant electrostatic potential inside
the micropore to allow estimation of the number of cations or
anions in the micropore nmi [20,21],

nmi = n0 exp

(−zie�φD + μatt

kBT

)
, (26)

where n0 is the bulk ion number density, zi is the charge of ion,
�φD is the Donnan potential, and μatt is the attraction term of
ions adsorbing in micropores in the absence of applied voltage
[20,23,25,26]. This approach does not include the dependence
of capacitance on the size of the micropore. The dependence
of the size of the micropore on capacitance can be included by
combining a modified Donnan model and an electric wire in
cylinder capacitor (EWCC) model.

Here we assume that micropores are cylindrical and the
inner pore space is almost filled by adsorbed ions forming a
wire of ions. The volume of the wire is equal to the volume
of ions adsorbed inside the pore, i.e., πa2lp = 4

3πa3
0(nmi/np),

where a is the effective radius of the wire of ions, a0 is the
radius of the bare ion, and lp is the penetration length of the ion.
The number of ions in a single pore is the ratio of the number
concentration nmi [given by Eq. (26)] and micropore density
np. The micropore density is calculated using the model of a
hexagonal array of cylindrical pores (see Sec. III A) and np =
Nh/A0lp ≈ 1018 cm−3 for lp = 10 nm. Now the capacitance
contribution due to ion adsorption can be written as an EWCC
equation [17,18]

cad = εε0

r ln(r/a)
, (27)

where ε is the dielectric constant in a micropore and r is
the radius of a micropore. The effective radius of the inner
cylindrical wire due to an adsorbed ion a is

a =
√

4a3
0nmi

3lpnp

=
√

4a3
0n0

3lpnp

exp

(−zie�φD + μatt

2kBT

)
, (28)

where the last term is obtained by substituting the value of
nmi given by Eq. (26). The value of nmi is obtained using
the bulk ion density n0 calculated from the dimension of
ions of ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoro-
methane-sulphonyl)imide (EMI TFSI). The EMI has a dimen-
sion of 0.43 nm [1,16] along the short dimension and 0.76 nm
[1,16] along the long dimension and the volume of the ion
(assuming it to be a cylindrical rod) is Vion = 0.441 nm3.
The effective radius of the spherically shaped ion is rV =
(3Vion/4π )1/3 = 0.47 nm. If effective spheres of radius rV

are closely packed in a cubic arrangement, the volume of
the cube will be 8r3

V and the molar concentration will be
(8NAr3

V )−1 ≈ 1.7M [86] (where NA is Avogadro’s constant)
(the corresponding number concentration of the ionic liquid
is n0 ≈ 1027 cm−3). The dashed black line in Fig. 9 represent
the size-dependent adsorption capacitance as a function of
pore size. The plot is generated with the following parameters:
ε = 1 (vacuum value), μatt = 8.62 mV (≈3kBT /e) [20,21,23],
T = 333 K [16], �φD = 0.517 V (≈18kBT /e), and a0 =
0.38 nm (half along the long dimension) [16,18].

The electrode material contribution to capacitance can be
obtained from our recent model, where we have generalized

FIG. 9. (Color online) Theoretical capacitance with experimental
data [1,16] for micropororous CDC in ionic liquid EMI TFSI (blue
circles).

the Thomas-Fermi electronic screening contribution for the
capacitance of curved nanostructured electrodes [72]. This
work shows shape-dependent localization and enhancement
and reduction of capacitance in conducting and semiconduct-
ing nanomaterials. The electronic capacitance of cylindrical
subnanopores is given by [72]

cE = cM

(
1 + lTF

2(r − δ)
− l2

TF

8(r − δ)2

)
, (29)

where cM = εMε0/lTF [87,88] is the planar electronic ca-
pacitance, r is the radius of the pore, δ is the electron
spillover distance, and lTF = √

