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Interlayer-interaction dependence of latent heat in the Heisenberg model
on a stacked triangular lattice with competing interactions
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We study the phase transition behavior of a frustrated Heisenberg model on a stacked triangular lattice by Monte
Carlo simulations. The model has three types of interactions: the ferromagnetic nearest-neighbor interaction J1 and
antiferromagnetic third nearest-neighbor interaction J3 in each triangular layer and the ferromagnetic interlayer
interaction J⊥. Frustration comes from the intralayer interactions J1 and J3. We focus on the case that the order
parameter space is SO(3)×C3. We find that the model exhibits a first-order phase transition with breaking of the
SO(3) and C3 symmetries at finite temperature. We also discover that the transition temperature increases but
the latent heat decreases as J⊥/J1 increases, which is opposite to the behavior observed in typical unfrustrated
three-dimensional systems.
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I. INTRODUCTION

Geometrically frustrated systems often exhibit a charac-
teristic phase transition, such as successive phase transitions,
order by disorder, and a reentrant phase transition, and an
unconventional ground state, such as the spin liquid state
[1–20]. In frustrated continuous spin systems, the ground
state is often a noncollinear spiral-spin structure [21,22]. The
spiral-spin structure leads to exotic electronic properties such
as multiferroic phenomena [23–27], the anomalous Hall effect
[28], and localization of electronic wave functions [29]. Thus
the properties of frustrated systems have attracted attention
in statistical physics and condensed matter physics. Many
geometrically frustrated systems such as stacked triangular
antiferromagnets (see Fig. 1), stacked kagome antiferromag-
nets, and spin-ice systems have been synthesized and their
properties have been investigated. In theoretical studies, the
relation between phase transition and order parameter space in
geometrically frustrated systems has been considered [30–34].

As an example of phase transition nature in geometrically
frustrated systems, properties of the Heisenberg model on
a triangular lattice have been theoretically studied for a
long time. Triangular antiferromagnetic systems are a typical
example of geometrically frustrated systems and have been
well investigated. The ground state of the ferromagnetic
Heisenberg model on a triangular lattice is a ferromagnetically
collinear spin structure. In this case, the order parameter space
is S2. The long-range order of spins does not appear at finite
temperature because of the Mermin-Wagner theorem [35].
The model does not exhibit any phase transitions. In contrast,
Refs. [31,36,37] reported that a topological phase transition
occurs in the Heisenberg model on a triangular lattice with
only antiferromagnetic nearest-neighbor interactions. In this
model the long-range order of spins is prohibited by the
Mermin-Wagner theorem and thus a phase transition driven
by the long-range order of spins never occurs as well as
in the ferromagnetic Heisenberg model. Since the ground
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state of the model is the 120◦ structure, the order parameter
space is SO(3), which is the global rotational symmetry of
spins. Thus the point defect, i.e., the Z2 = π1 [SO(3)] vortex
defect, can exist in the model. Then the topological phase
transition occurs by dissociating the Z2 vortices at finite
temperature [31,36,37]. The dissociation of Z2 vortices is
one of the characteristic properties of geometrically frustrated
systems when the ground state is a noncollinear spin structure
in two dimensions. In these systems, the order parameter
space is described by SO(3). The temperature dependence
of the vector chirality and that of the number density of Z2

vortices in the Heisenberg model on a kagome lattice were
also studied [38]. An indication of the Z2 vortex dissociation
has been observed in electron paramagnetic resonance and
electron spin resonance measurements [39–41].

Phase transition has been studied theoretically in stacked
triangular lattice systems as well as in two-dimensional
triangular lattice systems. In many cases, the phase transition
nature in three-dimensional systems differs from that in
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FIG. 1. (Color online) Schematic picture of a stacked triangular
lattice with Lx × Ly × Lz sites. Here J1 and J3 respectively represent
the nearest-neighbor and third-nearest-neighbor interactions in each
triangular layer and J⊥ is the interlayer interaction.
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two-dimensional systems. In the Heisenberg model on a
stacked triangular lattice with the antiferromagnetic nearest-
neighbor intralayer interaction J1 and the nearest-neighbor
interlayer interaction J⊥, the ground state is a 120◦ structure in
each triangular layer. Thus the order parameter space is SO(3)
as in the two-dimensional case. Two types of contradictory
results have been reported. In one, a second-order phase
transition belonging to the universality class called the chiral
universality class, which relates to the SO(3) symmetry, occurs
[3,42–46]. In the other, a first-order phase transition occurs at
finite temperature [47–50]. In either case, the phase transition
nature in the Heisenberg model on a stacked triangular lattice
differs from that on a two-dimensional triangular lattice.

