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Connection between maximum-work and maximum-power thermal cycles
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A new connection between maximum-power Curzon-Ahlborn thermal cycles and maximum-work reversible
cycles is proposed. This linkage is built through a mapping between the exponents of a class of heat transfer
laws and the exponents of a family of heat capacities depending on temperature. This connection leads to the
recovery of known results and to a wide and interesting set of results for a class of thermal cycles. Among other
results it was found that it is possible to use analytically closed expressions for maximum-work efficiencies to
calculate good approaches to maximum-power efficiencies. Behind the proposed connection is an interpretation
of endoreversibility hypothesis. Additionally, we suggest that certain reversible maximum-work cycles depending
on working substance can be used as reversible landmarks for FTT maximum-power cycles, which also depend
on working substance properties.
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I. INTRODUCTION

As is well known, Curzon-Ahlborn (CA) [1] found an en-
doreversible Carnot-like thermal engine in which the isother-
mal branches of the cycle are not in thermal equilibrium with
their corresponding heat reservoirs at absolute temperatures
T1 and T2 < T1 having an efficiency at the maximum-power
(MP) regime given by

ηCA = 1 −
√

T2

T1
. (1)

This equation was obtained by using the so-called Newton
law of cooling to model the heat exchanges between the heat
reservoirs and the working fluid along the isothermal branches
of the cycle. In fact, Eq. (1) was obtained previously by
Novikov [2] in a context very close to finite-time thermody-
namics (FTT). Later, within the context of FTT some authors
[3–7] demonstrated that Eq. (1) is valid only for the Newtonian
heat exchanges. As a matter of fact the CA efficiency stems
from taking into account constant conductances and a linear
dependence between the heat fluxes and the working substance
temperatures along the isothermal branches of the cycle [4–7].
Once the linearity in the heat transfer law is dropped, the square
root term in the MP efficiency (ηMP) is lost. Very recently,
this fact has been widely confirmed by many authors working
on the first order irreversible thermodynamics [8–10] and on
microscopic [11] and mesoscopic [12] heat engines. On the
other hand, Eq. (1) also was obtained for some reversible
thermal cycles performing at maximum-work (MW) regime,
such as the Otto and Joule-Brayton (JB) cycles [13]. These
coincident results for the CA, Otto, and JB cycles motivated
Landsberg and Leff (LL) to propose that the CA efficiency
possesses a nearly universal behavior for a certain class of
thermodynamic cycles operating at MW. This result was
achieved by means of a generalized cycle which reduces to the
Otto, JB, Diesel, and some other known cycles [14]. Clearly the
kind of universality of the CA efficiency claimed by LL is not
of the class of the true universality of Carnot efficiency, ηC [15].
The square root term (SRT) observed in the CA efficiency can
be found in other processes of energy conversion, such as the

so-called water-powered machine, which mixes two steady
streams of hot and cold water to produce an output stream
of warm water at maximum kinetic energy [16]. In fact, the
role of the SRT of temperatures is more general and appears
also in some irreversible processes such as the irreversible
cooling or heating of an ideal gas initially at temperature Ti in
contact with a series of auxiliary reservoirs to reach the final
temperature Tf of a main heat reservoir. The SRT appears when
the generation of entropy of this process is minimized [17].
As can be seen, the SRT is found in several thermal processes
(reversible or irreversible) subject to some extremal conditions.
A less known result is that corresponding to the way the
square root is lost in the case of reversible cycles operating
at a MW regime. LL [14] first studied a cycle formed by two
adiabatic processes and two paths with constant heat capacities
C > 0 of the working fluid (see Fig. 1). This reversible cycle
operating under MW conditions has an efficiency given by
ηCA = 1 − √

