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It has recently been shown that the computing abilities of Boltzmann machines, or Ising spin-glass models,
can be implemented by chaotic billiard dynamics without any use of random numbers. In this paper, we further
numerically investigate the capabilities of the chaotic billiard dynamics as a deterministic alternative to random
Monte Carlo methods by applying it to classical spin models in statistical physics. First, we verify that the billiard
dynamics can yield samples that converge to the true distribution of the Ising model on a small lattice, and we
show that it appears to have the same convergence rate as random Monte Carlo sampling. Second, we apply
the billiard dynamics to finite-size scaling analysis of the critical behavior of the Ising model and show that the
phase-transition point and the critical exponents are correctly obtained. Third, we extend the billiard dynamics
to spins that take more than two states and show that it can be applied successfully to the Potts model. We also
discuss the possibility of extensions to continuous-valued models such as the XY model.
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I. INTRODUCTION

Many important classical spin models such as the Ising
model and the Potts model are described as probability
distributions of spin configurations. To investigate the behavior
of such models numerically, we normally design Monte Carlo
methods, and obtain samples from the model using random
numbers. However, there is no reason in principle to use
randomness for obtaining samples; it does not matter whether
the samples are generated randomly or deterministically, if
the samples properly represent the probabilistic models in
question.

Chaotic Boltzmann machines recently proposed in Ref. [1]
have chaotic billiard dynamics that yields samples from Ising
spin-glass models without any use of random numbers. They
have been numerically shown to have computing abilities com-
parable to conventional (stochastic) Boltzmann machines. In
this paper, we further numerically investigate the capabilities
of the chaotic billiard dynamics as a deterministic alternative
to random Monte Carlo methods for classical spin models.
Although there have been no studies that utilize billiard
dynamics for deterministic simulations of spin models, the
following three streams of studies can be considered as closely
related to the present study.

First, several deterministic cellular automaton models for
the Ising model have been proposed. The Q2R automaton [2]
is the simplest automaton model of the Ising model, and it
evolves conserving the energy exactly. Creutz [3] proposed
another automaton model in which demons are introduced as
additional degrees of freedom. Demons absorb and release
energy at each site conserving the total energy. Despite the

*hideyuki@mist.i.u-tokyo.ac.jp

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

simple and deterministic update rules, these models reproduce
the probabilistic behavior of the Ising model. However,
these automata cannot be directly regarded as deterministic
samplers from the Ising model; in the Q2R automaton, spin
configurations only move on a microcanonical ensemble, and
in the Creutz automaton, the system temperature is internally
determined. Although chaotic Boltzmann machines are not
automata, there is a similarity to the Creutz automaton in
the sense that the additional degrees of freedom introduced
allow the system to deterministically generate samples from
canonical ensembles.

Secondly, spin models based on coupled map lattices
(CMLs) [4] have been proposed [5–11]. CMLs are typically
composed of discrete-time chaotic elements on a lattice
interacting with each other. They are known to exhibit rich
spatiotemporal nonlinear dynamics, and form an important
class of dynamical systems with a large number of degrees of
freedom. By associating symbols to partitions in the state space
of each element, CMLs can be regarded as deterministic Ising-
like spin models. In the sense that the probabilistic behavior of
Ising spins is realized by chaotic dynamics, CML-based spin
models can be related to chaotic Boltzmann machines. How-
ever, each element constituting chaotic Boltzmann machines
has continuous-time and nonchaotic dynamics.

