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Quasistationarity in a model of long-range interacting particles moving on a sphere
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We consider a long-range interacting system of N particles moving on a spherical surface under an attractive
Heisenberg-like interaction of infinite range and evolving under deterministic Hamilton dynamics. The system
may also be viewed as one of globally coupled Heisenberg spins. In equilibrium, the system has a continuous
phase transition from a low-energy magnetized phase, in which the particles are clustered on the spherical surface,
to a high-energy homogeneous phase. The dynamical behavior of the model is studied analytically by analyzing
the Vlasov equation for the evolution of the single-particle distribution and numerically by direct simulations. The
model is found to exhibit long-lived nonmagnetized quasistationary states (QSSs) which in the thermodynamic
limit are dynamically stable within an energy range where the equilibrium state is magnetized. For finite N , these
states relax to equilibrium over a time that increases algebraically with N . In the dynamically unstable regime,
nonmagnetized states relax fast to equilibrium over a time that scales as ln N . These features are retained in
presence of a global anisotropy in the magnetization.
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I. INTRODUCTION

Long-range interacting systems abound in nature [1–6].
In these systems, the interparticle potential in d dimensions
decays at large separation, r , as 1/rα , with 0 � α � d. Some
common examples are self-gravitating systems [7,8], non-
neutral plasmas [9], two-dimensional geophysical vortices
[10], dipolar ferroelectrics and ferromagnets [11], and many
others. An important feature resulting from long-range interac-
tions is the property of nonadditivity, whereby thermodynamic
quantities scale superlinearly with the system size. This results
in equilibrium properties which are generically not observed in
short-range systems, e.g., a negative microcanonical specific
heat [12,13], inequivalence of statistical ensembles [14,15];
see Ref. [16] for a discussion on classification of ensemble
inequivalence in long-range systems.

Nonadditivity also has important consequences on the
dynamical properties, manifesting in broken ergodicity
[15,17–19] and intriguingly slow relaxation towards
Boltzmann-Gibbs (BG) equilibrium [10,15,20–23]. One of
the first demonstrations of such slow relaxation has been in
the context of globular clusters for which dynamical evolution
from a non-steady initial to a quasistationary state has been
shown to be as long as 20 to 30 million years [24]. A
paradigmatic toy model that has been employed over the years
for much theoretical and numerical analysis of slow relaxation
in long-range interacting systems is the so-called Hamiltonian
mean-field (HMF) model. The model comprises globally
coupled particles moving on a unit circle and interacting via
an attractive XY -like interaction. The system evolves under
deterministic Hamilton dynamics. In this model, it has been
found that for a wide class of initial states, which have been
termed quasistationary states (QSSs), the relaxation time to
equilibrium diverges with the system size [20]. Moreover,
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for some energies, generic initial states relax on a fast time
scale of order one to such long-lived QSSs [21,25]. As a
consequence, such systems in the thermodynamic limit never
attain the BG equilibrium but remain trapped in the QSSs.
Over the years, there have been several theoretical studies
aimed at explaining the observed features of QSSs in the HMF
model [26–28]. Besides this model, QSSs have been observed
in many physical systems, including single-pass high-gain
free electron laser [29] and two-dimensional electron plasma
trapped in magnetic field [30].

In order to probe the ubiquity of quasistationary behavior,
various extensions of the HMF model have been introduced
and analyzed over the years. For example, it has been demon-
strated that while anisotropic versions of the HMF model
do exhibit QSSs [25], introducing stochastic processes into
the dynamics tends to destroy QSSs leading to nondivergent
relaxation times [31–36]. A very interesting generalization of
the model to that of particles moving on the surface of a sphere
rather than on a circle has recently been introduced [37,38].
Here, the model is defined on a larger phase space with each
particle characterized by two positional degrees of freedom
rather than one, as is the case for the HMF model. In this
model, the particles interact via an attractive Heisenberg-like
interaction of infinite range. The model may also be viewed as
one of globally coupled Heisenberg spins. The dynamics of the
system follows deterministic Hamilton equations of motion. In
equilibrium, the system exhibits a continuous phase transition
from a low-energy magnetized phase in which the particles
are clustered on the spherical surface, across critical threshold
energy εc, to a high-energy homogeneous phase. Numerical
studies of the model have shown that it exhibits a number
of quasistationary states, with relaxation times which diverge
with the system size [37,38]. It would be interesting to study
analytically the relaxation processes in this higher dimensional
model and trace the origin of its slow dynamics.

