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Analytic expression for the mean time to absorption for a random walker on the Sierpinski fractal.
III. The effect of non-nearest-neighbor jumps
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We present exact, analytic results for the mean time to trapping of a random walker on the class of deterministic
Sierpinski graphs embedded in d � 2 Euclidean dimensions, when both nearest-neighbor (NN) and next-nearest-
neighbor (NNN) jumps are included. Mean first-passage times are shown to be modified significantly as a
consequence of the fact that NNN transitions connect fractals of two consecutive generations.
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I. INTRODUCTION

It is well established that a diverse set of phenomena, among
them the dynamics of reaction diffusion on substrates, hetero-
geneous catalysis, surface diffusion of adatoms, and diffusive
transport in porous and amorphous media, is modeled very
effectively by random walks (RWs) on fractal lattices, and an
extensive literature exists on the subject (see, e.g., Refs. [1–7]
and references therein). On disordered (random) fractals, the
properties of RWs are manifested as scaling relations, in accord
with the statistical nature of the self-similarity in the structures.
Such relations are largely based on numerical simulations, al-
though there exist some restricted but mathematically rigorous
results (see, e.g., [8–10]). On deterministic fractals, however,
more detailed results can be derived, as the self-similarity is
exact on all scales. The Sierpinski gasket, in particular, is
an archetypal fractal structure in that it possesses a sufficient
degree of connectivity, lacunarity, and ramification to make
it an effective as well as tractable model from the point of
view of applications. Several aspects of random walks on
this fractal, its higher-dimensional generalizations, and related
fractals have been studied, and the topic continues to remain
an active area of current research [11–17], as results derived
in these cases serve as reliable pointers to the properties of
random walks on generic fractal structures.

In the context of the applications mentioned above, the
aspects that are generally of interest are hitting-time distribu-
tions, mean first-passage times (MFPTs) to traps or reaction
centers, and related quantities. (For recent work on a systematic
procedure for the calculation of such quantities on recursively
defined structures, see Ref. [18].) Now, on non-self-similar
structures, the Central Limit Theorem guarantees that the
asymptotic diffusive behavior (〈r2〉 ∼ t) of RWs is robust, in
the sense that it remains valid for both regular and disordered
structures and for arbitrary step-length distributions, as long
as these have finite variances, and the walk is Markovian.
For instance, the inclusion of both nearest-neighbor (NN)
and next-nearest-neighbor (NNN) jumps does not make a
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significant difference to the overall behavior of the RW.
In sharp contrast, RWs on a fractal of box dimension df

are characterized by a random-walk dimension dw that is a
measure of the subdiffusivity of the transport, according to
〈r2〉 ∼ t2/dw . Correspondingly, first-passage-time distributions
and MFPTs are also modified as compared to the case of RWs
on nonfractal structures (〈t〉 ∼ rdw rather than r2). At a deeper
level, properties such as the recurrent or transient nature of
RWs on a fractal, the mean number of distinct sites visited
in a walk of a given number of steps [19], etc. are controlled
by the spectral dimension [1] d̃ = 2df /dw. While the various
scaling relations derived for RWs with NN jumps alone may
continue to be valid asymptotically when NNN jumps are also
permitted, we may expect significant modifications to occur in
the various prefactors concerned, thereby affecting numerical
values nontrivially. This pertains especially to fractal structures
of finite generation number, which is certainly the case in
practical applications as well as numerical simulations. To
give a specific example, the experimental evidence for, and
the physical importance of, non-nearest-neighbor jumps in the
diffusion of adatoms has been pointed out in Ref. [20].

In earlier work [11,12,15], we have studied the first-
passage-time problem and certain related aspects on the
Sierpinski gasket and its higher-dimensional counterparts. In
this paper, we quantify the effects of the inclusion of NNN
jumps by presenting an exact result for the mean time to
trapping on the class of Sierpinski fractals, in the case when
both NN and NNN jumps are included in the random walk.
What makes the incorporation of NNN jumps significant
is the fact that these jumps link fractals of two successive
generations, as will be seen below. The main effect is the
occurrence of a dimension-dependent modulating factor that
multiplies the part of the MFPT that scales from one generation
to the next. In addition, there is a small correction to the
scaling part, which is also determined exactly. We believe
that our exact and explicit results for the Sierpinski gasket
and its higher-dimensional counterparts, i.e., the Sierpinski
towers, will serve as useful and reliable markers against which
the results of numerical simulations and approximations in
the modeling of diffusive transport in hierarchical media can
be compared and tested—in particular, with reference to the
dependence on parameters such as the system size (represented
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FIG. 1. (Color online) The gasket G3, showing NN and NNN
jumps from typical sites.

here by the generation number of the fractal structure) and
associated dimensions (df ,dw,d̃ , and the Euclidean dimension
d in which the fractal is embedded).