τ , where τ = T−/T+ is the ratio between the
minimum and maximum temperatures of the cycle (see Fig. 1).
Actually, the first author who found this expression for a MW
engine was Chambadal [18]. LL [14] generalized the model of
Fig. 1, to encompass a family of symmetric and asymmetric
reversible cycles with a MW efficiency that do no deviate
from ηCA more than 14%. This behavior was referred to as
a near universality property of ηCA. However, for the case of
reversible cycles performing at MW, it will be demonstrated
that the CA efficiency is lost when constant heat capacities are
not used, in a similar way as occurs in FTT, where the SRT
in the CA efficiency is related only to constant conductances
and to a linear law of heat transfer. On the other hand, it
is known that the MW-Carnot efficiency is independent of
working substance [15] and as an upper bound for irreversible
thermal cycles performing between extreme temperatures T+
and T− gives values far from their corresponding efficiencies.
Even for MW-reversible thermal cycles as those of Fig. 1, ηC

is a very distant upper bound. From this point of view, it is
desirable to have at hand a MW-reversible efficiency that is
dependent on the working substance. The reversible cycle of
Fig. 1 depends on working fluid through its heat capacity, and
in all FTT-thermal cycle models the MP efficiencies depend
on working substance through the conductances and the heat
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FIG. 1. T -S diagram of a cycle formed with two adiabats and two
other processes with C > 0.

transfer law used. Thus, it is an interesting problem to search
for a linkage between MW-reversible cycles and MP-FTT
cycles, both depending on working substance as a kind of
landmark less farther than Carnot’s efficiency. The present
article is organized as follows: In Sec. II we study a cycle
as that of Fig. 1, where the working substance has a heat
capacity dependent on temperature; in Sec. III we discuss a
correspondence between MP-FTT and MW-reversible cycle
efficiencies. Finally, in Sec IV we present the concluding
remarks.

II. HEAT CAPACITIES OF THE FORM C = aT n

Consider a heat capacity of the form C = aT n where a is a
constant and n a real number. Following the cycle depicted in
Fig. 1, after integrating the heat capacity over the temperature
one obtains

Qin =
⎧⎨
⎩

a ln
(

T+
T ′

)
n = −1

aT n+1
+

n+1

[
1 − (

T ′
T+

)n+1]
n �= −1

, (2)

and

Qout =
⎧⎨
⎩

b ln
(

T−
T

)
n = −1

bT n+1
−

n+1

[
1 − (

T
T−

)n+1]
n �= −1

, (3)

where b is also a constant and might be different from a. This
case represents a more general scenario for cyclic processes
following Fig. 1. The adjustable temperatures T and T ′are
coupled because the fluid’s entropy change per reversible cycle
is zero, i.e.,

�S =
∫ T+

T ′

CdT

T
+

∫ T−

T

CdT

T
= 0, (4)

which leads to

T ′ =
{

T+
(

T−
T

)γ
n = 0

[T n
+ + γ (T n

− − T n)]
1
n n �= 0

, (5)

where γ = b/a. Because the change in the total internal energy
is zero, the reversible work done per cycle W = |Qin| − |Qout|

satisfies

W =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

aT+
[
1 − (

T−
T

)γ ] + b(T− − T ) n = 0

a ln[1 + γ T+(T −1
− − T −1)]

+ b ln
(

T−
T

)
n = −1

aT n+1
+

n+1

{
1 − [

1 + γ
( T n

−
T n+

− T n

T n+

)] n+1
n

+ bT n+1
−

n+1

(
1 − T n+1

T n+1
−

)
n �= 0, − 1

.

(6)

By maximizing W with respect to T it is found that T ∗ and
T ′∗ are given by

T ∗ = T ′∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(T+T
γ
− )

1
1+γ n = 0

(1+γ )T+T−
γ T++T−

n = −1(
T n

++γ T n
−

1+γ

) 1
n

n �= 0, − 1

. (7)

Then, as a result, the named symmetric cycles (γ = 1) and
asymmetric cycles (γ �= 1) fulfill that T ∗ = T ′∗. From Eqs. (4)
and (6) it can be seen that W is a convex curve with respect
to any of the two intermediate temperatures (such as occurs in
Fig. 2 of Ref. [13]). This curve has a maximum at T = T ′ = T ∗
given by Eq. (7). This behavior is a consequence of taking into
account the properties of the working fluid through its heat
capacity. From Eqs. (2), (6), and (7) the efficiency η = W/Qin

is immediately found under MW conditions, that is,

ηMW =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − γ τ
γ

1+γ

(
1−τ

1
1+γ

1−τ
γ

1+γ

)
n = 0

1 + γ
ln

(
τ+γ

1+γ

)
ln

(
1+ γ

τ
1+γ

) n = −1

1 − γ τn+1

(
τ−n+γ

1+γ

) n+1
n −1

1−
(

1+γ τn

1+γ

) n+1
n

n �= 0, − 1

. (8)

Clearly Eq. (8) reproduces the ηCA efficiency only for a
few combinations of γ and n. Figure 2 depicts the plot of
ηMW versus the exponent n considering γ = 1 (symmetric
scenario). In this figure it can be observed that ηCA is obtained
only for two values of n, the known case n = 0 (constant heat
capacity) and at n = −1/2, which is a novel case with MW
efficiency given by ηCA. Another relevant point is n = −1/4,
where the MW efficiency reaches its maximum value.