In this paper, we study analytically the relaxation dynamics
of the model of particles moving on a spherical surface,
within the framework of the Vlasov equation. In the limit
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N → ∞, this equation describes the time evolution of the
single-particle phase-space distribution. We show that there is
an energy range ε� < ε < εc where the BG equilibrium state
is magnetized, in which nonmagnetized quasistationary states
exist. This is manifested by the fact that these states are linearly
stable stationary solutions of the Vlasov equation. For finite
N , however, such states relax to the equilibrium magnetized
state over a time that scales algebraically with N . For energies
below ε�, nonmagnetized states, though stationary, are linearly
unstable under the Vlasov dynamics. Consequently, the system
exhibits a fast relaxation out of such initial states. These
features remain unaltered on adding a term to the Hamiltonian
accounting for a global anisotropy in the magnetization.

The paper is organized as follows. In Sec. II, we describe the
model of study, and analyze the Vlasov equation to examine
the relaxation dynamics. In particular, we show the existence
of nonmagnetized QSSs in a specific energy range within
the thermodynamically stable magnetized phase. In Sec. III,
we treat the case of an additional global anisotropy in the
Hamiltonian and show similarities in the relaxation dynamics
when compared with the bare model. Finally, we draw our
conclusions in Sec. IV.

II. ISOTROPIC HEISENBERG MEAN-FIELD MODEL

Consider a system of N interacting particles moving on
the surface of a unit sphere. The generalized coordinates of
the i-th particle are the spherical polar angles θi ∈ [0,π ] and
φi ∈ [0,2π ], while the corresponding generalized momenta
are pθi

and pφi
. The Hamiltonian of the system is given by

H = 1

2

N∑
i=1

(
p2

θi
+ p2

φi

sin2 θi

)
+ 1

2N

N∑
i,j=1

[1 − Si · Sj ]. (1)

Here, Si is the vector pointing from the center to the position
of the i-th particle on the sphere and has the Cartesian
components (Six,Siy,Siz) = (sin θi cos φi, sin θi sin φi, cos θi).
The term involving the double sum in Eq. (1) describes the
mean-field interaction between the particles. The prefactor
1/N in the double sum makes the energy extensive, in
accordance with the Kac prescription [39]. Nevertheless,
the system is nonadditive. This means that dividing the
system into macroscopic subsystems and summing over their
thermodynamic variables such as energy or entropy does
not yield the corresponding variables of the whole system.
Regarding the vector Si as the classical Heisenberg spin vector
of unit length, the interaction term has a form similar to that in a
mean-field Heisenberg model of magnetism. However, unlike
the latter case, the Poisson bracket between the components of
Si’s in our model is zero.

The interaction term in (1) tries to cluster the particles,
and is in competition with the kinetic energy term (the
term involving pθi

and pφi
) which has the opposite effect.

The degree of clustering is conveniently measured by the
“magnetization” vector m = (mx,my,mz) = (1/N )

∑N
i=1 Si .

In the BG equilibrium state, the system exhibits a continuous
phase transition at the critical energy density εc = 5/6,
between a low-energy clustered (“magnetized”) phase in
which the particles are close together on the sphere and a
high-energy homogeneous (“nonmagnetized”) phase in which

the particles are uniformly distributed on the sphere [37,38].
As a function of the energy, the magnitude of m, given by

m =
√

m2
x + m2

y + m2
z , decreases continuously from unity at

zero energy density to zero at εc and remains zero at higher
energies.

The time evolution of the system (1) follows the Hamilton
equations of motion, which for the i-th particle are given by

dθi

dt
= pθi

, (2)

dφi

dt
= pφi

sin2 θi

, (3)

dpθi

dt
= p2

φi
cos θi

sin3 θi

+ mx cos θi cos φi + my cos θi sin φi

−mz sin θi, (4)

dpφi

dt
= −mx sin θi sin φi + my sin θi cos φi. (5)

The dynamics conserves the total energy and the total
momentum.