ε0εM/eD0 is the electronic
screening length. Here εM is the material dielectric, e is the
electron charge, and D0 is the density of state of the material.
The dashed blue line in Fig. 9 represents the electronic
capacitance of a cylindrical nanopore. The plot is generated
using the following physical parameters: εM = 3.28 (typically
of graphite [61,62]), D0 = 2.46 × 1021 cm−3 eV−1 (typical
of metals as it is found that graphite behaves more like a
metal in such cases [61,62,71,89]), and δ = lTF ≈ 0.27 nm
(the diffuse character of the electron density and spillover
contribute to the capacitance [33]). The electronic capacitance
shows a maximum in capacitance with a rapid fall for smaller
pore size and gradual fall for increasing pore size (see the
dashed blue line in Fig. 9). This feature is similar to the
experimental capacitance data of CDC (with pore size less than
1 nm) in ionic liquid. Our theory suggests that the electronic
capacitance is responsible for the maximum and rapid fall
in capacitance of the micropore. The experiment shows the
maximum capacitance at smaller pore size than predicted
by pure electronic capacitance theory, thus suggesting that
the experimental value of capacitance is jointly given by the
electronic and adsorption contributions.

In order to understand the overall behavior of capacitance
with decreasing size of micropores, we combine the contribu-
tion from two factors, viz., the capacitance due ion adsorption
given by Eq. (27) and the electronic capacitance given by

052303-12



GENERALIZATION OF THE GOUY-CHAPMAN-STERN MODEL OF . . . PHYSICAL REVIEW E 88, 052303 (2013)

Eq. (29). The capacitance of micropore c can be written as

c−1 = c−1
E + c−1

ad . (30)

The solid black line in Fig. 9 shows a comparison of the
theoretical capacitance of micropore c to the experimental data
of CDC in the ionic liquid EMI TFSI. The plot is generated
with the same parameters used in calculating cad and cE . We
observe that the theoretical capacitance c agrees well with
the experimental data. It shows an anomalous (steep rise)
capacitance for pore size less than 1 nm with the maximum
capacitance corresponding to a pore size of 0.38 nm.

VII. CONCLUSION

In summary, a model for EDL capacitance in curved
nanostructured and mesostructured electrodes was proposed
within the framework of classical (linearized) Gouy-Chapman-
Stern theory. Our analytical theory for electric double layer
capacitance is applicable to a wider class of electrode mor-
phology, topology, and electrolyte systems. A theory for an
arbitrary electrode geometry was developed using the multiple
scattering formalism of surface curvature. The capacitance in
the diffuse layer is expressed through a convergent expansion
in powers of the ratio of the Debye length to the principal
radii of curvatures of the interface. The contribution of
the compact layer and its size correction in the adjusted
curvature for diffuse layers has a strong effect on the local
capacitance. This was introduced through the capacitance
in the series behavior of the local compact layer and local
diffuse layer contributions. The theory was further extended for
realistic electrodes with a ubiquitous morphological disorder
or roughness that is characterized through a variance in mean
curvatures. Our theory is general enough to handle the arbitrary
morphology of an electrode, but we illustrated its significance
for the simple system of a forest of cylindrical nanopillars
and a nanoporous membrane with the added complexity of
morphological disorder. The theory allowed us to analyze the
effect of concentration, compact layer thickness, and shapes
and their fluctuations for systems with a separation between
two nanostructure elements or pore size larger than 2rH + lD .

This paper further establishes for the capacitance of
nanostructured electrodes the following points. The capac-
itance increases towards larger pore sizes with a limiting
capacitance plateau (at planar) and concurs with experimental
data. The capacitance for a nanoporous membrane electrode
and a nanoforest electrode, with the same geometric area,
highlights a qualitatively different effect of shape on the
capacitance as a function of size. Hence the overall convexity
of the electrode surface has a profound effect on the ionic
capacitance. The curvature fluctuations in the electrode have
a significant influence on the capacitance in the mesoscopic
region. The small curvature fluctuations along the contour of
pore or intrapore geometric fluctuations affect the increase of
capacitance, which extends up to 2 nm. Hence weak intrapore
fluctuations slightly enhance the pore size dependence of the
capacitance. The effects of large curvature fluctuations mani-
fest themselves through prolonged dependence of capacitance
on pore sizes and persist in up to nearly 10 nm in the mesopore
regime. Surprisingly, the large fluctuations in nanorod forest
electrodes result in a qualitatively different dependence on

