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Thermal fluctuations and stability of a particle levitated by a repulsive Casimir force in a liquid
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We study the vertical Brownian motion of a gold particle levitated by a repulsive Casimir force to a silica plate
immersed in bromobenzene. The time evolution of the particle distribution starting from an equilibrium position,
where the Casimir force and gravitational force are balanced, is considered by solving the Langevin equation
using the Monte Carlo method. When the gold particle is very close to the silica plate, the Casimir force changes
from repulsive to attractive, and the particle eventually sticks to the surface. The escape rate from a metastable
position is calculated by solving the Fokker-Plank equation; it agrees with the value obtained by Kramers’ escape
theory. The duration of levitation increases as the particle radius increases up to around 2.3 μm. As an example,
we show that a 1-μm-diameter gold particle can be levitated for a significantly long time by the repulsive Casimir
force at room temperature.
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I. INTRODUCTION

Quantum mechanics allows an attraction between metallic
plates in vacuum even if they are electrically neutral. This
force, known as the Casimir force [1], arises due to the
change in zero-point energy of the electromagnetic field
modes [2]. The Casimir force between dielectrics depends
on not only the electromagnetic properties of materials but
also those of the surroundings [3]. For example, the Casimir
force between a gold plate and a silica plate in vacuum is
attractive for any separation distance. However, the Casimir
force between a gold plate and a silica plate immersed in
bromobenzene (C6H5Br) can be repulsive for large separation
distances [4,5].

The repulsive Casimir force is expected to be useful in
nanotechnology [6,7]. Particle levitation in liquid by the
repulsive Casimir force, which is often known as quantum
levitation, is one of the applications. Under conditions of
quantum levitation, the levitated object can be smoothly
rotated in a liquid. Capasso et al. proposed a quantum-
electrodynamics device using quantum levitation [6].

The repulsive Casimir force has already been observed
by researchers by atomic force microscopy (AFM), and the
obtained force-distance curves agree with the theoretical
values from Lifshitz’s theory [8–11]. Furthermore, Munday
et al. reported that surface-charge effects will not mask
the Casimir force, and no electrostatic double-layer force
is expected for clean, uncharged surfaces separated by a
low-dielectric-constant fluid such as bromobenzene [4]. The
essential property that causes the repulsive Casimir force
between the gold and silica plates in bromobenzene is that
the dielectric permittivity of bromobenzene is larger than
that of silica and smaller than that of gold. These properties
are satisfied in regimes below the UV. Thus, the Casimir
force can be repulsive for large separations. However, the
order of increasing dielectric permittivity is reversed for
high-frequency regimes. Thus, above the UV, the dielectric
permittivity of bromobenzene becomes smaller than that of
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silica, This change results in a reversal of the force from
repulsive to attractive [7,12].

To deeply understand quantum levitation in liquids, we
must consider thermal fluctuations. If thermal fluctuations are
negligible, a levitating particle stays at an equilibrium position
where the repulsive Casimir force and the gravitational force
are balanced. However, the particle position in a liquid is
always being changed by bombardments from surrounding
molecules. Thus, a particle fluctuates about the equilibrium
position. Recently, Boström et al. [12] found that the Casimir
force changes from repulsive to attractive near the surface, and
the repulsive Casimir force diverges as a particle approaches
the surface. Accordingly, the above-described equilibrium
position is metastable. A levitating particle escaping this
metastable state eventually sticks to the surface. The duration
of quantum levitation strongly depends on the particle radius.
Once the particle radius decreases below a threshold, the
potential barrier, which exists very close to the surface,
decreases and the particle easily escapes from the metastable
position. In this study, we focus on the temporal change
in the probability distribution of location of a levitated
particle starting from an equilibrium position along the
vertical axis and consider the stability of quantum levitation,
which is particularly important in terms of engineering
applications.