Here we study how does the system starting far from
equilibrium and evolving under the dynamics, Eqs. (2)–(5),
relax to the equilibrium state. To this end, we now derive the
Vlasov equation for the evolution of the phase-space density.
It is known that for a mean-field system such as ours, this
equation faithfully describes the N -particle dynamics for finite
time in the limit N → ∞ [40]. In our case, we conveniently
study the dynamics by analyzing the motion of a single
particle in the four-dimensional phase space of its canonical
coordinates (θ,φ,pθ ,pφ), due to the mean-field produced by
its interaction with all the other particles. Let f (θ,φ,pθ ,pφ,t)
be the probability density in this single-particle phase space,
such that f (θ,φ,pθ ,pφ,t)dθdφdpθdpφ gives the probability
at time t to find the particle with its generalized coordinates in
(θ,θ + dθ ) and (φ,φ + dφ), and the corresponding momenta
in (pθ ,pθ + dpθ ) and (pφ,pφ + dpφ). Noting that the “velocity
field” (dθ/dt,dφ/dt,dpθ/dt,dpφ/dt) in the phase space is
divergence-free, conservation of probability implies that the
total time derivative of f vanishes,

df

dt
= ∂f

∂t
+ dθ

dt

∂f

∂θ
+ dφ

dt

∂f

∂φ
+ dpθ

dt

∂f

∂pθ

+ dpφ

dt

∂f

∂pφ

= 0. (6)

Using Eqs. (2)–(5) in the above equation, we get the Vlasov
equation for time evolution of f (θ,φ,pθ ,pφ,t) as

∂f

∂t
+ pθ

∂f

∂θ
+ pφ

sin2 θ

∂f

∂φ
+

(
p2

φ cos θ

sin3 θ
+ mx cos θ cos φ

+my cos θ sin φ − mz sin θ

)
∂f

∂pθ

+ (−mx sin θ sin φ + my sin θ cos φ)
∂f

∂pφ

= 0; (7)

(mx,my,mz)

=
∫

dθdφdpθdpφ(sin θ cos φ, sin θ sin φ, cos θ )f. (8)
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Now it is easily verified that any distribution
f (0)(θ,φ,pθ ,pφ) = 	(e(θ,φ,pθ ,pφ)), with arbitrary function
	 and e being the single-particle energy,

e(θ,φ,pθ ,pφ) = 1

2

(
p2

θ + p2
φ

sin2 θ

)
− mx sin θ cos φ

−my sin θ sin φ − mz cos θ, (9)

is stationary under the Vlasov dynamics (7). The magnetization
components mx,my,mz are determined self-consistently. As a
specific example, consider a stationary state which is nonmag-
netized, that is, mx = my = mz = 0, and f (0)(θ,φ,pθ ,pφ) is
given by

f (0)(θ,φ,pθ ,pφ)

=

⎧⎪⎨⎪⎩
1

2π
1
π
A if 1

2

(
p2

θ + p2
φ

sin2 θ

)
< E;

θ ∈ [0,π ],φ ∈ [0,2π ], A,E � 0,

0, otherwise.

(10)

The state (10) is a straightforward generalization of the well-
studied water-bag initial condition for the HMF model [3,41].
The parameters A and E are related through the normalization
condition, ∫ π

0
dθ

∫ 2π

0
dφ

∫



dpθdpφf (0) = 1, (11)

where the integration over pθ and pφ is over the domain 


defined as


 = �

(
2E − p2

θ − p2
φ

sin2 θ

)
, (12)

with �(x) denoting the unit step function. Performing the
integration in Eq. (11), we get

E = 1

4A
. (13)

The conserved energy density ε, given by

ε = 1

2
+

∫ π

0
dθ

∫ 2π

0
dφ

∫



dpθdpφ

1

2

(
p2

θ + p2
φ

sin2 θ

)
f (0),

(14)

is related to the parameter E as

ε = 1

2
+ E

2
. (15)