Recently, another kind of characteristic phase transition
nature has been found in Heisenberg models on a triangular
lattice with further interactions [33,34,51–53]. The order
parameter space is described by the direct product between the
global rotational symmetry of spins SO(3) and discrete lattice
rotational symmetry, which depends on the ground state. In
these models, a phase transition with the discrete symmetry
breaking occurs at finite temperature. In the J1-J3 Heisenberg
model on a triangular lattice, the ground state is the spiral-spin
structure where C3 lattice rotational symmetry is broken due to
the competition between the ferromagnetic nearest-neighbor
interaction J1 and antiferromagnetic third nearest-neighbor
interaction J3 [51,52]. In this case, the order parameter space
is SO(3)×C3. This model exhibits a first-order phase transition
with breaking of the C3 symmetry. In addition, the dissociation
of Z2 vortices that comes from the SO(3) symmetry occurs at
the first-order phase transition temperature. A similar phase
transition with the discrete symmetry breaking also has been
found in Heisenberg models on square and hexagonal lattices
with further interactions [54–56]. To consider a microscopic
mechanism of the first-order phase transition with the discrete
symmetry breaking in frustrated continuous spin systems, a
generalized Potts model, called the Potts model with invisible
states, has been studied [57–59].

As shown before, the phase transition nature in three-
dimensional systems differs from that in two-dimensional
systems even when individual order parameter spaces are
the same. Here let us review the phase transition behavior
in three-dimensional systems where the order parameter space
is described by the direct product between two groups. Before
we show some examples that have already been reported in
a number of specific models, we consider generally what
happens in systems where the order parameter space is
described by the direct product between two groups A × B.
In these systems there are the following possible scenarios
of whether two symmetries A and B are broken at finite
temperature, which are summarized in Fig. 2: (a) Neither
symmetry is broken, (b) either A or B is broken but the
other is not broken, and (c) both A and B are broken. In
three-dimensional systems, since a breaking of continuous
symmetry at finite temperature is not prohibited in contrast
to two-dimensional systems, the most possible scenario is
that in Fig. 2(c). In the case of Fig. 2(c), two scenarios
can be considered: (i) Two symmetries A and B are broken
simultaneously and (ii) A and B are broken successively.
An example of case (i) is the phase transition behavior
in the antiferromagnetic XY model. The order parameter
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FIG. 2. (Color online) Schematic of the phase transition nature
in systems where the order parameter space is the direct product
between two groups A and B: (a) Neither symmetry is broken,
(b) either A or B is broken but the other is not broken, and
(c) both A and B are broken.

space is U(1) × Z2. Contradictory results were reported as
for the Heisenberg model on a stacked triangular lattice as
mentioned above. Reference [43] reported that a second-
order phase transition occurs at finite temperature. However,
the authors in Ref. [60] concluded that a first-order phase
transition occurs. In either case, a phase transition occurs only
once in the model. Another example is a first-order phase
transition in the antiferromagnetic Heisenberg model on a
face-centered-cubic lattice [61]. The order parameter space
of the model is SO(3) × Z3. Moreover, in many cases, a
phase transition occurs only once in systems with the order
parameter space described by the direct product between two
groups when two symmetries break at the phase transition
temperature [32,43,60–67]. Next we show an example of
(ii) where the successive phase transitions occur. The rich
phase diagram of the Bose-Hubbard model has been inves-
tigated by many kinds of methods [68–74]. At a certain
parameter region, the ordered phase is the supersolid phase
in which the U(1) phase symmetry and a symmetry X defined
by a commensurate wave vector are broken. Then the order
parameter space is U(1) × X in the parameter region. In the
parameter region except for the tricritical point, successive
phase transitions were observed [71,73,74]. Furthermore,
which phase transition occurs at higher temperature depends
on the parameter. Recently, successive phase transitions that
relate to two symmetries were also found in the site-random
Heisenberg model on a three-dimensional lattice [75]. As just
described, a variety of phase transition natures appears in
three-dimensional systems having the order parameter space
A × B.
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The purposes of this paper are to determine the phase
transition nature of the J1-J3 model on a stacked triangular
lattice and to investigate an interlayer-interaction effect for the
phase transition behavior. The order parameter space of the
model is SO(3) × C3 for a certain parameter region, whereas
the order parameter space is not the direct product between
two groups for other region. Here we focus on the case
that the order parameter space is described by SO(3) × C3.
As mentioned above, a first-order phase transition with the
threefold symmetry breaking occurs in the J1-J3 Heisenberg
model on a two-dimensional triangular lattice when the order
parameter space is SO(3) × C3 [33,51,52]. We consider the
interlayer-interaction J⊥ dependence of the phase transition
nature, e.g., transition temperature and latent heat.