0.6 0.4 0.2 0.0
0.3665

0.3670

0.3675

0.3680

n

M
W

FIG. 2. (Color online) ηMW vs n with γ = 1 and τ = 2/5. The
cases n = 0, − 1/2 reproduce the well-known CA efficiency. Note
that there is a maximum at n = −1/4.
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FIG. 3. (Color online) ηMW vs γ with τ = 2/5. The case n = 0
reproduces the CA efficiency only when γ = 1 as is known, but the
case n = −1/2 reproduces the same result for any γ .

By fixing the value of τ it is possible to find (Fig. 3) that the
CA efficiency does not have a special behavior with respect
to other efficiencies, in the sense that it does not represent the
maximum value for an efficiency at MW. In Fig. 3 it is shown
how the case n = 0 reaches the value ηCA only for γ = 1, that
is, the case of symmetric cycles with constant heat capacities
performing at MW [13,14]. In addition, ηCA is also obtained
for MW-efficiency asymmetric cases (γ �= 1) and n �= 0. It is
quite remarkable that the unique case independent of γ is that
with n = −1/2; that is, ηMW (n = −1/2) = ηCA for any value
of γ . In any case, a cycle as shown in Fig. 1 with C = aT −1/2

in the process 1 → 2 and C = bT −1/2 in the process 3 → 4 is
the true cycle characterized by the ηCA at MW for any value
of γ . However, within the context of FTT, the cycle with MP
efficiency given by ηCA and independent of γ ′ = β/α [α and
β being heat conductances; see Eqs. (11) and (12)] is indeed
the Curzon and Ahlborn cycle.

Through their papers on reversible cycles performing at
MW, LL [13,14] established a bridge with FTT-MP cycles,
basically by means of the CA efficiency. In recent years
several authors [8–10,19–23] have renewed interest in the CA
efficiency. Discussion of this famous formula has been mainly
concerned with its possible universal nature within the context
of finite-time cycles. Practically since the beginning of FTT as
an active discipline, the limited validity of the CA efficiency
has been established [3–7]. Nonetheless, at the end of the
1980s the CA efficiency was found linked to MW reversible
cycles [13,14] and recently with its role in microscopic [11],
mesoscopic [12], and macroscopic thermal cycles [8,9] the
CA efficiency has gained new insights, which have to do with
a possible universality at least at the first few terms in the
Taylor expansion of the efficiency as a function of ηC = 1 − τ

[12,19,21,23]. Clearly Eq. (8) admits this treatment, leading
to a series in terms of ηC as functions of γ and n at any level
of approximation. The series for the efficiencies in Eq. (8) are
given by the following expressions:

η∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ηC

2 + (1+2γ )η2
C

12(1+γ ) + (1+2γ )η3
C

24(1+γ ) + O[ηC]4 n = 0
ηC

2 + (2+γ )η2
C

12(1+γ ) + (2+2γ+γ 2)η3
C

24(1+γ )2 + O[ηC]4 n = −1
ηC

2 + (1−n+2γ+nγ )η2
C

12(1+γ ) +
(1−n+3γ−nγ−2n2γ+2γ 2+nγ 2)η3

C

24(1+γ )2 + O[ηC]4
n �= 0, − 1

.

(9)

The linear term is really the same in every case. This
fact strengthen the idea that this is a characteristic for cycles
operating in the maximum work regime. When γ is restricted
to the symmetric case, γ = 1, the efficiencies are

η∗ =

⎧⎪⎪⎨
⎪⎪⎩

ηC

2 + η2
C
8 + η3

C
16 + O[ηC]4 n = 0

ηC

2 + η2
C
8 + 5η3

C
96 + O[ηC]4 n = −1

ηC

2 + η2
C
8 + (6−n−2n2)η3

C
96 + O[ηC]4 n �= 0, − 1

. (10)

For n = 0 and n = −1/2 the coincidence with ηCA extends
to any order of approximation and for the rest of the cases
only up to quadratic order in ηC, such as occurs for MP strong
coupling models that possess a left-right symmetry [21,24].