We now examine the stability of the stationary state (10)
under the dynamics (7). In particular, we will study linear
stability. To this end, consider small perturbation around the
state f (0), so the corresponding state may be expanded as

f (θ,φ,pθ ,pφ,t) = f (0) + δf (θ,φ,pθ ,pφ,t); δf � 1. (16)

Since both f and f (0) are normalized, we have∫
dθdφdpθdpφδf (θ,φ,pθ ,pφ,t) = 0. (17)

Using Eq. (16) in Eq. (7), and keeping terms to linear order in
δf , we get

∂δf

∂t
+ pθ

∂δf

∂θ
+ pφ

sin2 θ

∂δf

∂φ
+ p2

φ cos θ

sin3 θ

∂δf

∂pθ

+ (m̃x cos θ cos φ + m̃y cos θ sin φ − m̃z sin θ )
∂f (0)

∂pθ

+ (−m̃x sin θ sin φ + m̃y sin θ cos φ)
∂f (0)

∂pφ

= 0; (18)

(m̃x,m̃y,m̃z)

=
∫

dθdφdpθdpφ(sin θ cos φ, sin θ sin φ, cos θ )δf. (19)

The linearized dynamics at long times is expected to be domi-
nated by the mode corresponding to the largest eigenfrequency
ω of the linearized equation (18), so we may write

δf (θ,φ,pθ ,pφ,t) = δ̃f (θ,φ,pθ ,pφ,ω)eiωt . (20)

When the state (10) is linearly unstable, the system gets
magnetized, which due to the complete isotropy of the
Hamiltonian (1) may be taken to be along the z direction
without any loss of generality. This implies (and is implied by)
a form of perturbation which is uniform in φ,

δ̃f (θ,φ,pθ ,pφ,ω) = 1

2π
g(θ,pθ ,pφ,ω). (21)

In this case, it follows from Eq. (5) that for all i,

pφi
= const, (22)

equal to its initial value, so∫
dθdpθg(θ,pθ ,pφ,ω) = 0. (23)

Using the above arguments and Eq. (18), it follows
that, corresponding to the neutral mode ω = 0, the quantity
g0 = g(θ,pθ ,pφ,0) satisfies

pθ

∂g0

∂θ
+ p2

φ cos θ

sin3 θ

∂g0

∂pθ

− A

2π2
[δ(pθ + p0(θ,pφ)) − δ(pθ − p0(θ,pφ))]

× m̃z,0 sin θ = 0, (24)

where δ is the Dirac δ function, while

m̃z,0 = 2π

∫ π

0
dθ cos θ

∫



dpθdpφg0 (25)

and

p0(θ,pφ) =
√

2E − p2
φ

/
sin2 θ. (26)

In arriving at Eq. (24), we have used Eq. (10) to obtain

∂f (0)

∂pθ

= A

2π2
[δ(pθ + p0(θ,pφ)) − δ(pθ − p0(θ,pφ))]. (27)

From Eq. (24), we see that g0 has the property

g0(θ,pθ ,pφ) = −g0(π − θ,pθ ,pφ). (28)
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We now solve Eq. (24) for g0. To proceed, consider a
solution of the form

g0(θ,pθ ,pφ) = [a(θ,pφ)δ(pθ + p0(θ,pφ))

+ b(θ,pφ)δ(pθ − p0(θ,pφ))]. (29)

Equation (23) then implies that∫
dθ (a(θ,pφ) + b(θ,pφ)) = 0. (30)

Also, Eq. (28) implies that

a(π/2,pφ) = b(π/2,pφ) = 0. (31)

Substituting Eq. (29) into Eq. (24) gives

p2
φ cos θ

sin3 θ
a

(
1 + pθ

p0(θ,pφ)

)
δ′(pθ + p0(θ,pφ))

−
(

p0(θ,pφ)
∂a

∂θ
+ A

2π2
m̃z,0 sin θ

)
δ(pθ + p0(θ,pφ)) = 0,

(32)

p2
φ cos θ

sin3 θ
b

(
1 − pθ

p0(θ,pφ)

)
δ′(pθ − p0(θ,pφ))

+
(

p0(θ,pφ)
∂b

∂θ
+ A

2π2
m̃z,0 sin θ

)
δ(pθ − p0(θ,pφ)) = 0.