The rest of the paper is organized as follows. In Sec. II, we
introduce the J1-J3 model on a stacked triangular lattice and
consider the ground state of the model. The model consists
of three types of interactions (see Fig. 1): ferromagnetic
nearest-neighbor interaction J1 and antiferromagnetic third
nearest-neighbor interaction J3 in each triangular layer and
ferromagnetic interlayer interaction J⊥. The intralayer inter-
actions J1 and J3 cause frustration. The ground state depends
on the interaction ratio J3/J1 regardless of J⊥. In Sec. III,
we show finite-temperature properties of the J1-J3 model
on a stacked triangular lattice for J3/J1 = −0.853 55 . . . and
J⊥/J1 = 2 by Monte Carlo simulations. In this case, the
order parameter space is SO(3) × C3. We find that the system
exhibits a first-order phase transition with breaking of the
C3 lattice rotational symmetry and the SO(3) symmetry of
spin at finite temperature. In Sec. IV, we investigate the J⊥
dependence of the phase transition behavior. We find that as
J⊥ increases, setting J3/J1 = −0.853 55 . . ., which is used
in Sec. III, the transition temperature increases but the latent
heat decreases. This fact is opposite to the behavior observed
in typical unfrustrated three-dimensional systems such as
the ferromagnetic Potts model [76] and the ferromagnetic
Ising-O(3) model [77]. Section V is devoted to a discussion
and conclusion. In the Appendix, we obtain the Curie-Weiss
temperature from the magnetic susceptibility.

II. MODEL AND GROUND STATE

We study the physical properties of a classical Heisenberg
model on a stacked triangular lattice with nearest-neighbor
and third-nearest-neighbor interactions. The Hamiltonian of
the system is given by

H = −J1

∑
〈i,j〉1

si · sj − J3

∑
〈i,j〉3

si · sj − J⊥
∑
〈i,j〉⊥

si · sj , (1)

where si is the three-component vector spin of unit length.
The first and second sums are over all pairs of nearest-
neighbor sites and that of third-nearest-neighbor sites in each
triangular layer (see Fig. 1). The third term represents the
nearest-neighbor interlayer interactions. Here it should be
noted that the internal energy for J⊥ > 0 is the same as
that for −J⊥ by applying the local gauge transformation
si → −si for all spins in even-numbered layers. Then, in order
to consider the phase transition nature, it is enough to study
the case of the ferromagnetic interlayer interaction (J⊥ > 0).

Let N = Lx × Ly × Lz be the number of spins (see Fig. 1).
In this paper, we study the case that Lx = Ly = Lz = L.

We consider the ground-state spin configuration depending
on the interactions J1 and J3. In general, the ground state of the
Heisenberg model is a spiral-spin configuration [21,22] given
by

si = R cos(k∗ · ri) − I sin(k∗ · ri), (2)

where R and I are two arbitrary orthogonal unit vectors and ri

is the position vector of ith site. The vector k∗ = (k∗
x ,k

∗
y ,k

∗
z )

minimizes the Fourier transform of interactions J (k) given by

J (k)/N = −J1 cos(kx) − 2J1 cos

(
1

2
kx

)
cos

(√
3

2
ky

)

− J3 cos(2kx) − 2J3 cos(kx) cos(
√

3ky)

− J⊥ cos(kz). (3)

Here the lattice constant is set to unity. Since we now consider
the case of J⊥ > 0, the value of k∗

z is always 0. In contrast,
when the interlayer interaction is antiferromagnetic, k∗

z is
always π . Note that the spin configuration represented by k is
the same as that represented by −k in the Heisenberg model.
Here k∗ depends on both the signs of interactions and the ratio
of interactions J3/J1.