II. MEAN FIRST-PASSAGE TIME
ON THE SIERPINSKI GASKET

The geometry of the Sierpinski gasket embedded in d = 2
Euclidean dimensions is well known. For our purposes, it is
convenient to describe the nth-generation Sierpinski gasket
(more accurately, the Sierpinski graph) Gn as follows. We
start with an equilateral triangle (the zeroth-generation gasket
G0) with vertices denoted by A (the apex), L (the lower left
corner), and R (the lower right corner), and decorate the centers
of its sides with the vertices of the “lacunary triangle” that is
removed to obtain the first-generation gasket G1. Repetition
of this process of decoration and excision leads to Gn. It has
3n−r lacunary triangles of “size” r , where r runs from 1 for
the smallest such triangle to n for the largest. The total number
of sites on Gn is Nn = 1

2 (3n+1 + 3), labeled by the site index
α. The sites are labeled sequentially from the apex site A

(α = 1) downwards, from the left to the right in each row. L

and R correspond, respectively, to α = Nn − 2n and α = Nn.
Figure 1 shows the n = 3 gasket. Traps are located at any or
all of the outermost vertices A, L, and R. Without loss of
generality, we take the trap site(s) to be (i) A if there is a
single trap, (ii) L and R if there are two traps, and, of course,
(iii) A, L, and R if there are three traps. A simple random walk
on Gn is ergodic (it is an irreducible, aperiodic Markov chain)
and first passage to one of the traps from any starting site α

is a sure event, with a mean first-passage time (MFPT) T (n)
α .

(T (n)
α ≡ 0 if α is a trap site.) We seek the site-averaged MFPT,

T (n) = 1

(Nn − Nt )

Nn∑
α=1

T (n)
α , (1)

where Nt (=1, 2, or 3) is the number of traps, for a random
walk with both NN and NNN jumps. In particular, we wish
to determine the precise manner in which the inclusion of
NNN jumps affects the MFPT as a function of the NNN jump
probability q.

We begin by noting that it is natural and consistent to define
an NNN jump on Gn as follows: it is an NN jump on Gn−1.

TABLE I. Site-averaged mean time to trapping at one of the
outermost vertices of a Sierpinski gasket of generation n. The
argument of T (n) is the next-nearest-neighbor jump probability q.

n T (n)(0) T (n)( 1
6 ) T (n)( 1

2 )

1 46
5

38
5

26
5

2 608
14

490
14

313
14

3 8674
41

6950
41

4364
41

4 127772
122

102250
122

63967
122

5 1904566
365

1523750
365

952526
365

6 28507448
1094

22806250
1094

14254453
1094

On Gn, therefore, we have the following two types of sites.
(i) 1

2 (3n + 3) sites that belong to both Gn−1 as well as Gn.
Both NN and NNN jumps can occur from any of these sites,
with respective probabilities p and q = 1 − p. (ii) A fresh set
of 3n sites that decorate the centers of the edges of Gn−1 to
yield Gn. These sites are the vertices of the smallest (r = 1)
lacunary triangles in Gn. Only NN jumps occur from these
sites. (See Fig. 1.) The coupled linear equations for the set of
MFPTs {T (n)

α (q)} that follow from the Laplace transform of
the backward Kolmogorov equation are given by

T (n)
α − (p/να)

∑
β∈{NN}

T
(n)
β − (q/να)

∑
γ∈{NNN}

T (n)
γ = 1, (2)

where α runs over all nontrap sites, να is the coordination
number of the site α (να = 2 for the sites A, L, and R; 4 for
all other sites), and β,γ are summed, respectively, over the
NN and NNN sites of α. We note in passing that, although we
have set p + q = 1, it is quite straightforward to allow for a
nonzero sojourn probability 1 − (p + q) at each site, should
the diffusive transport being modeled warrant it in any specific
application. In principle, the set of Eqs. (2) can be solved for
any given values of n and q, to find explicitly the MFPT for
every starting site α on each Gn, and hence the site-averaged
mean time to trapping.

