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Information exchange dynamics of the two-dimensional XY model
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Information exchange dynamics of the two-dimensional XY model is studied by means of the entropic sampling
algorithm. Combining the analytic and numerical results, we obtain the entropy in the whole range of the energy
at various system sizes. The time evolution of the order parameter and of the number of vortices is explored,
and the corresponding relaxation times are found to grow algebraically with the system size. Such absence of
characteristic time scales in the thermodynamic limit manifests the emergent criticality of the exchanging process
of information with the environment. The mechanism of information exchange in the XY model is discussed in
terms of the dynamic exponents, in comparison with the Ising model.
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I. INTRODUCTION

The importance of the role of entropy in the biological
evolution has been addressed in literature [1]. In general, every
species attempts to minimize its entropy, obtaining information
from the environment. By applying this concept, it has been
shown that the biological evolution of an ecosystem can be
adequately described by the information exchange dynamics
employing the entropic sampling algorithm [2]. Over the past
few years, simulations based on entropic sampling have been
performed, primarily focusing on the globally coupled and
the two-dimensional Ising model [3,4]. Those results can
be related to a wide range of phenomena in biological and
social systems [5,6]. Furthermore, such dynamics has been
recognized as an adequate theoretical explanation of the reason
why scale invariance is observed so common in nature. In this
respect, the ubiquity of the emergent dynamical criticality is
expected regardless of the details of the system, as long as the
dynamics is directed by information exchange to and from the
environment.

The XY model has often been used for the description of
physical, biological, and social systems in which the states of
individual constituents are specified by phase variables and
interactions between the constituents depend on the corre-
sponding phase differences [7,8]. This model, particularly in
two dimensions, is well known for its characteristics such
as quasi-long-range order, vortex pairs, and the Berezinski-
Kosterlitz-Thouless (BKT) transition [9], and has been ex-
tensively studied over the past few decades. However, the
entropy or the density of states has not been fully determined
yet although several studies have addressed the density of
states [10]. Further, there is no inherent dynamics of this model,
and appropriate dynamics should be specified, depending on
the system it models.

In this study, we investigate the information exchange
dynamics in the two-dimensional XY model. The information
exchange between the system and environment is realized
with the entropic sampling dynamics, which is subject to the
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exact estimation of the entropy for the entire range of the
energy. It has been a challenge to obtain the entropy of the
XY model, possessing the continuous U(1) symmetry. We
first evaluate the entropy by means of the entropic sampling
algorithm, supplemented by analytic results in the immediate
vicinity of the ground state. Using the obtained entropy, we
perform entropic sampling Monte Carlo (MC) simulations,
which corresponds to the information exchange dynamics.

This paper is organized as follows: Sec. II is devoted to
the entropy of the two-dimensional XY model. The entropy
of the system is obtained numerically in the whole range of
the energy. Moreover, at high and low temperatures, analytic
expressions of the entropy are given as functions of the energy.
In Sec. III, information exchange dynamics of the system is
investigated by means of the entropic sampling algorithm, and
corresponding numerical results are presented. We estimate
the relaxation time from the time correlation functions of the
order parameter and the number of vortices and compute the
dynamic exponents as well. Finally, Sec. IV gives a summary.

II. ENTROPY OF THE TWO-DIMENSIONAL XY MODEL

In this section we present the entropy of the system. At
general temperatures the entropy is computed through the use
of Monte Carlo simulations, employing the entropic sampling
algorithm. In addition, analytic expressions are also obtained
in the low- and high-temperature limits.

The two-dimensional XY model is described by the
Hamiltonian

H = −J
∑
〈i,j〉

cos (θi − θj ), (1)

where θi is the phase angle of the ith spin and 〈i,j 〉 denotes
the nearest-neighboring pairs. There are N (= L2) spins,
forming an L × L square lattice. Henceforth, for simplicity,
the coupling strength will be set equal to unity (J ≡ 1). From
Eq. (1), the partition function of the system obtains the form

Z =
∫ (∏

i

dθi

2π

)
exp

⎡
⎣β

∑
〈i,j〉

cos (θi − θj )

⎤
⎦, (2)
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where β is the inverse temperature (with the Boltzmann
constant set to be unity: kB ≡ 1).