(33)

Using xδ′(x) = −δ(x), the above equations give

−
(

d(ap0(θ,pφ))
dθ

+ A

2π2
m̃z,0 sin θ

)
δ(pθ + p0(θ,pφ)) = 0,

(34)(
d(bp0(θ,pφ))

dθ
+ A

2π2
m̃z,0 sin θ

)
δ(pθ − p0(θ,pφ)) = 0.

(35)

We thus have
da(θ,pφ)p0(θ,pφ)

dθ
= db(θ,pφ)p0(θ,pφ)

dθ

= −Am̃z,0 sin θ

2π2
. (36)

Integrating between θ ′ = π/2 and θ ′ = θ , and using Eq. (31),
we get

a(θ,pφ) = b(θ,pφ) = Am̃z,0 cos θ

2π2p0(θ,pφ)
. (37)

We therefore have from Eq. (29) the solution of the linearized
Vlasov equation (24) as

g0(θ,pθ ,pφ) = Am̃z,0 cos θ

2π2p0(θ,pφ)

× [δ(pθ + p0(θ,pφ)) + δ(pθ − p0(θ,pφ))]

= Am̃z,0 cos θ

π2
δ2

(
2E − p2

θ − p2
φ

/
sin2 θ

)
,

(38)

which is invariant under rotation about the z axis, as it
should be.

Equations (25) and (38) give a self-consistent equation for
m̃z,0, as follows:

m̃z,0 = 2π

∫ π

0
dθ cos θ

∫ √
2E sin θ

−√
2E sin θ

dpφ

×
∫ √

2E−p2
φ/ sin2 θ

−
√

2E−p2
φ/ sin2 θ

dpθg0(θ,pθ ,pφ)

= Am̃z,0

π2
2π

∫ π

0
dθ cos2 θ

×
∫ √

2E sin θ

−√
2E sin θ

dpφ

dpφ√
2E − p2

φ

/
sin2 θ

= 4Am̃z,0

3
. (39)

We therefore have the desired self-consistent equation for
m̃z,0:

m̃z,0

[
1 − 4A

3

]
= 0. (40)

Then, since m̃z,0 �= 0, the above equation is satisfied with A =
A�, where A∗ = 3/4. Correspondingly, on using Eqs. (13) and
(15), we obtain the energy threshold for the linear stability of
the state (10) as

ε∗ = 2
3 . (41)

On the basis of our analysis, we thus conclude that in the
energy range ε∗ < ε < εc, the nonmagnetized state (10) is
linearly stable, and is, hence, a QSS. In a finite system, a
QSS eventually relaxes to BG equilibrium on a time scale
over which nonlinear correction terms should be added to the
Vlasov equation [3]. In the HMF model, numerical simulations
[21] have shown this time scale to grow with system size N as
Nδ; δ 
 1.7. Recent extensive numerical studies suggest that
in fact for the HMF model, δ 
 2 [42].

In order to verify the above prediction of QSSs in our
model, we performed numerical simulations of the dynamics
by integrating the equations of motion (2), (3), (4), and (5)
by using a fourth-order Runge-Kutta method with a time
step equal to 10−2. For energies between ε∗ and εc, the
results shown in Fig. 1 indeed show that, consistent with
our predictions, the initial state (10) is a QSS, relaxing
to BG equilibrium over a very long time scale that grows
algebraically with the system size as Nδ . The scaling collapse
plot of Fig. 1(b) suggests that δ 
 1.7. For energies ε < ε∗,
when the state (10) is unstable, Fig. 2 illustrates that the system
exhibits a fast relaxation towards BG equilibrium over a time
scale that grows with the system size as ln N .

In the next section, we modify the model (1) to include an
additional global anisotropy.