We have carried out extensive numerical calculations to
find each T (n)

α up to generation n = 6, for the representative
values q = 1

6 and q = 1
2 of the NNN jump probability. As a

sample of these results, we list in Table I the values of the
site-averaged MFPT T (n)(q) in the case of a single trap, for
these values of q. For ready reference and comparison, we
have included the values of T (n)(0), corresponding to random
walks with only NN jumps, and written all the values with
the same denominator [=Nn − 1 = 1

2 (3n+1 + 1)], for each
n. These direct calculations rapidly become very tedious,
however, because Nn ∼ 3n, and the inversion of an (Nn × Nn)
matrix is involved. Moreover, the inclusion of NNN jumps
doubles the number of nonzero off-diagonal elements of each
row from four to eight. However, the scale invariance of Gn

comes to our aid, and an exact real-space renormalization of
the MFPTs can be carried out to determine T (n)(q) for arbitrary
n and q in closed, analytic form, as we now proceed to show.
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III. DERIVATION OF THE GENERAL
FORMULA FOR THE MFPT

Two essential ingredients are involved in this process. The
first is the identification of the basic rescaling of MFPTs on Gn

occasioned by the inclusion of NNN jumps. This factor may
be deduced in a number of different ways, all of which lead
to the same result (as they ought to). The simplest of these is
as follows. Consider, for the moment, a random walk starting
at the vertex site 1 on a trapless gasket. The walker reaches
one of the NN sites 2 and 3 in one time step. What is the
MFPT “to go twice as far,” i.e., to reach one of the NNN sites
4 and 6? Let tα(q) be the MFPT from the site α (=1,2,3,5)
to hit any of these sites, for a given value of the NNN jump
probability q. From the site 1, both NN and NNN jumps are
allowed in a single time step, with respective probabilities p

and q = 1 − p. From the sites 2, 3, and 5, only NN jumps are
allowed. Then, using the obvious symmetry property t2 = t3,
we obtain the coupled equations

t1 = p t2 + 1, 3t2 = t1 + t5 + 4, 2t5 = t2 + 2. (3)

Eliminating t2 and t5, we get

t1(q) = 5
(3 − 2q)

(3 + 2q)
. (4)

Thus, the value t1(0) = 5 for a simple random walk on the
Sierpinski gasket (which leads to the value dw = ln 5/ ln 2 for
the random-walk dimension [1] on this fractal) is modulated,
when NNN jumps are permitted, by the factor

λ(q) = (3 − 2q)

(3 + 2q)
. (5)

This observation is crucial for what follows. In the absence of
NNN jumps, λ(0) = 1, as required.

The second key step is a sum rule for the MFPTs from
the vertices of any triangle in Gn. Let (ir ,jr ,kr ) denote the
vertices of a lacunary triangle of size r , where 1 � r � n. Let
(Ir ,Jr ,Kr ) denote the vertices of the triangle of which (ir ,jr ,kr )
is the central lacunary triangle. The coupled equations satisfied
by the set {T (n)

α } of MFTPs yield the following fundamental
sum rules among these MFPTs: For r = 1, we have

T
(n)
i1

+ T
(n)
j1

+ T
(n)
k1

= T
(n)
I1

+ T
(n)
J1

+ T
(n)
K1

+ 6, (6)

while for 2 � r � n, we find

T
(n)
ir

+ T
(n)
jr

+ T
(n)
kr

= T
(n)
Ir

+ T
(n)
Jr

+ T
(n)
Kr

+ (6λ) 5r−1. (7)

Using these relations and the enumeration of triangles of
different sizes on Gn, we can reduce the sum of MFPTs on the
structure to combinatorial factors and the sum

τ (q) ≡ T
(n)
A (q) + T

(n)
L (q) + T

(n)
R (q) (8)

of the MFPTs from the outer vertices of Gn, as will be seen
shortly. Not unexpectedly, it turns out that τ (q) = λ(q)τ (0).
The evaluation of τ (0) then enables us to express

∑
α T (n)

α (q)
in closed form, as we now show.