We first consider the case that J1 is a ferromagnetic
interaction (J1 > 0). When J3/J1 � −1/4, the ground state is
the ferromagnetic state, i.e., k∗ = (0,0,0), depicted in Fig. 3(a).
Then the order parameter space is S2. Thus a phase transition
occurs and its universality class is expected to be the same as
for the three-dimensional ferromagnetic Heisenberg model. In
contrast, when J3/J1 < −1/4, the ground state is a spiral-spin
structure represented by one of six wave vectors

k∗ = ±(k∗,0,0), ± (k∗/2,
√

3k∗/2,0),

±(k∗/2,−
√

3k∗/2,0), (4)

which are depicted in Fig. 3(b). The value of k∗ = |k∗| changes
between 0 and 2π/3 following the relation

J3/J1 = −1

2

sin k∗ + sin 1
2k∗

sin k∗ + sin 2k∗ . (5)

Figure 3(c) shows a J3/J1 dependence with a value of
k∗. The relation means that the relative angle θ between
nearest-neighbor spin pairs along one axis is 180k∗/π◦ and
that along the other axes is θ/2◦. Since the system has
the 120◦ lattice rotational symmetry of triangular lattice C3,
there are three ways select the axis where the relative angle
between nearest-neighbor spin pairs differs from the others,
as represented by Eq. (4). Thus the order parameter space
for J3/J1 < −1/4 is SO(3) × C3. Next we consider the case
that J1 is an antiferromagnetic interaction (J1 < 0). When
J3/J1 > −1/9, the ground state is a 120◦ structure, i.e.,
k∗ = 4π/3 in Eq. (4). Then the order parameter space is
SO(3), which is the same as the order parameter space of
the Heisenberg model on a stacked triangular lattice with only
an antiferromagnetic nearest-neighbor interaction [3,42–50].
In contrast, when J3/J1 � −1/9, there are degenerate ground
states. One of the degenerate ground states is described by
k∗ = (0,2π/

√
3,0). Degenerate ground states can be generated

by applying three-dimensional rotations to the spin structure
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FIG. 3. (Color online) Explanation of ground-state properties when the nearest-neighbor interaction J1 is ferromagnetic. (a) Position of k∗,
which minimizes the Fourier transform of interactions in the wave-vector space for J3/J1 � −1/4. The hexagon represents the first Brillouin
zone. A schematic of a ferromagnetic spin configuration in each triangular layer is shown. (b) Position of k∗ and the corresponding schematic
of spiral-spin configurations in each triangular layer when J3/J1 < −1/4. The spin configurations are depicted for J3/J1 = −0.853 55 . . .

corresponding to k∗ = π/2 and then θ = 90◦. (c) The J3/J1 dependence of k∗.

represented by k∗ = (0,2π/
√

3,0) in an appropriate way,
shown in Fig. 2 in Ref. [78]. Then the order parameter space
is not well defined in this case.

Our purpose is to investigate the phase transition behavior
when the order parameter space is described by the direct
product between two groups. Hereafter we focus on the
parameter region J3/J1 < −1/4 in the case of ferromagnetic
J1. Throughout the paper, we use the interaction ratio J3/J1 =
−0.853 55 . . . so that the ground state is represented by
k∗ = π/2 in Eq. (4). In this case, along one of three axes,
the relative angle between nearest-neighbor spin pairs is 90◦,
while along the other axes, the relative angle is 45◦ in the
ground-state spin configuration [see Fig. 3(b)]. When the
period of the lattice is set to 8, the commensurate spiral-spin
configuration appears in the ground state. Then, in order to
avoid the incompatibility due to the boundary effect, the linear
dimension L = 8n (n ∈ N ) is used and the periodic boundary
conditions in all directions are imposed.

III. FINITE-TEMPERATURE PROPERTIES
OF THE STACKED MODEL

In this section, we investigate the finite-temperature prop-
erties of the Heisenberg model on a stacked triangular
lattice with competing interactions given by Eq. (1) with
J3/J1 = −0.853 55 . . . and J⊥/J1 = 2. Using Monte Carlo
simulations with the single-spin-flip heat-bath method and the
overrelaxation method [79,80], we calculate the temperature
dependence of physical quantities. Figures 4(a) and 4(b)
show the internal energy per site E and specific heat C for
L = 24,32,40. The specific heat at temperature T is given by

C = N
〈E2〉 − 〈E〉2

T 2
, (6)

where 〈O〉 denotes the equilibrium value of the physical
quantity O. Here the Boltzmann constant is set to unity. As
the system size increases, a sudden change in the internal

energy is observed at a certain temperature. In addition, the
specific heat has a divergent single peak at the temperature.
These behaviors indicate the existence of a finite-temperature
phase transition. As will be shown in Sec. IV, the uniform
magnetic susceptibility can be used as an indicator of the phase
transition. To investigate the way of ordering, the temperature
dependence of an order parameter is considered. The order
parameter μ that can detect the C3 symmetry breaking is
defined by