rod thickness. We also show that the volumetric capacitance
increases with decreasing pore or rod size. The volumetric
capacitance of the nanoporous membrane is enhanced with
porosity, whereas it decreases with porosity in the case of a
nanoforest. This theory also accounts for quantum mechanical
contributions from electronic space charge (i.e., generalized
Thomas-Fermi quasiclassical theory for electronic screening
capacitance) and ion adsorption (i.e., pore-size-dependent
modified Donnan adsorption capacitance) in the micropores.
Reasonable agreement with experimental data is shown in
micropores.

Finally, our model is a step forward in the development of
a general understanding of capacitance in complex interfacial
systems. Analogous problems of finding the effect of non-
ideality of the electrode surface, compact layer disorder, and
dynamic frequency-dependent response of nanostructured and
porous electrodes are beyond the scope of the present paper.
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APPENDIX A

The Debye-Hückel or linearized Gouy-Chapman equation
for the potential relative to the bulk solution φ(r) is

(∇2 − κ2)φ(r) = 0 (A1)

for a domain D bound by a conducting surface S (taken to be
at the OHP), which is held at constant potential φ+|S = φ2,
and far away from this surface a equipotential plane surface,
viz., φ(r −→ ∞) = 0. The Green’s function G for a linearized
PBE (A1) satisfies

(∇2 − κ2)G(r,r ′) = −δ3(r − r ′) (A2)

with the homogeneous boundary conditions at the surface S

and far away from surface (r −→ ∞), viz., G|S = 0. Actually
G will be discontinuous at the surface and the boundary
condition will be approached from the interior, i.e., r ′ → β+.
The solution of Eq. (A2) for the potential relative to the bulk
solution φ(r) can be formally written as [51]

φ(r) = φ2

∫
S

dSβ

∂G(r,β+)

∂nβ

= −φ2

∫
V

d3r ′∇2G(r,r ′)

= φ2

(
1 − κ2

∫
V

d3r ′G(r,r ′)
)

. (A3)

We seek to express G in terms of G0(r,r ′) =
(1/4π |r − r ′|)e−κ|r−r ′ |, the free space Green’s function sat-
isfying Eq. (A2) for the entire infinite domain. The Green’s
function G is expressed as [51]

G(r,r ′) = G0(r,r ′) − 2
∫

G0(r,α)
∂G0(α,r ′)

∂nα

dSα

+ 22
∫

G0(r,α)
∂G0(α,β)

∂nα

∂G0(β,r ′)
∂nβ

dSαdSβ

+ · · · . (A4)
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Using Gauss’s law and the fundamental singularity at the
boundary [50,51], the differential capacitance density is

c(α) = εκ2

4π

∫
V

d3r ′ ∂G(α+,r ′)
∂nα

= εκ2

4π

∫
V

d3r ′
[

2
∂G0(α,r ′)

∂nα

− 22
∫

∂G0(α,β)

∂nα

∂G0(β,r ′)
∂nβ

dSβ

+ 23
∫

∂G0(α,β)

∂nα

∂G0(β,γ )

∂nβ

∂G0(γ,r ′)
∂nγ

dSβdSγ

− · · ·
]
. (A5)

The terms in Eq. (A5) can be looked upon as one-, two-, and
three-scattering terms as

�1 = 2
∫

d3r ′ ∂G0(α,r ′)
∂nα

, (A6)

�2 = −22
∫

∂G0(α,β)

∂nα

∂G0(β,r ′)
∂nβ

dSβd3r ′, (A7)

�3 = 23
∫

∂G0(α,β)

∂nα

∂G0(β,γ )

∂nβ

∂G0(γ,r ′)
∂nγ

dSβdSγ d3r ′.