Had the final term in Eq. (6) been 6λ [in conformity
with the general relation (7)] rather than 6, we would have
had a straightforward rescaling of MFPTs, leading to the
simple relation T (n)(q) = λ(q) T (n)(0) for the site-averaged
MFPT. Then, once the combinatorics required to determine

the site-averaged MFPT T (n)(0) in the absence of NNN jumps
was worked out, the identification of the correct modulating
factor λ(q) would essentially have completed the solution.
As it stands, however, it is clear that T (n)(q) must exceed
λ(q) T (n)(0) because of the absence of NNN jumps from the
vertices of the smallest (r = 1) lacunary triangles. The excess,
representing a correction to exact rescaling of MFPTs in the
presence of NNN jumps, is conveniently deduced by writing
6 = 6λ + 6(1 − λ) in Eq. (6), and adding the contributions
due the term 6(1 − λ) from each lacunary triangle of size 1.
As there are 3n−1 such triangles, we have

∑
α

T (n)
α (q) = λ(q)

∑
α

T (n)
α (0) + 6[1 − λ(q)] × 3n−1

= λ(q)
∑

α

T (n)
α (0) + (8 × 3n)q

(3 + 2q)
(9)

on using Eq. (5) for λ(q) in the correction term. The sum∑
α T (n)

α (0) is found by a repeated application of Eqs. (6) and
(7), with λ set equal to unity, as follows.

Let σr denote the sum of the MFPTs from the vertices of
all lacunary triangles of size r [we drop the superscript (n) for
the moment, for simplicity of notation]. We observe that (i)
every T (n)

α , where α is a site of the type Ir , Jr , or Kr , appears
exactly twice in such sums, and (ii) every site on Gn, other
than the outermost vertices A,L, and R, is uniquely a vertex
of a lacunary triangle of some size r (where 1 � r � n). The
outcome of these observations is a set of linear equations for
the partial sums σr , given by

σr = τ (0) + 2
n∑

k=r+1

σk + (2 × 5r−13n−r+1). (10)

After some algebra, the solution to this set of equations is
found to be

σr = 3n−r [τ (0) + 5n + 5r−1], 1 � r � n. (11)

Hence
∑

α T (n)
α (0), which can be written as τ (0) + ∑n

r=1 σr ,
is given by

∑
α

T (n)
α (0) = 1

2
[(3n + 1)τ (0) + 3n(5n − 1)]. (12)

It remains to determine τ (0). This is very simply done by
writing down the answer for the triangle G0 and scaling up the
result by the factor 5n.

(i) If there is a single trap (at A, say), then τ (0) = T
(n)
L (0) +

T
(n)
R (0) = 2T

(n)
L (0) = 2T

(0)
L (0) × 5n = 4 × 5n.

(ii) If there are two traps (at L and R, say), then τ (0) =
T

(n)
A (0) = 1 × 5n.

(iii) If there are three traps (at A, L, and R), then τ (0) = 0.
Using these values in Eq. (12) and substituting the result

in Eq. (9), we arrive at the following exact solutions for the
site-averaged mean time to trapping in each of the three cases.

(i) Trap at any one of the outermost vertices:

T (n)(q) = (3 − 2q)[5 (15n) + 4 (5n) − 3n] + 16q (3n)

(3 + 2q)(3n+1 + 1)
. (13)
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(ii) Traps at any two of the outermost vertices:

T (n)(q) = (3 − 2q)[2 (15n) + 5n − 3n] + 16q (3n)

(3 + 2q)(3n+1 − 1)
. (14)

(iii) Traps at all three outermost vertices:

T (n)(q) = (3 − 2q)[5 (15n−1) − 3n−1] + 16q (3n−1)

(3 + 2q)(3n − 1)
. (15)

We note that T (n)(q) is a rational number when q is rational.
Equations (13)–(15) [as well as Eq. (20) below] represent the
principal results of this paper. The numerical results mentioned
in Sec. II and partially listed in Table I have been verified to be
in complete and precise agreement with the general formulas
for T (n)(q) in all cases.

It is evident that the inclusion of NNN jumps significantly
alters the MFPT, essentially halving it as q approaches the
value 1

2 . The scale factor λ(q) decreases monotonically from
1 to 1

5 as q increases from 0 to 1. It is also clear that the
contribution from the second term on the right in Eq. (9), which
(as argued in the foregoing) may be regarded as a correction to
the exact scaling contribution λ(q)

∑
α T (n)

α (0), is quite small
in all cases. In all three cases above, it leads to a contribution
to T (n) that tends, as n → ∞, to the value 16q/(9 + 6q). The
latter merely increases from 0 to 16

15 as q increases from 0 to 1.
As n becomes very large, the leading asymptotic behavior of

T (n)(q) in all three cases is ∼5n ∼ N
2/d̃
n , where d̃ = ln 9/ ln 5

is the spectral dimension of the Sierpinski gasket, as in the
absence of NNN jumps, but the prefactor is modulated by the
factor λ(q), as expected.