μ := ε1e1 + ε2e2 + ε3e3, (7)

εη := 1

N

∑
〈i,j〉1‖axis η

si · sj , (8)

where the subscript η (η = 1,2,3) assigns the axis (see
Fig. 1). The vectors eη are unit vectors along the axis η

in each triangular layer, i.e., e1 = (1,0), e2 = (−1/2,
√

3/2),
and e3 = (−1/2, − √

3/2). The temperature dependence of
〈|μ|2〉 is shown in Fig. 4(c). The order parameter abruptly
increases around the temperature at which the specific heat
has a divergent peak. These results conclude that the phase
transition is accompanied by the C3 symmetry breaking.

To decide the order of the phase transition, we calculate the
probability distribution of the internal energy at T , P (E; T ) =
D(E) exp(−NE/T ), where D(E) is the density of states.
When a system exhibits a first-order phase transition, the
energy distribution P (E; T ) should be a bimodal structure
at temperature Tc(L) for system size L. Here Tc(L) is the
temperature at which the specific heat becomes the maximum
value Cmax(L). To obtain Tc(L) and Cmax(L), we perform
the reweighting method [81]. Figure 4(d) shows P (E; Tc(L))
for system sizes L = 24,32,40. As stated above, the bimodal
structure in the energy distribution suggests a first-order phase
transition.

To confirm whether the first-order phase transition behavior
remains in the thermodynamic limit, we perform two types

052138-4



INTERLAYER-INTERACTION DEPENDENCE OF LATENT . . . PHYSICAL REVIEW E 88, 052138 (2013)

 0

 0.01

 0.02

 1.52  1.53  1.54  1.55

 0

 10

 20

 30

 40
-2.3

-2.2

-2.1

 1.53

 1.54

 1.55

0 0.00004 0.00008

 0
 20
 40
 60

 0  20000  40000  60000

(a)

(d)

(e)

(f)

(b)

(c)

 0

 0.05

 0.1

 0  15  30  45

 0

 5

 10

 15

 20

 25

 30

-2.3 -2.2 -2.1

FIG. 4. (Color online) Temperature dependence of (a) internal
energy per site E/J1, (b) specific heat C, and (c) order param-
eter 〈|μ|2〉, which can detect the C3 symmetry breaking of the
model with J3/J1 = −0.853 55 . . . and J⊥/J1 = 2 for L = 24,32,40.
(d) Probability distribution of the internal energy P (E; Tc(L)). The
inset shows the lattice-size dependence of the width between bimodal
peaks �E(L)/J1. (e) Plot of Tc(L)/J1 as a function of L−3. (f) Plot
of Cmax(L) as a function of L3. Lines are just visual guides and error
bars in all figures are omitted for clarity since their sizes are smaller
than the symbol size.

of analysis. One is the finite-size scaling and the other is
a naive analysis of the probability distribution P (E; Tc(L)).
The scaling relations for the first-order phase transition in
d-dimensional systems [82] are given by

Tc(L) = aL−d + Tc, (9)

Cmax(L) ∝ (�E)2Ld

4T 2
c

, (10)

where Tc and �E are, respectively, the transition temperature
and the latent heat in the thermodynamic limit. The coefficient
of the first term in Eq. (9), a, is a constant. Figures 4(e)
and 4(f) show the scaling plots for Tc(L)/J1 and Cmax(L),
respectively. Figure 4(e) indicates that Tc is a nonzero value
in the thermodynamic limit. Figure 4(f) shows an almost
linear dependence of Cmax(L) as a function of L3. However,
using the finite-size scaling, we cannot obtain the transition
temperature and latent heat in the thermodynamic limit with
high accuracy because of the strong finite-size effect. Next we
directly calculate the size dependence of the width between
bimodal peaks of the energy distribution shown in Fig. 4(d).
The width for the system size L is represented by �E(L) =
E+(L) − E−(L), where E+(L) and E−(L) are the averages of
the Gaussian function in the high-temperature phase and that in
the low-temperature phase, respectively. In the thermodynamic
limit, each Gaussian function becomes the δ function and then
�E(L) converges to �E [82]. The inset of Fig. 4(d) shows the
size dependence of the width �E(L)/J1. The width enlarges as
the system size increases, which indicates that the latent heat is
a nonzero value in the thermodynamic limit. The results shown
in Fig. 4 conclude that the model given by Eq. (1) exhibits the

first-order phase transition with the C3 symmetry breaking at
finite temperature.