A. Numerical estimation

The continuous U(1) symmetry makes it formidable to
study numerically the XY model. It is usually the case that the
XY model is approximated as a clock model with the (discrete)
Zq symmetry. Namely, the phase angle θi is made discrete and
replaced by 2πpi/q with pi taking an integer between 1 and
q. This results in the q-state clock model, described by the
Hamiltonian

H = −J
∑
〈i,j〉

cos

[
2π

q
(pi − pj )

]
. (3)

When q > 4, this model is known to exhibit two transitions,
although the interpretation of the data and the locations of the
transitions raise rather a subtle problem [11]. In particular, as
q is increased, the lower transition temperature approaches
zero while the transition at the higher transition temperature
corresponds to the BKT transition in the XY model. This
indeed demonstrates that the q-state clock model reduces to
the XY model in the limit q → ∞, and it is thereby possible
to adopt the clock model with large q as an approximation to
the XY model. In this study, we choose q = 60, which turns
out large enough to yield essentially the same results as the
continuous model and is numerically tractable in the entropic
sampling algorithm.

To obtain the entropy S(e) as a function of the energy per
spin e (≡ E/N), we follow the steps in Ref. [12]: Beginning
with a random configuration, we get a rough estimate of S(e),
which is initially set to be zero for all e. We then obtain
the histogram H (e) from MC sweeps satisfying the detailed
balance condition

w(�σ→�σ ′)
w(�σ ′→�σ )

= e−�S, (4)

where w(�σ→�σ ′) is the transition rate from configuration
�σ ≡ {σ1,σ2, . . . ,σN } to �σ ′ ≡ {σ ′

1,σ
′
2, . . . ,σ

′
N }, and �S ≡

S[e(�σ ′)] − S[e(�σ )] is the change in the entropy. Specifically,
a trial update from �σ to �σ ′ is accepted with the probability
p = min{1,e−�S}. After the first iteration, which is effectively
random sampling of 104 MC sweeps [recall S(e) is zero at
this stage], we raise S(e) by the amount ln H (e) for H (e) 	= 0.
The next iteration then starts from the new estimate of S(e).
Subsequently, we perform 8 × 106 MC sweeps to obtain a new
histogram and update S(e) by adding ln H (e). The range of the
sampled energy increases with the number of iterations. The
iteration is repeated until the entire energy space is sampled
uniformly and S(e) thus remains unchanged up to an additive
constant.

In order to obtain S(e) properly, one should choose carefully
the width of the energy bin for the histogram. Since the entropy
is ideally a continuous function of the energy, it is desirable to
use a narrow bin: If the bin width is too large compared with
the typical change of the energy density in an MC update, the
energy would not be uniformly sampled. On the other hand,
too small width would result in poor numerical convergence.
In this work, we choose 2.00 × 10−3 (in unit of J ) for the bin
width of the energy density.
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FIG. 1. (Color online) Total entropy S as a function of the energy
(per spin) e, obtained numerically for various system sizes.

Figure 1 shows the entropy of the XY model, obtained as
a function of the energy, for L = 4,8,16,24, and 32. Note that
S(e) increases monotonically with e, which reflects that the
system possesses more accessible states at higher energies,
thus leading to the disordered state. In contrast, low-energy
states are progressively less accessible, especially at large
system sizes such as L = 24 and 32, because the total number
of accessible states grows exponentially with the system size.
To overcome this and to attain proper sampling, we increase
the number of MC sweeps and iterations in the low-energy
region, to the best of our computing capability.

The detailed result for L = 32 in the energy range −2.0 <

e < −1.6, shown in Fig. 2, manifests insufficient sampling
in the low-energy region; this appears inevitable, making it
necessary to employ other methods. As an alternative algo-
rithm, the microcanonical MC technique may be promising in
the low-energy region [13]. Here, for convenience, we use
the analytic result in the low-temperature limit, where the
low-energy states are expected to prevail at equilibrium; this
is discussed in the next subsection.

B. Analytical expressions

We next consider analytical expressions of the entropy in the
two temperature limits, low- and high-temperature limits. At
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FIG. 2. (Color online) Total entropy S(e) in the low-energy
region, obtained numerically for L = 32 (black solid line) in
comparison with the analytical result Ssw(e) − S0 (red dashed line)
given by Eq. (5).
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low temperatures the state of the system is close to the ground
state, which makes the spin-wave approximation applicable.
This leads to the entropy as a function of the energy per spin
e (≡ E/N):

Ssw(e) = N − 3

2
ln (e+2) + N − 3

2
ln N + S0, (5)

which is accurate in the vicinity of the ground state [10].
s ≡ Ssw/N with Ssw given by Eq. (5), Here it is convenient to
adjust the additive constant S0 in such a way that the entropy
vanishes at the lowest off-ground-state energy e = e0, which
is set equal to −1.998.