IV. EXTENSION TO THE SIERPINSKI
TOWER IN d DIMENSIONS

We turn now to the extension of the results obtained in the
foregoing to the case of a random walk with NN and NNN
jumps on the Sierpinski tower embedded in d-dimensional
Euclidean space, where d � 3. The case d = 3 is of obvious
physical interest, as it is pertinent to diffusive transport in
porous media modeled by a fractal. On the other hand, the
problem turns out to be exactly solvable for general d. The
availability of such an analytic solution enables us to examine
the d dependence of the MFPT explicitly, and thus adds to our
insight into random walks on fractals. The combinatorics for
d � 3 are naturally more involved than those in the case of the
d = 2 gasket. We shall skip the details and present only the
salient points in a form that enables ready comparison with
their d = 2 counterparts given in the foregoing.

As in the case of the gasket, the construction of the tower
is described as follows, for our purposes. We start with the
generation-0 tower, which is a hypertetrahedron (a simplex)
with (d + 1) vertices, and decorate the midpoint of each of
its d(d + 1)/2 edges with a site. When a central lacunary
region is removed, we are left with a generation-1 tower,
which comprises a set of (d + 1) hypertetrahedra, each with
(d + 1) vertices and d(d + 1)/2 sides of unit length, sharing
vertices such that the total number of vertices of the structure is
(d + 1)(d + 2)/2. Figure 2, depicting the generation-1 tower
in d = 3, helps one visualize the case d > 3 as well. The

FIG. 2. The n = 1 Sierpinski tower in d = 3.

nth-generation tower has

Nn = 1
2 (d + 1)[(d + 1)n + 1] (16)

sites. The coordination number of each site is 2d, except
for the (d + 1) outermost vertices, each of which has a
coordination number d. The fractal dimensionalities of the
structure [1] are as follows: the box-counting dimension
is df = ln (d + 1)/ ln 2 and the random-walk dimension is
dw = ln (d + 3)/ ln 2, so that the spectral dimension is d̃ =
2 ln(d + 1)/ ln(d + 3).

As before, an NNN jump on the nth-generation tower is
defined as an NN jump on the (n − 1)th-generation tower.
The NN and NNN jump probabilities are, as before, p and
q = 1 − p, respectively. A key step is the identification of the
corresponding scale factor λd (q), i.e., the counterpart of λ(q)
in Eq. (5), that multiplies

∑
α T (n)

α (0) to yield the dominant
contribution to

∑
α T (n)

α (q), apart from a small correction to
exact scaling. The latter correction is the counterpart of the
term (8 × 3n)q/(3 + 2q) in Eq. (9). It decreases rapidly with
increasing generation number n, and becomes quite negligible
even for relatively small values of n. We shall therefore
disregard it, and present results in the scaling approximation
in which the site-averaged MFPT is given by

T (n)(q) 	 λd (q) T (n)(0), (17)

to a very high degree of accuracy.
Once again, the factor λd (q) may be determined by

considering a generation-1 tower with no traps, as follows.
Starting at the apex site, labeled 1 as usual, the walker jumps
with a probability p/d to any one of the d NN sites which
we denote by the generic label a (exemplified for d = 3 by
the sites 2, 3, and 4 in Fig. 2), and with a probability q/d to
any one of the d NNN sites which we denote by the generic
label c (exemplified by the sites 5, 7, and 9 in this figure). We
seek the MFPT t1(q) to reach one of the sites of type c from
the initial site 1, allowing for all possible excursions between
the initial site, the set of NN (or type-a) sites, and the set of
“intermediate” sites which we denote by the generic label b

(for d = 3, the sites 6, 8, and 10 in Fig. 2). This last set reduces
to a single site in the gasket in d = 2, labeled site 5 in Fig. 1.
By an obvious symmetry, the MFPTs from all the type-a sites
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are equal to each other, as are the MFPTs from all the type-b
sites. Each a site has one bond to site 1, one bond to a type-c
site, (d − 1) bonds to other type-a sites, and (d − 1) bonds to
type-b sites. Each b site has two bonds to type-a sites, two
bonds to type-c sites, and 2(d − 2) bonds to other type-b sites.
Writing down the coupled equations for the set of MFPTs and
imposing the symmetry conditions, we arrive at the following
reduced set of equations for the MFPTs:

t1 = p ta + 1, (d + 1) ta = t1 + (d − 1) tb + 2d,
(18)

2tb = ta + d.