(A8)

Equation (A6) may be expanded through the local surface
coordinates α, β, and γ . For a weakly curved surface where
the Debye-Hückel screening length is much smaller than the
smallest scale of curvature, the scattering kernel ∂G0(β+,α)/
∂nα is expressed through a local coordinate system [50,51]
with the z axis parallel to an inward normal vector nα and
a tangent plane on which the projection is made. The local
equation of surface S in terms of curvature radii R1(α) and
R2(α),

zα = (1/2)[x2/R1(α) + y2/R2(α)] + · · · , (A9)

is introduced to Eq. (A6) through the surface area ele-
ment dSβ = √

gdxdy, where g = 1 + [∇zα(x,y)]2. Using
∂/∂nα ≡ −∂/∂z, the kernel ∂G0(α,β)/∂nα under planar
approximation [50] reads to first order ∂G0(α,β)/∂nα =
−(z/ρ)[∂G0(ρ)/∂ρ], where ρ = |α′ − β ′| = (x2 + y2)1/2 is
the distance in the tangent plane and G0 = exp(−ρ)/4πρ

is the Green’s function in the tangent plane. Now we can
rewrite the one-scattering integral (A6) as

�1 = 2
∫

dx dy

[
G0(ρ) + 1

2

z2

ρ

∂G0

∂ρ

]
, (A10)

which is further simplified using the angular averages 〈·〉
1

ρ2
〈zα〉 = 1

2

∫ 2π

0
dθ

(
cos2θ

R1(α)
+ sin2θ

R2(α)

)

= π

2

(
1

R1(α)
+ 1

R2(α)

)
, (A11)

1

ρ4

〈
z2
α

〉 = 1

4

∫ 2π

0
dθ

(
cos2θ

R1(α)
+ sin2θ

R2(α)

)2

= 3π

8

(
1

R1(α)2
+ 1

R2(α)2

)
+ π

4R1(α)R2(α)
.

(A12)

Substituting Eq. (A11) into (A10) and integrating over ρ, we
finally get the one-scattering term as

�1 = 1

κ
− 1

κ3

(
3

2R(α)2
− 1

2R1(α)R2(α)

)
+ O

(
1

R3

)
,

(A13)

where Hα = 1/R(α) = (1/2)[1/R1(α) + 1/R2(α)] and Kα =
1/R1(α)R2(α). Similarly, on iteration in Eqs. (A7) and (A8)
two- and three-scattering terms are obtained as

�2 = − 1

κ2

1

R(α)
+ O

(
1

R3

)
, �3 = 1

κ3

1

R(α)2
+ O

(
1

R3

)
.

(A14)

Now substituting Eqs. (A13) and (A14) into Eq. (A5), after
simplification the capacitance density at position α is

c(Hα,Kα) = εκ

4π

[
1 − 1

κ
Hα − 1

2κ2
(H 2

α − Kα) + · · ·
]
.

(A15)

APPENDIX B

The surface capacitance 〈cS〉 (F/cm2) given by Eqs. (20),
(22), and (24) can be converted to the volumetric capacitance
〈cV 〉 (F/cm3) as

〈cV 〉 = 〈cS〉 A

V0
, (B1)

where A denotes the total microscopic area of the electrode
and V0 denotes the macroscopic volume of the electrode. The
total microscopic area of nanoporous membrane (forest of
nanorods) with a cylindrical pore (rod) is A = 2πrlNi where

Ni = Vi

πr2l
, (B2)

where Vi is the microscopic volume of the electrode, πr2l is the
volume of a single pore or rod, and Ni is the number of pores
(Ni = Nh) in the case of a nanoporous membrane electrode
and the number of connected rods (Ni = Nc) in the case of a
nanoforest electrode. The microscopic volume of a nanoporous
membrane may be related to the macroscopic volume of an
electrode as Vi = �V0, where � is the porosity of the material.
Similarly, the microscopic volume of a forest of nanopores may
be written as Vi = (1 − �)V0. Now the volumetric capacitance
of a nanoporous membrane electrode may be written using
Eq. (B1) as 〈cV 〉 = 〈cS〉(2�/r). Similarly, the volumetric
capacitance of a nanoforest electrode may be written using
Eq. (B1) as 〈cV 〉 = 〈cS〉[2(1 − �)/r].
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