Thirdly, it should be noted that random numbers used in
conventional Monte Carlo simulations on ordinary computers,
i.e., pseudorandom numbers, are deterministically generated.
Therefore, in a sense, we have already been using determin-
istic Monte Carlo methods. Of course, such pseudorandom
numbers are designed so that they can be regarded as truly
random in many aspects. Since Monte Carlo methods rely
on truly random numbers, it is crucial to use good random
numbers in principle. However, the generation of good random
numbers is costly, and this is one important issue in large-scale
Monte Carlo simulations. Moreover, it has been pointed out
[12] that low-quality pseudorandom numbers can actually
be used in Monte Carlo methods and may even improve
the performance. Thus it is controversial as to the quality
of randomness actually required. It is also noteworthy that
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recently a deterministic sampling algorithm, which is called
herded Gibbs sampling [13], was proposed on the basis of
the herding algorithm [14,15]. Although the algorithm is not
practical for large-scale simulations, it is theoretically far more
efficient than conventional Monte Carlo methods. Thus it is
intriguing to explore what is possible with deterministic Monte
Carlo algorithms, and chaotic Boltzmann machines can be
regarded as one of the approaches to the problem.

With these motivations in mind, in this paper, we nu-
merically investigate the capabilities of the chaotic billiard
dynamics as a deterministic alternative to random Monte Carlo
methods by applying it to classical spin models in statistical
physics. We confirm that the billiard dynamics can yield
samples that converge to the true distribution of the Ising
model, and we show that the phase-transition point and the
critical exponents of the Ising model are correctly obtained.
Furthermore, we extend the billiard dynamics to spins that
take more than two states, and we apply it to the Potts
model and the XY model. We also point out that the billiard
sampling dynamics is reversible and can be a good example for
discussing the microscopic origins of irreversible macroscopic
behavior on the Ising model.

It is to be noted that although the term “Monte Carlo”
may imply that the algorithm is probabilistic, we intentionally
keep using this term for deterministic algorithms also, thereby
indicating that they can be used exactly in the place of
conventional Monte Carlo methods.

II. BILLIARD DYNAMICS FOR THE ISING MODEL

In this section, we briefly introduce the implementation of
probabilistic spin models by billiard dynamics. Although we
limit the description to the Ising model, it can be extended to
arbitrary Ising spin-glass models or Boltzmann machines [1].

Let us consider the Ising model composed of N sites
on a lattice. The Hamiltonian for a spin configuration σ =
(σ1, . . . ,σN ) ∈ {−1,+1}N of the Ising model is given by

E(σ ) = −
∑
〈i,j〉

σiσj , (1)

where the summation is taken for all the adjacent pairs in a
lattice.

The probability distribution of the spin configurations of
the Ising model is given by the Gibbs distribution

P [σ ] = 1

Z
exp

(
− 1

T
E(σ )

)
, (2)

where T denotes the temperature and Z denotes the partition
function given by

Z =
∑

σ

exp

(
− 1

T
E(σ )

)
. (3)

For large spin systems, it is difficult to evaluate the
probability and directly obtain the samples. To obtain samples
from the probability distribution (2), we normally use Monte
Carlo methods. Here we consider the heat-bath algorithm,
which is also known as Gibbs sampling in the field of
machine learning. We choose a spin i from 1, . . . ,N randomly
or sequentially. For each chosen spin, we update the state

according to the probability

P [σi = +1|σ \i] = exp
( ∑

σj/T
)

exp
( ∑

σj/T
) + exp

(− ∑
σj/T

) ,

(4)

where σ \i denotes the configuration of the spins in the system
except for the ith spin. This process defines a Markov chain
having the Gibbs distribution (2) as the stationary distribution.
Therefore, we can eventually obtain a sample sequence from
the Gibbs distribution.

Here, we consider using billiard dynamics instead of the
heat-bath algorithm for sampling from the Gibbs distribution
(2). We introduce an internal state xi ∈ [−1,+1] for each node
i. The internal state of the ith node evolves according to the
following differential equation:

dxi

dt
= −σi exp

(
− 1

T
σi

∑
j

σj

)
. (5)

The state of the ith node σi changes when xi reaches +1 or
−1 as follows:

σi ←− +1 when xi = +1,
(6)

σi ←− −1 when xi = −1.

Note that xi decreases when σi = +1 and increases when
σi = −1. Therefore, the internal state xi continues oscillating
between +1 and −1. The continuous-time dynamics defined
by Eqs. (5) and (6) is a hybrid dynamical system [16] on
the state space {−1,+1}N × [−1,+1]N , because it has both
discrete and continuous state variables.