III. A CORRESPONDENCE BETWEEN EFFICIENCIES IN
FTT AND REVERSIBLE CYCLES

Following the spirit of the articles of LL [13,14], one may
wonder: Could it be possible to link the results obtained with
heat capacities depending on temperature given by Eq. (8)
with finite-time cycles of the CA type? It is suggested that this
connection is indeed possible. As is well known, in reversible
cycles of the Otto and JB type, Qin and Qout correspond to
quasistatic processes accomplished by means of an infinite set
of auxiliary heat reservoirs that lead the working substance
temperature from T to T+ and from T ′ to T−, respectively.
These heat quantities are calculated by means of integrals
that lead to Eqs. (2) and (3). In the case of FTT cycles as
the CA engine, Qin/out per cycle are given by irreversible
heat transfer laws depending on the conductances (α, β) and
the temperatures of the corresponding heat reservoirs and the
working substance. As asserted by Wang and Tu [22], for
the CA cycle, along both “isothermal” branches, the effective
temperature of the working substance can vary. Thus, it can
be proposed that in a T -S plane, the CA cycle follows a
topologically equivalent diagram as that of Fig. 1. Behind
this equivalence is the fact that in both cases the unavoidable
role of the working substance is taken into account. For FTT
cycles, heat transfer laws of the form

Q̇in = αT k
1

[
1 −

(
T1W

T1

)k]
, (11)

Q̇out = βT k
2

[(
T2W

T2

)k

− 1

]
, (12)

are typically used, where T1W/2W are the working substance
temperatures, T1/2 are the heat reservoir temperatures, and k is
a real number. Although evidently the conceptual meaning of
the heat quantities (Qin/out) is different within the framework
of reversible cycles and FTT cycles, respectively, it is quite
remarkable how their corresponding efficiencies have a good
agreement for nonarbitrary couples of n and k values. As is
well known, Q̇in/out, power output, and MP efficiency for CA
engines with heat transfer laws given by Eqs. (11) and (12)
are numerically calculated in an easy and direct manner
by maximizing the power output P given by the following
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FIG. 4. (Color online) Comparison between the MW (thick line)
and their corresponding MP (dotted line) efficiencies. The depicted
efficiencies are for symmetric cases γ = 1: (a) n = −2 in Eqs. (2)
and (3) and k = −1 in Eqs. (11) and (12); (b) n = −1/2 and k = 1/2;
(c) n = 0 and k = 1.

equation [25–27]:

P (η) = αT1γ
′η[(1 − η)k − τ k]

1 − η + γ ′(1 − η)k
, (13)

with respect to the efficiency η. In Fig. 4 is observed the
excellent fitting between three MW efficiencies and their
corresponding FTT-MP cases. Clearly the mapping between n

and k is given by k → n + 1, which stems from associating the
exponents of Eqs. (2) and (3) with those of Eqs. (11) and (12).
This rule excludes the case n = −1, because it corresponds to
k = 0, which is incompatible with Eqs. (11) and (12). Later
it will be seen how this particular case is consistently treated
within the context of the problem of relating reversible-MW
and FTT-MP thermal cycles.

The fitting between ηMW and ηMP goes from excellent
(symmetric cases) to very good (asymmetric cases) (see Figs. 4
and 7), in such a way that the analytical closed expressions of
ηMW given by Eq. (8) can be used as reliable first approxi-
mations for the FTT corresponding cycles, which commonly
have to be calculated by means of numerical methods.

Interestingly, the MP-FTT efficiencies in Fig. 4 and 7
were calculated within the context of endoreversible thermo-
dynamics, that is, by means of a Carnotian endoreversibility
hypothesis (the internal reversible cycle is taken as a rectangle-
shaped Carnot cycle in a T -S diagram). The question is: Why
is the fitting in Fig. 4 so good despite the fact that there is
not a rectangle in the reversible case of Fig. 1? A clue may
be glimpsed in the article by Anacleto and Ferreira (AF) [17],
where it was shown that a process as 1 → 2 in Fig. 1, but under

minimum entropy production conditions (low dissipation,
�S1,2 > 0 for a finite number N of equilibrium states), has a
temperature distribution path along the N auxiliary reservoirs
given by Tj = √