As displayed in Fig. 2, the analytic result agrees reasonably
well with the numerical result over a considerable range of e.
This presumably reflects that fluctuations of configurations
sampled numerically belong mostly to the regime where
the spin-wave approximation is valid. Accordingly, we can
extrapolate the numerically obtained entropy, with the help
of the analytic expression, to the low-energy region. In this
manner, the entropy could be determined up to the lowest
off-ground-state energy e0 = −1.998 in our analysis.

At high temperatures, we expand Eq. (2) in terms of powers
of β and obtain

Z ≈ 1 + 1

2
β2

∫ ∏
i

dθi

2π

[ ∑
〈i,j〉

cos (θi − θj )

]2

+ O(β4)

= 1 + 1

2
Nβ2 + O(β4), (6)

where it has been noted that the terms of odd powers of
the cosine function vanish. From the partition function, it is
straightforward to obtain the entropy in the form

S ≈ −1 +
√

1 − 2Ne2 + ln

(
1 − √

1 − 2Ne2

Ne2

)
, (7)

which is accurate in the vicinity of e = 0, i.e., in the limit of
small β. Note that the entropy here, obtained from differentia-
tion of the partition function, takes apparently negative values;
adding an appropriate constant yields the true (positive) values.

Analytical results in the high- and low-energy regions are
observed to be consistent with the numerical results presented
in Sec. II A. Combining numerical and analytical results, we
obtain the entropy of the system in the entire range of the
energy e, which is presented in Fig. 3. The results for L =
4,8,16 are obtained solely by numerical simulations. Here the
additive constant has been adjusted, so that the value of the
entropy coincides at e = e0 regardless of the system size.

Naturally, the entropy of the XY model is an increasing
function of the energy, similar to that of the Ising model
[4]. Compared with the Ising model, however, the entropy
increases more rapidly in the low-energy region, which results
from the fact that the number of possible states increases
explosively. (Note the sharp contrast that each spin in the
Ising model can assume only two states.) In addition, the
entropy can also be obtained efficiently through the use of
the Wang-Landau histogram method and our result is also
consistent with that in Ref. [10].
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FIG. 3. (Color online) Entropy (per spin) s as a function of the
energy (per spin) e for various system sizes. Curves for different
system sizes have been shifted appropriately, by adjusting the constant
S0 for each system size, to set s(e = −1.998) ≡ 0.

III. ENTROPIC SAMPLING DYNAMICS

In this section, we examine information exchange dynamics
via extensive MC simulations employing the entropic sampling
algorithm. As in the preceding numerical steps obtaining
the entropy, the phase angle of a randomly chosen spin is
updated to one of q discrete angles with the probability p =
min{1,e−�S}, where S is the entropy obtained in Sec. II. The
transitions among the microscopic states are then controlled
by the entropy, and elements in this ensemble are distributed
according to e−S[e(�σ )]. Of particular interest is the dynamics of
the order parameter and vortices, with a view to characterizing
the process of information exchange in the XY model. The
unit of time in MC simulations is set equal to one sweep of the
updating procedure for all N spins in the system.

A. Dynamics of the order parameter

Ordering in the system can be described with the order
parameter m, defined to be

m ≡ 1

N

√√√√(
N∑
i

cos θi

)2

+
(

N∑
i

sin θi

)2

. (8)

When m vanishes, the spins are randomly oriented; m

approaches unity as the spins are aligned in one direction.
The order parameter m evolves with time t , and we probe how
it evolves in the entropic sampling dynamics.

Figure 4 displays the typical behavior of m(t) for L =
4,8,16, and 32 in the time range 4 000 � t � 16 000. The
dynamics of a smaller system is observed to be faster in general
and to cover a wider range of m. Two small systems of size
L = 4 and 8 tend to prefer relatively ordered states (m > 0.5):
m increases immediately after reaching m = 0. In contrast, the
largest system studied here (L = 32) exhibits slow relaxation
and remains disordered. Such difference arises from the system
size dependence of the entropy, as explained in Sec. II A. As L

is increased, S(e) becomes relatively steep in the high-energy
region, which results in that the larger system is likely to stay
longer in the disordered state. If a large system falls into the
low-energy region where m is close to unity, the present state
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FIG. 4. (Color online) Time evolution of the order parameter m

for the system size L = (a) 4, (b) 8, (c) 16, and (d) 32.

may then persist because the entropy is now too steep for the
system to reach the disordered state easily.