We further investigate the way of spin ordering. As
mentioned above, the order parameter space of the system is
SO(3) × C3. It was confirmed that the C3 symmetry breaks at
the first-order phase transition point. In the antiferromagnetic
Heisenberg model on a stacked triangular lattice with only
a nearest-neighbor interaction where the order parameter
space is SO(3), a single peak is observed for the temperature
dependence of the specific heat [42,43]. The peak indicates the
finite-temperature phase transition between the paramagnetic
state and magnetic ordered state where the SO(3) symmetry
is broken. Then, in our model, the SO(3) symmetry should
break at the first-order phase transition point since the specific
heat has a single peak corresponding to the first-order phase
transition. To confirm this we calculate the temperature
dependence of the structure factor of spin

S(k) := 1

N

∑
i,j

〈si · sj 〉e−ik·(ri−rj ), (11)

which is the magnetic order parameter for spiral-spin states.
When the magnetic ordered state described by k∗ where the
SO(3) symmetry is broken appears, S(k∗) becomes a finite
value in the thermodynamic limit. Figure 5(a) shows the
temperature dependence of the largest value of structure factors
S(k∗) calculated by six wave vectors in Eq. (4). Here S(k∗)
becomes zero in the thermodynamic limit above the first-
order phase transition temperature. The structure factor S(k∗)
becomes a nonzero value at the first-order phase transition
temperature. Moreover, as temperature decreases, the structure
factor S(k∗) increases. The structure factors at kz = 0 in the
first Brillouin zone at several temperatures for L = 40 are also
shown in Fig. 5(b). As mentioned in Sec. II, the spiral-spin
structure represented by k is the same as that represented by
−k in the Heisenberg models. Figure 5(b) confirms that one
distinct wave vector is chosen from three types of ordered
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FIG. 5. (Color online) (a) Temperature dependence of the largest
value of structure factors S(k∗) calculated by six wave vectors in
Eq. (4) for J3/J1 = −0.853 55 . . . and J⊥/J1 = 2. Error bars are
omitted for clarity since their sizes are smaller than the symbol size.
(b) Structure factors at kz = 0 in the first Brillouin zone at several
temperatures for L = 40.
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vectors below the first-order phase transition point, which is
further evidence of the C3 symmetry breaking at the first-order
phase transition temperature.

Before we end this section, let us mention a phase
transition nature in the J1-J2 Heisenberg model with interlayer
interaction J⊥ on a stacked triangular lattice. In Refs. [62–65],
the authors studied the phase transition behavior of the model
when J1 and J2 are antiferromagnetic interactions. For large
J2/J1, a phase transition between the paramagnetic phase and
ordered incommensurate spiral-spin structure phase occurs at
finite temperature. In the parameter region, the order parameter
space is SO(3) × C3 and a second-order phase transition with
threefold symmetry occurs [62], which differs from the result
obtained in this section. However, in frustrated spin systems,
a different phase transition nature happens even when the
symmetry that is broken at the phase transition temperature
is the same as for other models. For example, in the J1-J3

Heisenberg model on a triangular lattice, a first-order phase
transition with threefold symmetry breaking occurs when
J3/J1 < −1/4 and J1 > 0. It is well known that the simplest
model that exhibits a phase transition with threefold symmetry
breaking is the three-state ferromagnetic Potts model [76].
The three-state ferromagnetic Potts model in two dimensions
exhibits a second-order phase transition. It is no wonder that
our obtained result differs from the results in the previous
study [62].

IV. DEPENDENCE ON INTERLAYER INTERACTION

In this section, we study interlayer-interaction dependence
of the phase transition behavior. Here we set the interaction
ratio J3/J1 = −0.853 55 . . . at which the ground state is
represented by k∗ = π/2 in Eq. (4), as in the previous
section. In the previous section, we considered the case that
J⊥/J1 = 2. We found that the first-order phase transition
with the C3 symmetry breaking occurs and breaking of the
SO(3) symmetry at the first-order phase transition point was
confirmed.