Tj−1Tj+1 (for constant heat capacity) with
j = 1, . . . ,N . This means that the minimum entropy trajectory
is not arbitrary but is given by a geometric mean distribution.
This can be used to construct an irreversible first approximation
of reversible paths such as those shown in Fig. 1, considering
a finite number of auxiliary reservoirs instead of an infinite
number of them in the processes 1 → 2 and 3 → 4 in Fig. 1.
As a matter of fact, the “isotherms” of a Carnot cycle in
an endoreversible construction are obtained after the power
maximization [4]. Their respective temperatures (T ∗

1W and
T ∗

2W ) do not correspond necessarily to actual temperatures of
the working substance, but are a kind of representative tem-
peratures that help to express the irreversible heat fluxes which
lead to the unavoidable entropy production, which permits a
step towards more realistic models of finite-time cycles.

From this point of view, one can propose another suitable
form of the endoreversibility hypothesis based on an internal
cycle of the JB type, for example, where the working fluid
temperatures can vary along the “isotherms,” that is, an internal
cycle such as that of Fig. 1 performing between the extreme
temperatures T+ and T−. Once this cycle is constructed one
could return to a rectangle-shaped endoreversible cycle in
a T -S diagram by means of the following procedure: First,
geometric means (Teff1 and Teff2) between T ′ and T+, and T−
and T are calculated, approximating reversible nonadiabatic
processes as those of Fig. 1 to minimum entropy irreversible
ones. Then, by means of these mean effective temperatures
Teff1 and Teff2 an equivalent Carnot rectangle is constructed
(see Fig. 5). As was established by Wang and Tu [22], for a
CA-type engine, the operation of the maximum power regime
is equivalent to minimum irreversible entropy production in
each finite-time “isothermal” process. If in addition the MW
condition given by Eq. (7) is used, then

ηMW ≈ ηMP = 1 − Teff2

Teff1
= 1 −

√
T ′ T−√
T T+

= 1 −
√

T−
T+

, (14)

that is, the CA efficiency (for the case of constant heat
capacity). The same procedure can be generalized for heat
capacities of the form C = aT n. In Fig. 6 the cases n =
−3/2 and n = 2 are shown, presenting three curves for the

FIG. 5. (Color online) A comparison between two Carnotian endoreversible constructions: (a) by means of the effective temperature
procedure and (b) by means of a standard CA procedure. Both diagrams were calculated for T+ = 600 K and T− = 200 K, which lead to
Teff1 = 455.901 K, Teff2 = 263.215 K, T ∗

1W = 473.205 K, and T ∗
2W = 273.205 K. Remarkably, Teff2/Teff1 = T ∗

2W/T ∗
1W = √

T−/T+.
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FIG. 6. (Color online) Comparison between three efficiencies: the reversible JB-type cycle efficiency (dashed line), its irreversible
approximation obtained from the procedure described in the text (continuous line), and that corresponding to the FTT case (dotted line)
for (a) n = 2 and (b) n = −3/2. In each inset there is a JB cycle (colored region) with the condition of maximum work [T ∗ given by Eq. (7)].
Three AF paths are shown for the processes 1 → 2 and 3 → 4: one built with one auxiliary reservoir (thin line), another with three auxiliary
reservoirs, and the third one with 62 auxiliary reservoirs. Notice that the more auxiliary reservoirs, the better the approximation to the reversible
process.

efficiencies: one for the reversible JB-MW efficiency [Eq. (8)],
another for the standard FTT-MP efficiency by maximizing
Eq. (13), and the third for the procedure based on effective
temperatures. As can be seen, in Fig. 6 the three curves are
very close to each other, especially for τ in the interval [0.3,1].
In summary, the similarity between ηMW and ηMP has to do
with the proper flexibility of the endoreversibility hypothesis.