The differential equation (5) is designed to be consistent
with Eq. (4) in the following sense. We assume here that the
states of the neighboring nodes of the ith node are fixed. Then,
xi oscillates between +1 and −1 periodically. According to
Eq. (5), it takes 2 exp(

∑
σj/T ) unit time for xi to move from

+1 to −1, and it takes 2 exp(−∑
σj/T ) unit time for xi to

move from −1 to +1. Hence the period is 2[exp(
∑

σj/T ) +
exp(−∑

σj/T )] unit time, in which the state σi takes on
+1 for 2 exp(

∑
σj/T ) unit time. Therefore, the probability

that we observe σi = +1 at a random instant is consistent
with Eq. (4). Note that this consistency is derived under the
assumption that the states of the neighboring nodes are fixed.
Since the states in the system actually change, this is merely an
explanation that justifies Eq. (5) only intuitively. It is expected
but not assured that σ follows the Gibbs distribution (2).

In the explanation above, it is only essential that the relative
time duration for which σi takes on +1 in a period coincides
with the probability P [σi = +1|σ \i] defined in Eq. (4). In
other words, what is required for the consistency is that the
speed |dxi/dt | is proportional to P [σi |σ \i]−1. In fact, there
are two other natural implementations in place of Eq. (5). One
possibility is to define the speed as P [σi |σ \i]−1 as follows:

dxi

dt
= −σi

[
1 + exp

(
− 2

T
σi

∑
j

σj

)]
. (7)
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Another possibility is to define the speed as P [−σi |σ \i] as
follows:

dxi

dt
= −σi exp

( − σi

∑
σj/T

)
exp

( ∑
σj/T

) + exp
(− ∑

σj/T
) . (8)

Considering the interactions with the neighboring nodes, these
three definitions have different dynamics. As shown in the next
section [Fig. 2(a)], all the definitions appear to work similarly,
so that we mainly employ only Eq. (5) in this paper. We also
note that implementations are not limited only to these three
types. For instance, arbitrary constants different from site to
site can be multiplied to the speeds.

There are two views on the dynamics of this system. If
we focus on each node in the system, the internal state xi

continues oscillating between −1 and +1, interacting with the
neighboring nodes. In this sense, the system can be regarded
as a type of coupled-oscillator system. On the other hand, if
we observe all the internal states simultaneously, the internal
state (x1, . . . ,xN ) travels in a straight line in the hypercube
[−1,+1]N according to Eq. (5), and changes its direction when
it collides with the boundary of the hypercube according to Eq.
(6). In this sense, the dynamics of this system can be regarded
as pseudobilliard [17].

Unlike deterministic spin models implemented by CMLs,
each node does not have chaotic dynamics. However, it has
been shown [1,18] that chaotic behavior naturally emerges
from the interactions in the system, and it is considered to
work as a heat bath to realize probabilistic behavior of the spin
configurations.

Statistics of the Ising spin model can be obtained from
the continuous-time billiard system in the following manner.
Let t0,t1, . . . ,tk, . . . be the sequence of times at which state
switchings occur according to Eq. (6). Then, the expectation
value of a statistic �(σ ) can be estimated from the samples
until time tK as follows:

〈�〉 = 1

tK − t0

∫ tK

t0

�(σ (t))dt = 1

tK − t0

K∑
k=1

τk�(σ k), (9)

where τk = tk − tk−1 and σ k denotes the state that the system
is taking on in the time interval from tk−1 to tk . Thus, in
a sense, we obtain a sample sequence σ 1,σ 2, . . . weighted
by time intervals τ1,τ2, . . .. The statistics are calculated in
this manner in the present study. Another method to obtain a
(unweighted) sample sequence is to observe σ = (σ1, . . . ,σN )
uniformly, at every one unit time for example, or randomly.
Note that sampling from a continuous-time billiard system is
analogous to sampling with continuous-time (kinetic) Monte
Carlo algorithms such as the Bortz-Kalos-Lebowitz algorithm
[19] and the Gillespie algorithm [20].