These are the d-dimensional generalizations of Eqs. (3).
Eliminating ta and tb to solve for t1, and setting p = 1 − q, we
get

t1(q) = (d + 3)
(d + 1 − dq)

(d + 1 + 2q)
. (19)

In the absence of NNN jumps (q = 0), this yields t1(0) =
d + 3 as the mean time “to go twice as far” on the tower,
leading immediately to the known result dw = ln(d + 3)/ ln 2
for the random-walk dimension on this fractal. When NNN
jumps are included, this MFPT is modulated by the scale factor

λd (q) = (d + 1 − dq)

(d + 1 + 2q)
. (20)

This is the generalization of Eq. (5) for the scale factor
λ(q) corresponding to the gasket in d = 2. In the case of
the d = 3 Sierpinski tower, in particular, the scale factor
is λ3(q) = (4 − 3q)/(4 + 2q). As q increases from 0 to 1,
MFPTs on the tower in d dimensions are essentially reduced
by a multiplicative factor ranging from 1 to 1/(d + 3). When
p = q = 1

2 , i.e., when NN and NNN jumps are equally
probable, λd ( 1

2 ) = 1
2 for all values of d. Further, as d →

∞, λd (q) → 1 − q = p.
It remains to compute T (n)(0). This is done by an extension

[12] of the procedure outlined above in the case d = 2. The

sum rule that replaces Eq. (6) is found to be

d(d+1)/2∑
i=1

T
(n)
i = 1

2
d

d+1∑
I=1

T
(n)
I + 1

2
d2(d + 1). (21)

Here i labels the vertices of the lacunary region of smallest
size (r = 1), while I labels the vertices of the hypertetrahedron
“circumscribing” this lacunary region. Omitting the rest of the
details, the final relation that represents the counterpart of
Eq. (12) is

Nn∑
α=1

T (n)
α (0) = 1

2
[(d + 1)n + 1]τ (0)

+ 1

2
[d2/(d + 2)] (d + 1)n[(d + 3)n − 1], (22)

where τ (0) is again the sum of the MFPTs from the (d + 1)
vertices of the outermost hypertetrahedron to the trap(s)
located at one or more of these vertices. Once again, the manner
in which the expression in Eq. (22) is a generalization of that
for d = 2 [Eq. (12)] is manifest. The sum τ (0) depends, of
course, on the configuration of traps at the (d + 1) outermost
corners of the tower. It is easily obtained for traps located at an
arbitrary number Nt of these vertices as follows. Consider the
generation-0 tower. First passage from any one of the (d + 1 −
Nt ) nontrap sites to a trap site may be regarded as a Bernoulli
trial with a “success” probability equal to Nt/d (since the
starting site has d neighbors). Hence the mean time to trapping
is simply d/Nt . Adding up the mean times from all the nontrap
sites and scaling up the result by (d + 3)n, we obtain the
counterpart of this sum on the nth-generation tower, namely,

τ (0) = [d(d + 1 − Nt )/Nt ](d + 3)n. (23)

In particular, in the analogs of the situations considered in
Sec. III in the case of the gasket, we obtain the following
results:

(i) When there is a single trap at just one of these corners
(Nt = 1), τ (0) = d2(d + 3)n. We then find

T (n)(0) = d2 [(d + 1)n (d + 3)n+1 + (d + 2)(d + 3)n − (d + 1)n]

(d + 2) [(d + 1)n+1 + d − 1]
. (24)

(ii) If there are traps at all of the corners except one (Nt = d), τ (0) = (d + 3)n. Then

T (n)(0) = (d2 + d + 2)(d + 1)n(d + 3)n + (d + 2)(d + 3)n − d2(d + 1)n

(d + 2) [(d + 1)n+1 − d + 1]
. (25)

(iii) If there are traps at all of the outermost corners (Nt =
d + 1), τ (0) ≡ 0. We then get

T (n)(0) = d2(d + 1)n−1 [(d + 3)n − 1]

(d + 2) [(d + 1)n − 1]
. (26)

As already mentioned, the site-averaged MFPTs in the
presence of NNN jumps [see Eq. (17)] are essentially these
expressions multiplied by the scale factor λd (q).

Finally, we mention that the inclusion of NNN jumps,
when extended to the scaling relation or renormalization of
waiting-time distributions for general continuous-time random

walks on the Sierpinski gasket [3], leads to an interesting
and significant modification of this relation. Likewise, it is
of interest to deduce the exact recurrence relations among
the eigenvalues of the transition matrix [15] occurring in the
master equation for the random walk, as functions of q. These
and other results will be reported elsewhere.
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