Another remarkable fact found in Fig. 7 is that the MW
efficiency when n = −2 and the corresponding MP efficiency
at k = −1 are exactly the same for any value of γ (henceforth
γ = γ ′), that is,

ηMW(n = −2) = ηMP(k = −1) = ηC

2 −
(

1 −
√

γ+τ 2

1+γ

) , (15)

which has two limits: γ → 0 and γ → ∞ bounding the
possible values of the efficiency for a given τ , at n = −2
(k = −1):

limγ→∞(ηMW) = ηC

2
< ηMW/MP <

ηC

2 − ηC

= limγ→0(ηMW). (16)

Recently some authors have underscored the importance
of these limits (first found in Ref. [5]), which have been
reported within different contexts, such as a stochastic heat
engine [11], a low-dissipation Carnot engine [20], and for a
linear irreversible Carnot-like heat engine [22]. However, it
will be seen below that these limits are of a particular validity
only among a numerous set of limits for different values of k

(or n). On the basis of Eq. (8) the limits of ηMW for γ → 0 and
γ → ∞ are obtained which bound the values of ηMW. These
χ -shaped curves (continuous curves) are depicted in Fig. 7
where the corresponding ηMP curves (large dashed) are also
shown along with the symmetric cases for both efficiencies.
Well-known FTT numerical methods have been used to plot
the ηMP curves [25–27].

Some interesting facts can be remarked from this figure:
as mentioned before, for n = −2 (k = −1) both efficiencies
ηMW and ηMP have the same limits when γ → 0 and γ → ∞.
Interestingly, the χ -shaped curve corresponding to the ηMW

efficiencies has an exact specular symmetry with respect to the

value n = −1/2 (k = 1/2). At this point, the upper and lower
limits of the efficiency are the same because ηMW (n = −1/2)
does not depend on γ . This specular symmetry has as a
consequence that both limits given by Eq. (16) are also found
in the MW efficiency for n = 1 (k = 2; see Fig. 7). On the
other hand, the χ -shaped curve for the ηMP efficiencies does
not have a specular symmetry with respect to the crossing
point at k = 1, where both limits (γ → 0 and γ → ∞) are
the same because for k = 1, ηMP = ηCA is independent of
γ . This lack of symmetry precludes that the limits given by
Eq. (16) appear for any other k �= −1. It should be noted that
at the left side and at the right side of the crossing points
over the MW and MP χ -shaped curves, the lower and upper
limits are interchanged. For the specular symmetric MW case,
when exchanging n → − (n + 1) [k → −(k − 1)], both limits
have the same value, but they are inverted (γ → 0 is replaced
by γ → ∞ and vice versa). There is another fact of great
interest about the χ -shaped curves. For heat transfer laws with
approximately k ∈ (−10,10), in some regions ηMW < ηMP.
This inequality is not an artifact of numerical solutions for ηMP,
because in that region exist some cases where the inequality
is an exact analytical result, for example, for k = 1/2 (n =
−1/2). However, clearly, if in addition to the heat fluxes many
other irreversibilities are considered, the above-mentioned
inequality should be inverted. For the Stefan-Boltzmann case,
that is, k = 4 (n = 3), the upper and lower limits, for both ηMW

and ηMP, are not the limits given by Eq. (16), and additionally
they are inverted, in such a way that for γ ′ → ∞ a Müser-type
engine (β 
 α) is obtained [28] and ηMW > ηMP.

In Fig. 7 a large range of values of k (or n) is considered,
showing that at the same limits γ → 0, γ → ∞, and γ → 1,
the values of the MP and MW efficiencies are very similar to
each other, strengthening the idea that the analytical forms
of the MW efficiencies are a good approximation to the
corresponding MP efficiencies. The matching is improved
for values of τ > 0.4. In addition, for all symmetric cases
ηMW � ηMP and both convex curves (γ = 1) tend to zero when
|n|,|k| → ∞. It is noteworthy that the superior branches of the
χ -shaped curves for both ηMW and ηMP tend asymptotically to
ηC, and both inferior branches tend to zero when |n|,|k| → ∞.
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FIG. 7. (Color online) The bounds for the ηMW and ηMP are given by the χ -shaped curves for γ → 0 and γ → ∞, with τ = 2/5. For
k = −1 (n = −2) the well-known limits reported by Esposito et al. [20] are reproduced for both ηMW and ηMP (see inset). These limits are also
reproduced by ηMW at n = 1. For the symmetric cases (γ = 1) ηMW � ηMP with a maximum at k = 3/4 (n = −1/4; see also Fig. 2). Over the
χ -shaped curves some regions can be observed where ηMW � ηMP. Notice that the upper asymptote is the value of ηC and the lower one is
zero. Numerical calculations for ηMP have been used.