Although the billiard dynamics is described as a
continuous-time system, numerical calculation can be carried
out by iterating the Poincaré map x(tk) �→ x(tk+1) induced
on the boundary of the hypercube [0,1]N as explained in
Refs. [1,18]. Hence, when the system temperature is low and
the spins seldom flip, the simulation performs efficiently, in
a manner similar to continuous-time Monte Carlo algorithms.
However, it is generally less efficient on ordinary computers
compared with the ordinary heat-bath algorithm [1].
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FIG. 1. Absolute errors of the empirical distribution for the Ising
model on a two-dimensional lattice of size L = 4 with the periodic
boundary condition at temperature T = 2.4. The absolute error from
the true distribution at time t is calculated for the empirical distribu-
tion obtained from a trajectory until time t . The solid line indicates
the average absolute error for 96 different trajectories, and the dashed
lines indicate the minimum and maximum absolute errors among the
trajectories. All the lines decrease at a gradient of nearly −1/2.

III. CONVERGENCE

In this section, we numerically verify that the billiard
dynamics yields samples that converge to the true distribution
of the Ising model on a small lattice, for which probability
distributions can be computed.

Figure 1 shows the absolute error between the empirical
distribution observed from the billiard system and the true
distribution of the Ising model on a two-dimensional lattice of
size L = 4. The absolute error is defined as∑

σ

∣∣∣∣P [σ ] − rσ (t)

t

∣∣∣∣, (10)

where rσ (t) denotes the total time for which the system takes
on the state σ until time t . The solid line in Fig. 1 indicates
the absolute error averaged for 96 different initial values, and
the dashed lines indicate the minimum and maximum errors.
Note that the error is calculated for each orbit. Therefore,
Fig. 1 shows that for all the 96 initial values randomly chosen
from the uniform distribution on {−1,+1}N × [−1,+1]N ,
the empirical distributions constantly converge to the true
distribution. All the lines have gradients nearly equal to
−1/2, thereby indicating that the convergence rate is almost
O(1/

√
t).

Figure 2(a) shows the absolute errors for Eqs. (5), (7), (8),
and random Monte Carlo sampling. As for random Monte
Carlo sampling, N Monte Carlo steps are regarded as one unit
time. The errors decrease in a similar manner in each case.
The constant biases between the algorithms are mainly due to
the difference in the switching frequencies of the algorithms.
This result numerically shows that all the three definitions
for dx/dt , which are justified only intuitively in the previous
section, work consistently with Eq. (4).

Figure 2(b) shows the absolute errors for different lattice
sizes L = 2, 3, and 4. The errors decrease at almost the same
gradient. For calculation for L = 2 and 3, we perturbed the
speeds of the units by multiplying constant values to Eq. (5).
Specifically, Eq. (5) for i = 1, . . . ,N is multiplied by 0.5 +
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FIG. 2. Absolute errors of the empirical distribution obtained by the billiard dynamics for the Ising model on a two-dimensional lattice
with the periodic boundary condition. (a) The average absolute errors for different sampling algorithms. The lines indicated by “billiard1,”
“billiard2,” “billiard3,” and “random” correspond to Eqs. (5), (7), (8), and random Monte Carlo sampling, respectively. (b) The average absolute
errors for different lattice sizes L = 2,3,4 at T = 2.4. (c) The average absolute errors for different temperature values T = 2.0,2.4,2.8 with
L = 4. All the lines show the average absolute error for 96 different trajectories. Overall, the errors of billiard sampling dynamics decay very
similarly to those of random sampling.

0.2i for N = 2 × 2 and by 0.5 + 0.1i for N = 3 × 3. Without
this perturbation, the errors sometimes stop decreasing, which
may be due to symmetries in these small systems composed
of uniform units. For example, in the case of L = 2, two units
in diagonal positions receive exactly the same inputs from two
other units in the other diagonal positions. Since it can be
intuitively understood that the dynamics can be easily limited
to a subspace if all the units are uniform, we perturbed the
speeds and confirmed the convergence as expected.