In general, the time evolution of a system is conveniently
characterized by the relaxation of autocorrelations. We thus
define the normalized time correlation function of the order
parameter:

C(t) ≡ 〈m(t)m(0)〉 − 〈m(t)〉2

〈m2(0)〉 − 〈m(0)〉2
, (9)

where 〈· · ·〉 denotes the ensemble average. In practice, as-
suming ergodicity and stationarity in the entropic sampling
dynamics, we take the time average over t ′ in the expression
〈m(t+t ′)m(t ′)〉t ′ ; this is meant by 〈m(t)m(0)〉. The time
correlation function C(t), obtained for various system sizes, is
shown in Fig. 5. As noticed in the semilogarithmic plot, C(t)
exhibits nonexponential decay for all system sizes. Moreover,
the relaxation of C(t) becomes slower as L is increased.
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FIG. 5. (Color online) Evolution of the time correlation function
C(t) of the order parameter m for various system sizes.

To probe the relaxation in the thermodynamic limit, we
consider the relaxation time τ defined to be the integration of
the normalized time correlation function:

τ ≡
∫ ∞

0
dt C(t). (10)

Figure 6(a) presents the relaxation time τ , obtained for various
system sizes. It is observed that τ grows algebraically with the
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FIG. 6. (Color online) (a) Relaxation time τ (in units of the MC
sweep per spin) versus the system size L on the logarithmic scale.
Squares represent data points, fitted to the straight line of the slope
1.96. (b) Power spectrum P as a function of frequency ω, obtained
from the Fourier transform of the correlation function C(t) for several
system sizes, on the logarithmic scale.
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FIG. 7. (Color online) The power spectrum exponent α versus the
inverse size L−1. Blue squares and red circles represent data points for
the power spectra of the order parameter and of vortices. Error bars
have been estimated from the data dispersion in Figs. 6(b) and 9(b).

system size L:

τ ∼ Lz, (11)

with the dynamic exponent z = 1.96 ± 0.12. We also present
in Fig. 6(b) the power spectrum P(ω) of the order parameter m

for L = 16, 24, and 32, which apparently exhibits the power-
law behavior, P(ω) ∼ ω−α . The frequency range in which the
power-law behavior persists extends with L, demonstrating the
emergence of critical behavior in the thermodynamic limit. To
obtain the exponent α, we carry out the finite-size scaling
analysis with the help of Fig. 7, which exhibits α versus the
inverse system size L−1. This yields the estimation α ≈ 1.88 ±
0.09.

The absence of the characteristic time scale in the ther-
modynamic limit can be interpreted as the criticality of the
entropic sampling dynamics. In particular, the nontrivial value
of the dynamic exponent z would not be reproduced by
simple rescaling of the time steps of simulations for larger
systems. This indicates that the observed criticality should
be an emergent property arising from cooperativity of the
information exchange in the system, possibly suggesting
the general mechanism for self-organized criticality [3,14].
In comparison with the two-dimensional Ising model [3],
of which the dynamic exponent in the entropic sampling
dynamics is known as z ≈ 2.6, the two-dimensional XY model
displays faster dynamics. It is of interest that the time scale of
the entropic sampling dynamics can generally be understood
in terms of the entropic barriers of the system [15,16]. The
exponent of the power spectrum of the order parameter,
α ≈ 1.88, appears smaller than the exponent for the globally
coupled Ising model and the two-dimensional Ising model
(α = 2) [3]. The entropy of the XY model increases more
rapidly than that of the Ising model in the low-energy region, as
addressed in Sec. II A. Such enhanced entropic barriers would
result in slower relaxation. On the contrary, however, our result
reveals that the relaxation is faster. In the light of the dynamics
of the model, sampling in the low-energy region is not liable
to encounter in a large system because of the behavior of the
entropy. Thus inferred is the existence of other information
exchange processes besides the spin ordering. Specifically,
in the two-dimensional XY model, contributions of vortex
dynamics can be significant, as discussed in Sec. III B.