These results are a consequence of Eq. (8) and the numerical
solutions of FTT-MP efficiencies. The physical consistency
of all these asymptotic limits stems from the restrictions
imposed by Eqs. (5) and (7) and the first and second laws
of thermodynamics.

The asymptotic behavior towards ηC shown in Fig. 7
suggests that through the thermal properties of materials
or metamaterials [29] it is possible to approach to ηC.
Concerning the values of exponents k (or n), there are cases
beyond conventional values, such as the scaling of photon
bremsstrahlung emissivity in the optical thin limit [30], which
correspond to a case with k = 1/2 in Eqs. (11) and (12), and
even processes with k in the range from six to nine may be
found in astronomical cooling mechanisms [30,31]. The fact
that in Fig. 7 there are some intervals of γ and k (or n) values
that approximate the efficiencies to ηC may shed some light on
the searching of paths towards an improvement of energetic
properties of working substances and cycles.

As mentioned before, the case n = −1 deserves a special
treatment. The reversible heats Qin and Qout are given by
Eqs. (2) and (3), which coincide with the heat laws given by
(see Eq. (33) of Ref. [32])

Q̇in = αln
T1

T1w

(17)

and

Q̇out = βln
T2w

T2
, (18)

which were tested as feasible heat laws in Ref. [32]. For the
symmetric case (γ = 1), and also for the limits γ → 0 and
γ → ∞ the matching between ηMW and ηMP is excellent.

Thus, in the reversible-MW cases, the logarithmic expression
appearing in the heats n = −1 goes to a logarithmic expression
for the FTT-MP heats. That is, the mapping k → n + 1 works
very well for all cases except for the logarithmic one (n = −1).
However, this special case also has a corresponding FTT-MP
heat law that completes the agreement between ηMW and ηMP.

IV. CONCLUDING REMARKS

In summary, in this article it has been demonstrated that
there exists a strong and rich relationship between a class of
reversible MW cycles and finite-time MP cycles of the CA
type. This connection opens a wide spectrum of interesting
results containing known facts and some new findings.
All results suggest that behind the remarkable agreement
of the mentioned connection there is a kind of extended
endoreversibility contained in Figs. (1), (6), and (7) for very
low-dissipation cycles, as those of very large compression
ratios [3,20]. This extended endoreversibility has to do with
the procedure based in effective temperatures described in
Sec. III. On the other hand, we have proposed that MW
reversible cycles such as that of Fig. 1 can function as a
more suitable reversible benchmark depending on working
substance for MP-FTT cycles depending on working fluid.
Finally, we suggest that through the behavior shown in Fig. 7
one has an asymptotic path towards Carnot efficiency by using
the thermal properties of the working substances.
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[19] N. Sánchez-Salas, L. López-Palacios, S. Velasco, and A. Calvo

Hernández, Phys. Rev. E 82, 051101 (2010).
[20] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck,

Phys. Rev. Lett. 105, 150603 (2010).
[21] C. Van den Broeck and K. Lindenberg, Phys. Rev. E 86, 041144

(2012).

[22] Y. Wang and Z. C. Tu, Phys. Rev. E 85, 011127 (2012).
[23] R. Wang, J. Wang, J. He, and Y. Ma, Phys. Rev. E 87, 042119

(2013).
[24] M. Esposito, K. Lindenberg, and C. Van den Broeck, Phys. Rev.

Lett. 102, 130602 (2009).
[25] L. A. Arias-Hernández and F. Angulo-Brown, Rev. Mex. Fı́s.

40, 866 (1994), http://rmf.smf.mx/pdf/rmf/40/6/40_6_866.pdf.
[26] L. A. Arias-Hernández and F. Angulo-Brown, J. Appl. Phys. 81,

2973 (1997).
[27] L. A. Arias-Hernández, G. Ares de Parga, and F. Angulo-Brown,

Open Sys. Inf. Dyn. 10, 351 (2003).
[28] A. De Vos, Endoreversible Thermodynamics of Solar En-

ergy Conversion (Oxford University Press, New York,
1992).

[29] Y. Guo, L. Cortes, S. Molesky, and Z. Jacon, Appl. Phys. Lett.
101, 131106 (2012).

[30] A. Carballido and Wi. H. Lee, Astrophys. J. Lett. 727, L41
(2011); arXiv:1011.5515v1 (2010).

[31] J. N. Bahcall and R. A. Wolf, Phys. Rev. 140, B1452
(1965).
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