Figure 2(c) shows the average absolute errors at different
temperatures T = 2.0, 2.4, and 2.8 for L = 4. The errors
decrease with almost the same gradient.

To summarize, all the results show convergence to the true
distribution with the convergence rate almost in the order of
O(1/

√
t). Namely, the convergence rate is almost the same

as that of random Monte Carlo sampling, and slower than the
order O(1/t) of the herded Gibbs sampling [13].

IV. FINITE-SIZE SCALING ANALYSIS

To examine the capabilities of the billiard dynamics for
larger lattices, we apply it to finite-size scaling analysis (see,
e.g., Ref. [21]) of the critical behavior of the Ising model. In
the context of CMLs, it is known that the universality class
depends on the updating rules [7]. Therefore, it is intriguing to
determine as to which universality class the continuous-time
billiard dynamics belongs to, although it should belong to the
Ising universality class if the billiard dynamics truly yields
samples from the Ising model precisely.

We use the Ising model on a two-dimensional lattice of
size L = 32,40, . . . ,80 with the periodic boundary condition.
To find the phase-transition point, we calculated the Binder
cumulant [22]

U (L,T ) = 1 − 〈m4〉
3〈m2〉2

, (11)

where m denotes the magnetization m = ∑
i σi/N . The graphs

of the Binder cumulants for different lattice sizes L are
expected to intersect at the critical temperature Tc. Figure 3
shows the Binder cumulants calculated for various lattice
sizes around the theoretical critical temperature and least-

square fittings with cubic functions to the calculated values.
The intersections of the polynomial fits give an estimate of
2.2690 ± 0.0002, which is consistent with the theoretical value
of Tc = 2/log(1 + √

2) = 2.2691 . . . of the Ising model on a
two-dimensional lattice.
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FIG. 3. Binder cumulant as a function of the temperature T

around Tc for L = 32, 40, 48, 56, 64, 72, and 80. (a) The points show
the values of the Binder cumulant calculated numerically by the bil-
liard dynamics. The statistics are calculated during 107 unit time, after
initial 106 unit time is skipped, for 96 different initial values. The solid
lines indicate least-square fittings with cubic functions for each lattice
size. (b) Magnification of the graphs in (a) around the critical temper-
ature Tc. The intersections of the cubic fittings provide an estimate
of Tc = 2.2690 ± 0.0002, which is consistent with the theoretical
critical temperature of Tc = 2/log(1 + √

2) = 2.2691 . . . of the Ising
model on a two-dimensional lattice indicated by the vertical line.
Note that the graphs for larger lattices tend to give better estimates.
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FIG. 4. Dependencies on lattice size L of (a) the gradient of the cubic fittings to the Binder cumulant ∂U/∂T , (b) the mean absolute
magnetization 〈|m|〉, and (c) the magnetic susceptibility χ , all calculated at the theoretical critical temperature T = Tc. The crossings show the
values obtained by numerical calculations. These log-log plots give the estimates (a) 1/ν = 0.993 ± 0.016, (b) β/ν = 0.1248 ± 0.0004, and
(c) γ /ν = 1.751 ± 0.004. These results are in agreement with the theoretical values of the critical exponents ν = 1, β = 1/8, and γ = 7/4 of
the Ising model on a two-dimensional lattice. The lines show least-square fits by linear functions with the theoretical gradient values.

The exponent ν can be obtained from the derivative
of the Binder cumulant with respect to the temperature at
the critical temperature, because according to the finite-size
scaling theory, the following relation holds:

∂U

∂T

∣∣∣∣
T =Tc

∝ L1/ν . (12)

Figure 4(a) shows the derivatives of the polynomial fits at the
theoretical critical temperature. The gradient of the log-log
plot is estimated as 0.993 ± 0.016, which is consistent with
ν = 1 of the Ising model. The exponents β and γ can be
obtained similarly from the absolute magnetization 〈|m|〉 and
magnetic susceptibility χ = N (〈m2〉 − 〈|m|〉2) at the critical
temperature, using the following relation:

〈|m|〉 ∝ L−β/ν, (13)

χ ∝ Lγ/ν. (14)

From the log-log plots shown in Figs. 4(b) and 4(c), the critical
exponents β/ν and γ /ν are estimated as 0.1248 ± 0.0004
and 1.751 ± 0.004, respectively. These values are consistent
with those of the Ising universality class: ν = 1, β = 1/8,
and γ = 7/4.