III. HEISENBERG MEAN-FIELD MODEL
WITH ADDITIONAL GLOBAL ANISOTROPY

In this section, we consider the system (1) with an additional
global anisotropy and demonstrate the existence of QSSs,
similar to the bare model. The analysis is similar to that in
the previous section, and therefore, here we briefly outline the
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FIG. 1. (Color online) For the model (1), the figures show the
magnetization m(t) as a function of time (a) and as a function of
time scaled by N1.7 (b) in the Vlasov-stable phase (ε� < ε < εc)
for the model (1) at energy density ε = 0.7. The figures suggest the
existence of a QSS with a lifetime scaling with the system size as
N 1.7. Data averaging varies between 5 histories for the largest system
and 10 histories for the smallest one.

main steps. The Hamiltonian of the system is given by

H = 1

2

N∑
i=1

(
p2

θi
+ p2

φi

sin2 θi

)
+ 1

2N

N∑
i,j=1

[1 − Si · Sj ]

− K

2N

(
N∑

i=1

Siz

)2

, (42)

where the last term gives the energy due to a global anisotropy
in the magnetization along the z direction. For simplicity, we
consider K > 0, for which the energy is minimized by ordering
along the z axis. At the end of this section, we will comment
on the case K < 0.

Following standard procedure (see, e.g., Ref. [25]), the
equilibrium magnetization 〈mz〉 satisfies

〈mz〉 =
∫

dθdφ cos θ sin θeβ(K+1)〈mz〉 cos θ∫
dθdφ sin θeβ(K+1)〈mz〉 cos θ

. (43)

Close to the critical point, expanding the above equation to
leading order in 〈mz〉, we get

〈mz〉
(

2 − β(K + 1)
∫ π

0
dθ sin θ cos2 θ

)
= 0. (44)
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FIG. 2. (Color online) For the model (1), the figures show the
magnetization m(t) as a function of time (a) and as a function of time
scaled by the logarithm of the system size N (b) in the Vlasov-unstable
phase (ε < ε�) at energy density ε = 0.55. The figures show a fast
relaxation from the initial nonmagnetized state to BG equilibrium
over a time scale ∼ln N . Data averaging varies between 5 histories
for the largest system and 10 histories for the smallest one.

With 〈mz〉 �= 0, we get the critical temperature βc as

βc = 3

K + 1
. (45)

The critical energy density is

εc(K) = 1

βc

+ 1

2
= 5

6
+ K

3
; K > 0. (46)

The Hamilton equations of motion for the model (42) are
obtained from Eqs. (2)–(5) by replacing mz with (K + 1)mz.
The Vlasov equation for the evolution of the single-particle
phase-space density f (θ,φ,pθ ,pφ,t) may be derived as in
the previous section and is given by Eq. (7) with (K + 1)mz

replacing mz.
Now any distribution f (0)(θ,φ,pθ ,pφ) = 	(e(θ,φ,pθ ,

pφ)), with arbitrary function 	 and e being the single-particle
energy,

e(θ,φ,pθ ,pφ) = 1

2

(
p2

θ + p2
φ

sin2 θ

)
− mx sin θ cos φ

−my sin θ sin φ − (K + 1)mz cos θ, (47)

is stationary under the Vlasov dynamics. In particular, the
nonmagnetized state (10) represents a stationary solution of
the Vlasov dynamics.
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Let us now study the linear stability of the state (10). Noting
that when the state is unstable, the system for K > 0 orders
along the z direction, we linearize the Vlasov equation about
the state by writing

f (θ,φ,pθ ,pφ,t) = f (0) + 1

2π
g(θ,pθ ,pφ,ω)eiωt , (48)

so corresponding to the neutral mode ω = 0, the quantity
g0 = g(θ,pθ ,pφ,0) satisfies

pθ

∂g0

∂θ
+ p2

φ cos θ

sin3 θ

∂g0

∂pθ

− A

2π2
[δ(pθ + p0(θ,pφ)) − δ(pθ − p0(θ,pφ))]

× (K + 1)m̃z,0 sin θ = 0. (49)

The above equation is similar to Eq. (24), the only difference
being an extra constant factor (K + 1) in the term involving
m̃z,0. Consequently, the analysis following Eq. (24) may be
similarly carried out in the present case to get

a(θ,pφ) = b(θ,pφ) = A(K + 1)m̃z,0 cos θ

2π2p0
, (50)
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FIG. 3. (Color online) For the model (42), the figures show the
magnetization m(t) as a function of time (a) and as a function of time
scaled by N 1.7 (b) in the Vlasov-stable phase [ε�(K) < ε < εc(K)]
for K = 1 at energy density ε = 1.0. The figures suggest the existence
of a QSS with a lifetime scaling with the system size as N1.7. Data
averaging varies between 6 histories for the largest system and 10
histories for the smallest one.