C
θ 1 θ 2

θ 3θ 4

FIG. 8. (Color online) Diagram for calculating the number of
vortices.

B. Dynamics of vortices

In this section, we examine the contributions of vortices
in the information exchange dynamics of the two-dimensional
XY model. Considering the time evolution of the total number
Nv of vortices, we compute its relaxation time τv from the time
correlation function of Nv for various system sizes. First, the
charge of a vortex at face l on the lattice is obtained as follows:
Along the closed path C around the face l, the vortex charge is
given by

nl = 1

2π

4∑
a=1

[(θl,a+1 − θl,a)(mod 2π )], (12)

where the summation index a labels the position on the closed
path C around the face l (see Fig. 8). Thus, the position labeled
by a = 5 is identified with that by a = 1. The total number Nv

of vortices in the system is defined to be the sum of the number
of vortices with positive charge (nl > 0) and the number of
vortices with negative charge (nl < 0). In the calculation,
vortices with unit charge (nl = ±1) turn out to be dominant
and those with charge larger than unity are rarely observed.
Furthermore, because of the pair creation-annihilation of
vortices, both the number of vortices with charge +1 and the
number with negative charge −1 show essentially the same
behavior as the total number Nv . From the obtained results of
the time evolution of Nv(t), the time correlation function and
the relaxation time are obtained in the same manner as those
of the order parameter in Eqs. (9) and (10).

Figures 9(a) and 9(b) display the relaxation time of vortex
dynamics versus the system size L and the power spectrum
Pv(ω) of the total vortex number Nv(t), respectively. The
relaxation time τv is observed to grow algebraically with
the size, obeying τv ∼ Lz with the dynamic exponent z =
2.78 ± 0.12. Note that the dynamic exponent for Nv is larger
than that for the order parameter, indicating that dynamics
of vortices exhibits critical behavior more progressively as
the thermodynamic limit is approached. The configurational
entropy related to the formation of vortices would play an
important role in the information dynamics. In the low-energy
region, the configurational entropy increases logarithmically
with the system size; this contributes to the information
exchange dynamics of the system and produces the observed
criticality. Demonstrated in Fig. 9(b) is the power-law behavior
of the power spectrum: Pv(ω) ∼ ω−αv , where the exponent
estimated from Fig. 7 is given by αv = 1.5 ± 0.2.
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FIG. 9. (Color online) (a) Relaxation time τv (in units of the MC
sweep per spin) of the vortex number versus the system size L.
Squares represent data points, fitted to the straight line of the slope
2.78. (b) Power spectrum Pv(ω) of the vortex number, obtained from
the Fourier transform of the correlation function of Nv(t) for several
system sizes.

IV. CONCLUSION

Information exchange dynamics of the two-dimensional
XY model has been studied via MC simulations. We have
first computed the entropy of the system numerically and
analytically. Analytic expressions for the entropy, obtained

in the high- and low-temperature limits have been found
to agree well with the numerical results obtained via the
entropic sampling algorithm. Then numerical simulations of
the information exchange dynamics of a two-dimensional XY

model is carried out through the use of the entropic sampling
algorithm, which is based on the reversible information
exchange with the environment. When the system encounters
with information acquisition during entropic fluctuations,
the dynamics proceeds to reduce the entropy followed by
relaxation thereafter. From the time evolution of the order
parameter, we have obtained the time correlation function and
the relaxation time depending on the system size. The algebraic
growth of the relaxation time with the size manifests criticality
of the entropic sampling dynamics in the thermodynamic limit,
characterized by the nontrivial dynamic exponent z ≈ 1.96.
Further, the power spectrum of the order parameter turns out
to exhibit power-law behavior, with the exponent α ≈ 1.88.
Interestingly, the dynamic exponent is smaller than that for the
Ising model, despite that this model possesses more prominent
entropic barriers in the low-energy region. Recall that the
system of size L = 32 becomes hardly ordered, as observed
in the time evolution of the order parameter. We expect that
the information exchange is not probed solely by spin ordering
dynamics, considering not only the continuous symmetry of
the spin variables but also the absence of long-range order in
equilibrium.

In view of this, we have also examined the dynamics of
vortices with regard to the evolution of the number of vortices.
It has been found that the corresponding dynamic exponent
takes the value zv ≈ 2.78, substantially larger than that for the
order parameter. This indicates the importance of the vortex
motion in the critical dynamics of information exchange.
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