V. POTTS MODEL

In this section, we extend the billiard dynamics to spins
that take more than two states, and we apply it to the Potts
model. For simplicity, we describe the dynamics for the Potts
model here; it is straightforward to extend the dynamics to
more general spin systems.

The Hamiltonian of the q-state Potts model is given by

E(σ ) = −
∑
〈i,j〉

δ(σi,σj ), (15)

where σi ∈ {0,1, . . . ,q − 1} denotes the state of the ith site
and δ(·,·) represents the Kronecker δ function.

We implement the Potts model on the basis of the billiard
sampling dynamics for the Ising model as follows. We define
an internal state xi ∈ R/qZ = [0,q) for each ith node, which

evolves according to the following differential equation:

dxi

dt
= exp

(
− 1

T

∑
j

δ(σi,σj )

)
. (16)

Note that the speed dxi/dt is always positive and the two
end points of [0,q) are regarded as identical. Therefore, xi

continues to increase in the interval [0,q), and when it reaches
xi = q, it instantaneously jumps to xi = 0. The state σi of
the ith node is determined from xi as σi = 
xi�, where 
xi�
denotes the largest integer not greater than xi .

Equation (16) is designed according to essentially the same
idea as Eq. (5) of the billiard dynamics of the Ising model.
Namely, the speed is determined so that it is proportional to
P [σi |σ \i]−1. Therefore, when the probability is higher, the
internal state moves more slowly, and the system remains in
such a state for a longer duration.

This system can be regarded as a coupled-oscillator system,
because each internal state xi oscillates on a circle R/qZ =
[0,q) interacting with the neighboring nodes. When q = 2,
this system is essentially equivalent to the billiard dynamics
for the Ising model. However, for q > 2, the internal state
(x1, . . . ,xN ) travels on a N -dimensional torus [0,q)N , and
its dynamics cannot be reduced to a billiard system. Note
that, as mentioned in Ref. [1], another implementation by
pseudobilliard dynamics for the Potts model is possible by
using switched arrival systems [23].

As a statistic that characterizes the behavior of the Potts
model, we define the order parameter as follows:

m = max
s

qNs − N

N (q − 1)
, (17)

where Ns denotes the number of the sites taking on the state
s. The order parameter m takes 1 when all the spins take one
state (maxs Ns = N ) in the completely ordered phase, and it
takes 0 when the spins take all the states equally (Ns = N/q)
in the completely disordered phase.

Figure 5 shows statistics of the Potts model on a two-
dimensional lattice of size L = 24 with the periodic boundary
condition for q = 4 and q = 6 calculated by the heat-bath
algorithm and the oscillator sampling dynamics. The Potts
model on a two-dimensional lattice is known to undergo a
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FIG. 5. (Color online) Statistics of the Potts model on a two-dimensional lattice of size L = 24 with the periodic boundary condition for
q = 4 (red lines) and q = 6 (blue lines) calculated by the heat-bath algorithm (thick lines) and the oscillator sampling dynamics (thin lines).
(a) Average order parameter 〈m〉. (b) Average energy per site 〈ε〉. (c) Magnetic susceptibility χ . (d) Specific heat c. The statistics are calculated
for 105 unit time, after initial 104 unit time is skipped, for 100 different initial values.

second-order phase transition if q � 4 and a first-order phase
transition if q > 4. In Fig. 5, the average order parameter
〈m〉 and the average energy per site 〈ε〉 = 〈E〉/N as well
as their variances per site, the magnetic susceptibility χ =
N (〈m2〉 − 〈m〉2) and the specific heat c = N (〈ε2〉 − 〈ε〉2), are
shown. In all the graphs, the lines for the two methods coincide
with each other.