which may be combined with Eqs. (25) and (29) to obtain the
following equation:

m̃z,0

[
1 − (K + 1)

4A

3

]
= 0. (51)

It then implies that, corresponding to the neutral mode, one
has A = A� = 3/(4(K + 1)), which, together with Eqs. (13)
and (15), give the energy density ε�(K) corresponding to
neutral stability of the stationary state (10) under the linearized
Vlasov dynamics,

ε�(K) = 2

3
+ K

6
; K > 0. (52)

Compared to the bare model, we thus see that global
anisotropy widens the range of energy ε∗(K) < ε < εc(K)
over which the nonmagnetized state (10) is linearly stable
under the Vlasov dynamics and is, hence, a QSS. For energies
below ε∗(K), such a state being linearly unstable exhibits
a fast relaxation towards BG equilibrium over a time scale
∼ln N , while for energies in the range ε∗(K) < ε < εc(K),
it relaxes to BG equilibrium only over a very long time scale
growing with the system size as N1.7; see Figs. 3 and 4.

For K < 0, the system will order in the xy plane, and the
anisotropy term does not affect the energy. Indeed, an analysis
along the same lines as above shows that the energy thresholds
ε� and εc are equal to the corresponding values for the bare

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.01  100  1e+06

M
ag

ne
tiz

at
io

n 
m

(t
)

t

(a)

K=1
ε (< ε*(K))=0.6

N=1000
=2000
=5000

BG eqlbm.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

10-2  102  105

M
ag

ne
tiz

at
io

n 
m

(t
)

t/ln N 

(b)

K=1
ε (< ε*(K))=0.6

N=1000
=2000
=5000

BG eqlbm.

FIG. 4. (Color online) For the model (42), the figures show the
magnetization m(t) as a function of time (a) and as a function of time
scaled by the logarithm of the system size N (b) in the Vlasov-unstable
phase [ε < ε�(K)] for K = 1 at energy density ε = 0.6. The figures
show a fast relaxation from the initial nonmagnetized state to BG
equilibrium over a time scale ∼ln N . The data shown are for one
realization of the dynamics.

052137-6



QUASISTATIONARITY IN A MODEL OF LONG-RANGE . . . PHYSICAL REVIEW E 88, 052137 (2013)

model (K = 0), and nonmagnetized QSSs exist in the range
ε� < ε < εc (ε∗ = 2/3,εc = 5/6).

IV. CONCLUSIONS

In this work, we addressed the ubiquity of non-Boltzmann
quasistationary states (QSS) in long-range systems. This is
done by analyzing the relaxation dynamics of a system of N

particles moving on a spherical surface under an attractive
Heisenberg-like interaction of infinite range and evolving
under deterministic Hamilton dynamics. In equilibrium, the
system exhibits a continuous phase transition from a low-
energy magnetized phase to a high-energy homogeneous
phase at the energy density εc = 5/6. In the limit of infinite
N , the dynamics of relaxation to equilibrium is described
by the Vlasov equation for the temporal evolution of the
single-particle phase-space distribution. By linearizing the
Vlasov equation about a stationary nonmagnetized state, our
exact solution of the linearized equation shows that within the
thermodynamically stable magnetized phase, there exists an
energy range ε� < ε < εc over which nonmagnetized states
occur as stable stationary solutions of the Vlasov dynamics,
where ε� corresponds to linear stability threshold of the

nonmagnetized states. This leads to the formation of long-lived
nonmagnetized quasistationary states (QSSs), with a lifetime
that we demonstrate on the basis of numerical simulations to
be growing algebraically with the system size N . For energies
below ε�, nonmagnetized stationary states are linearly unstable
under the Vlasov dynamics and, thus, exhibit a fast relaxation
to equilibrium over a time scale growing with the system size
as ln N . These features remain unaltered on adding a term to
the Hamiltonian that accounts for a global anisotropy in the
magnetization.
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