Figure 6 shows the temperature dependence of phys-
ical quantities for L = 24 with several interlayer inter-
actions 0.25 � J⊥/J1 � 2.5, setting J3/J1 = −0.853 55 . . ..
Figure 6(a) shows the internal energy as a function of temper-
ature, which displays that the temperature at which the sudden
change of the internal energy appears increases as J⊥/J1

increases. In other words, Fig. 6(a) indicates that the first-
order phase transition temperature monotonically increases
as a function of J⊥/J1. In addition, the energy difference
between the high-temperature phase and low-temperature
phase decreases as J⊥/J1 increases. These behaviors are
supported by the temperature dependence of the specific heat
shown in Fig. 6(b). Furthermore, in the specific heat, no
peaks, except the first-order phase transition temperature, are
observed by changing the value of J⊥/J1. Figure 6(c) shows
the uniform magnetic susceptibility χ , which is calculated by

χ = NJ1〈|m|2〉
T

, m = 1

N

∑
i

si , (12)

where m is the uniform magnetization. The uniform magnetic
susceptibility has the sudden change at the first-order phase
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FIG. 6. (Color online) Interlayer-interaction J⊥/J1 dependence
of (a) internal energy per site E/J1, (b) specific heat C, (c) uniform
magnetic susceptibility χ , (d) order parameter 〈|μ|2〉, which can
detect the C3 symmetry breaking, and (e) largest value of structure
factors S(k∗) calculated by six wave vectors in Eq. (4) for L = 24.
Error bars in all figures are omitted for clarity since their sizes are
smaller than the symbol size.

transition temperature. As stated in Sec. III, it can be used
as an indicator of the first-order phase transition. Note that
the magnetic susceptibility of the model with J⊥ differs from
that with −J⊥. However, the sudden change in χ at the
first-order phase transition temperature is also observed when
the interlayer interaction is antiferromagnetic. We obtain the
Curie-Weiss temperature from the magnetic susceptibility for
several J⊥/J1, including the case of antiferromagnetic J⊥,
which will be shown in the Appendix. In addition, Figs. 6(d)
and 6(e) confirm that phase transitions always accompany the
C3 lattice rotational symmetry breaking and breaking of the
global rotational symmetry of spin, the SO(3) symmetry, for
the considered J⊥/J1, respectively.

Next, in order to consider the J⊥/J1 dependence of the
latent heat, we calculate the probability distribution of the
internal energy P (E; Tc(L)) for several values of J⊥/J1 shown
in Fig. 7(a). The width between bimodal peaks decreases
as J⊥/J1 increases. Furthermore, we calculate interlayer-
interaction dependences of Tc(L)/J1 and �E(L)/J1 for L =
16–40, which are shown in Figs. 7(b) and 7(c). As J⊥/J1

increases, Tc(L)/J1 monotonically increases and �E(L)/J1

decreases for each system size. In addition, �E(L)/J1

increases as the system size increases. Here �E(L)/J1 in
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FIG. 7. (Color online) (a) Interlayer-interaction J⊥/J1 depen-
dence of the probability distribution of internal energy P (E; Tc(L))
when the specific heat becomes the maximum value for L = 24.
(b) The J⊥/J1 dependence of Tc(L)/J1 at which the specific
heat becomes the maximum value for L = 16−40. (c) The J⊥/J1

dependence of the width between bimodal peaks of the energy
distribution �E(L)/J1. Error bars in all figures are omitted for clarity
since their sizes are smaller than the symbol size.

the thermodynamic limit corresponds to the latent heat. Thus
Fig. 7(c) suggests that the latent heat decreases as J⊥/J1

increases in the thermodynamic limit.

V. DISCUSSION AND CONCLUSION

In this paper, the nature of the phase transition of the
Heisenberg model on a stacked triangular lattice was studied by
Monte Carlo simulations. In our model, there are three kinds of
interactions: the ferromagnetic nearest-neighbor interaction J1

and antiferromagnetic third nearest-neighbor interaction J3 in
each triangular layer and the ferromagnetic nearest-neighbor
interlayer interaction J⊥. When J3/J1 < −1/4, the ground
state is a spiral-spin structure in which the C3 symmetry is
broken as in the case of two-dimensional J1-J3 Heisenberg
model on a triangular lattice [51,52]. Then the order parameter
space in the case is described by SO(3) × C3.