VI. DISCUSSION

A. Extensions to continuous-valued spin models

The implementation for the Potts model naturally leads
us to consider extensions to continuous-valued models such
as the XY model. Here, we discuss the possibilities of such
extensions.

The XY model is composed of spins that take continuous-
valued states in [0,2π ). The Hamiltonian of the XY model is
given by

E(θ ) = −
∑
〈i,j〉

cos(θi,θj ), (18)

where θi ∈ [0,2π ) denotes the state of the ith spin. The XY

model can be regarded as the limit q → ∞ of the Potts model
with the interaction term replaced by the cosine function.

One way to design sampling dynamics for the XY model
on the basis of the oscillator dynamics for the Potts model is
as follows. We define an internal state xi ∈ R/Z = [0,1) for
each ith node. It evolves according to the following differential
equation:

dxi

dt
= exp

(
− 1

T

∑
j

cos(θi,θj )

)
. (19)

Since dxi/dt is always positive, the internal state xi always in-
creases from 0 to 1. When it reaches xi = 1, it instantaneously

jumps to xi = 0 and the state θi is updated as follows:

θi ←− θi + 2πφ and xi ←− 0 when xi = 1, (20)

where φ is an arbitrary irrational number. We use the golden
mean φ = (

√
5 − 1)/2 in the numerical simulations.

As another possibility, it is natural to consider the limit
q → ∞ in the implementation for the Potts model (with the
interaction term replaced by cos). Then, the internal state xi

can be viewed as the continuous-valued spin state θi of the XY

model. More specifically, the state θi evolves according to the
following differential equation:

dθi

dt
= exp

(
− 1

T

∑
j

cos(θi,θj )

)
. (21)

This equation defines a coupled-oscillator system, although
the interaction is completely different from ordinary coupled-
oscillator systems such as the Kuramoto model. Since the state
changes continuously, the numerical simulation of this system
is very different from other systems we have considered. In the
following simulations, we integrate the differential equation by
the fourth-order Runge-Kutta method with a time step of 0.01.

We evaluate these methods by examining energy dis-
tributions constructed from sample sequences for the XY

model at T = 1.2 and 0.6, where energy values per site
are discretized with a bin width of 0.01. Since we do not
have the true distribution, we regard an empirical distribution
constructed from samples until t = 108 generated by the
Metropolis algorithm as the “true” distribution, where N

Metropolis steps are regarded as 1 unit time. Figures 6(a), 6(b),
and 6(c) show the absolute errors from the true distribution
of the empirical distributions obtained by the Metropolis
algorithm, the irrational-rotation sampling dynamics, and the
coupled-oscillator sampling dynamics, respectively. For all
the algorithms, sample sequences are obtained by sampling
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FIG. 6. Sampling dynamics for the XY model on a two-dimensional lattice of L = 8 at T = 1.2 (top row) and T = 0.6 (bottom row).
The absolute errors of empirical energy distributions from the distribution obtained by the Metropolis algorithm for t = 108 are shown. The
empirical energy distributions are constructed from samples until time t generated by the (a) Metropolis algorithm, (b) irrational-rotation
sampling dynamics, and (c) coupled-oscillator sampling dynamics. The solid lines indicate the average absolute error for 96 different sample
sequences, and the dashed lines indicate the minimum and maximum absolute errors among the sequences.

uniformly at every 1 unit time. As regards the irrational-
rotation sampling [Fig. 6(b)], the error decreases almost
in the order of O(

√
t) even in the worst case. While the

coupled-oscillator sampling dynamics works well for T = 1.2,
it does not work at all for T = 0.6 [Fig. 6(c)]. We have not
succeeded in tracking down the cause of this result yet; it
is possible that Eq. (21) intrinsically does not offer proper
sampling dynamics even if the equation can be integrated
without numerical errors. Although it is also possible that this
may be only due to numerical errors, this result at least shows
that naive numerical integration does not work well.

To summarize, we have examined two types of sampling
dynamics designed for continuous-valued spin models. While
the irrational-rotation sampling dynamics [Eq. (19)] updates
the state θi discretely, the coupled-oscillator sampling dynam-
ics [Eq. (21)] updates the state θi continuously. Although the
irrational-rotation sampling seems promising, further studies,
especially on the differences between these two methods, are
necessary to understand the capabilities and the limitations of
the proposed dynamics.

B. Spin echoes in the Ising model

Thus far, we have mainly described the billiard and oscil-
lator sampling dynamics as a sampling method for classical
spin systems. However, we note that the dynamics itself is also
interesting as an abstract model for physical systems with a
large number of degrees of freedom that can be related to both
the CMLs and the coupled-oscillator systems.

One important aspect of the billiard sampling dynamics
is its reversibility, while its macroscopic behavior as spin
models is irreversible. The microscopic origins of irreversible

macroscopic behavior have been an important topic in sta-
tistical physics since more than a century ago (see, e.g.,
Ref. [24]). This topic has been discussed using models such as
the Lorentz gas model (or Sinai’s billiard) [25], multibaker
maps [26,27], the Q2R automaton [28], and Nosé-Hoover
thermostats [29–31]. The billiard sampling dynamics also
exhibits both reversible microscopic behavior and irreversible
macroscopic behavior and, therefore, it can be a good example
for discussing this topic, particularly if its chaotic dynamics is
investigated in a more theoretical manner in the future. Note
that the bakermap lattice [9] for the Ising model can be a good
example as well, because its dynamics is invertible and can be
modified to be reversible.

As an example that demonstrates the reversibility, we show
in Fig. 7 that spin echoes [32] can be observed in the Ising

-0.5

 0

 0.5

 1

 0  50  100

m

t

flip

echo

FIG. 7. Observation of a spin echo in the Ising model on a two-
dimensional lattice with size L = 64 at T = 2.6. A time series of the
magnetization m sampled uniformly at every 0.1 unit time is shown.
At time t = 0, all the spins are aligned. At time t = 50, all the internal
states are flipped. Subsequently, at time t = 100, the spins become
aligned again.
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model with the billiard sampling dynamics. We use the Ising
model in the paramagnetic (disordered) phase. At time t = 0,
all the spins are aligned to +1, so that the magnetization is
initially equal to 1. The initial internal state x is drawn from the
uniform distribution on [−1,+1]N . As the system equilibrates,
the magnetization decreases to values around zero. At time
t = 50, we flip the signs of the internal states x instantaneously
as xi �→ −xi , while the states σ are kept unchanged. After
the flip, the simulation continues as if time is reversed. The
magnetization remains in the equilibrium state for a while;
however, it suddenly increases to 1 at time t = 100. Namely,
all the spins are aligned again at the moment, contradictory
to the second law of thermodynamics. This result is a natural
consequence of the reversible dynamics and, theoretically, the
memory of the initial state can be restored after an arbitrarily
long time. However, it will practically become difficult to
restore the initial state after a long equilibration time on a
large lattice, due to the sensitive dependence on the initial
conditions of the chaotic dynamics. This indicates that it will
become almost impossible to find a microscopic state that
evolves contrary to the second law of thermodynamics.

VII. SUMMARY

In this paper, we have numerically verified that the billiard
dynamics can generate samples from the Ising model by

examining the convergence and applying it to finite-size
scaling analysis. We also have extended the billiard dynamics
to multivalued and continuous-valued spin models. In all the
simulations (except for the oscillator dynamics for the XY

model), the proposed dynamics works well as a deterministic
alternative to random Monte Carlo sampling.

It is considered important to examine more spin models
under various conditions on various network structures nu-
merically. However, because there are infinitely many possible
models to examine, we cannot clarify the capabilities and the
limitations of this approach only by the means of numerical
simulations. Therefore, we also consider future studies on
the theoretical foundations of the sampling dynamics to be
important on the basis of the promising results presented in
this paper.
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