In Sec. III, we studied the finite-temperature properties
of the system with J3/J1 = −0.853 55 . . . and J⊥/J1 = 2.
We found that a first-order phase transition takes place
at finite temperature. The temperature dependence of the
order parameter indicates that the C3 symmetry breaks at
the transition temperature, which is the same feature as in
the two-dimensional case [51,52]. We also calculated the
temperature dependence of the structure factor at the wave
vector representing the ground state, which is the magnetic
order parameter for spiral-spin states. The result shows that
the SO(3) symmetry breaks at the transition temperature.

In Sec. IV, we investigated the interlayer interaction effect
on the nature of phase transitions. We confirmed that the
first-order phase transition occurs for 0.25 � J⊥/J1 � 2.5 and
J3/J1 = −0.853 55 . . ., which was used in Sec. III. We could
not determine the existence of the first-order phase transition
for J⊥/J1 < 0.25 or J⊥/J1 > 2.5 by Monte Carlo simulations.
In the parameter ranges, the width of two peaks in the probabil-
ity distribution of the internal energy cannot be estimated easily
because of the finite-size effect. It is a remaining problem to
determine whether a second-order phase transition occurs for
large J⊥/J1 as in the J1-J2 Heisenberg model on a stacked
triangular lattice [62]. As the ratio J⊥/J1 increases, the first-
order phase transition temperature monotonically increases
but the latent heat decreases. This is opposite to the behavior
observed in typical unfrustrated three-dimensional systems
that exhibit a first-order phase transition at finite temperature.
For example, the q-state Potts model with ferromagnetic
intralayer and interlayer interactions (q � 3) is a fundamental
model that exhibits a temperature-induced first-order phase
transition with q-fold symmetry breaking [76]. From a mean-
field analysis of the ferromagnetic Potts model [76,83], as the
interlayer interaction increases, both the transition temperature
and the latent heat increase. The same behavior was observed
in the Ising-O(3) model on a stacked square lattice [77]. As
just described, in general, if the parameter that can stabilize
the ground state becomes large, the transition temperature
increases and the latent heat increases [76,77,83]. Furthermore,
in conventional systems, both the transition temperature and
the latent heat are expressed by the value of an effective
interaction obtained by a characteristic temperature such as
the Curie-Weiss temperature. However, in our model, the
Curie-Weiss temperature does not characterize the first-order
phase transition, as will be shown in the Appendix. Thus our
result is an unusual behavior. The investigation of the essence
of the obtained results is a remaining problem.
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APPENDIX: INTERLAYER-INTERACTION DEPENDENCE
OF THE CURIE-WEISS TEMPERATURE

In this section, we obtain the Curie-Weiss temperature for
several J⊥/J1, including the case of the antiferromagnetic
interlayer interaction. Here we also use the interaction ratio
J3/J1 = −0.853 55 . . ., which was used in Secs. III and IV.
As mentioned in Sec. II, the phase transition behavior of
the model with J⊥ is the same as that with −J⊥, which
is proved by the local gauge transformation. However, the
Curie-Weiss temperature for J⊥ differs from that for −J⊥.
Figure 8(a) shows the inverse of the magnetic susceptibility
χ−1 as a function of temperature in the high-temperature
region for L = 24. In general, the temperature dependence of
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FIG. 8. (Color online) (a) Inverse of the magnetic susceptibil-
ity χ−1 as a function of temperature with J3/J1 = −0.853 55 . . .

and several J⊥/J1 for L = 24. The lines are obtained by the
least-squares estimation. (b) The J⊥/J1 dependence of the Curie-
Weiss temperature. (c) The J⊥/J1 dependence of the ratio f =
−θCW/Tc.

the magnetic susceptibility at high temperatures is expressed
as

χ = A

T − θCW
, (A1)

where A is the Curie constant and θCW is the Curie-Weiss tem-
perature. The Curie-Weiss temperature θCW represents a char-
acteristic temperature of magnetic systems. The interlayer-
interaction dependence of the Curie-Weiss temperature is
shown in Fig. 8(b). The Curie-Weiss temperature dependence
is not symmetric about the origin. The first-order phase
transition temperature of the system with J⊥ is the same as
that with −J⊥. Then the transition temperature does not relate
to the Curie-Weiss temperature.

Next we consider the J⊥/J1 dependence of the ratio of
two characteristic temperatures f := −θCW/Tc. In frustrated
systems, f is a useful quantity to express the degree of
frustration and is called the frustration parameter. Figure 8(c)
depicts the interlayer-interaction dependence of f . The value
of f is not a characteristic quantity that expresses the nature
of the first-order phase transition as well as the Curie-Weiss
temperature.
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