This paper is structured as follows. In Sec. II, the potential
energy of a gold particle near a silica plate in bromobenzene,
which is calculated by the proximity force approximation, is
expressed as a function of the separation distance between
the particle and the surface. Moreover, the dependence of the
equilibrium position, where the potential has a local minimum,
on the particle radius is shown. In Sec. III, the temporal change
in the probability distribution function of a particle starting
from an equilibrium position is calculated using Monte Carlo
simulation in the short-time regime. In Sec. IV, the escape
rate is calculated by solving the Fokker-Planck equation and is
compared with the value obtained by Kramers’ escape theory.
In Sec. V, we briefly mention the effect of a hindered diffusion
constant of a particle near a wall on the escape rate. Finally, in
Sec. VI, the Conclusion, we discuss the stability of quantum
levitation and comment on several problems that should be
addressed in future studies.
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FIG. 1. (Color online) Schematic of the materials used for
levitation by the repulsive Casimir force.

II. POTENTIAL ENERGY OF A LEVITATED PARTICLE

The potential energy of a gold particle of radius R placed
near a silica plate in bromozenzene should be primarily
considered (Fig. 1). In this section, we assume that only the
Casimir force and gravitational force act on the gold particle
and neglect thermal fluctuations. If the separation distance
between the gold particle and the silica plate is much smaller
than the particle radius, the Casimir force can be calculated
using the proximity force approximation (PFA) [2]:

F (d) = 2πRE(d), (1)

where E(d) is the Casimir energy per unit area in the
configuration of two parallel plates.

The Casimir energy between two plates having dielectric
permittivity ε(1)(ω) and ε(2)(ω), separated by a medium having
permittivity ε(3)(ω) at a temperature T , is given by the well-
known Lifshitz formula [13]

E(d) = kBT

2π

∞∑
l=0

′
∫ ∞

0
k⊥dk⊥

{
GTM(ξl,k⊥) + GTE(ξl,k⊥)

}
,

(2)

where kB is the Boltzmann constant, and k⊥ is the modulus of
the wave-vector projection of light on the plate. The summation
is performed over the Matsubara frequency ξl = 2πkBT l/h̄.
The prime symbol near the summation sign indicates the
multiplication of the term containing l = 0 by a factor of
1/2. The functions GTM and GTE in (2) are characterized by
two independent polarizations: transverse magnetic (TM) and
transverse electric (TE) modes. They are defined as

GTM(ξl,k⊥) = ln
[
1 − r

(1)
TMr

(2)
TM(iξl,k⊥)e−2dk

(3)
l

]
,

GTE(ξl,k⊥) = ln
[
1 − r

(1)
TEr

(2)
TE(iξl,k⊥)e−2dk

(3)
l

]
,

where k
(n)
l ≡ k

(n)
l (iξl,k⊥) =

√
k2
⊥ + ε(n)(iξl)

ξ 2
l

c2 . In the above
equation, the reflection coefficients for the TM and TE modes
are given by

r
(n)
TM(iξl,k⊥) = ε

(n)
l ql − ε

(3)
l k

(n)
l

ε
(n)
l ql + ε

(3)
l k

(n)
l

, (3)

r
(n)
TE (iξl,k⊥) = ql − k

(n)
l

ql + k
(n)
l

, (4)

where εn
l = ε(iξn). Boström et al. theoretically studied the

Casimir force between a gold plate and a silica plate immersed
in bromobenzene on the basis of the Lifshitz theory [12].
They calculated the Casimir energy from d = 2 nm to 2 μm
and found that the sign of the Casimir force changes at
approximately 3 nm. We used their results in the following
calculations.

The PFA is not valid for a large separation distance between
the gold particle and the silica plate [14]. Thus, we used
the scattering-matrix formulation at absolute zero [15,16] for
d/R > 0.1. In this formula, the Casimir energy is given by

E(d) = h̄

2π

∫ ∞

0
dξ

∞∑
m=−∞

ln detM (m). (5)

Here, the matrix M (m) is given by

[M (m)]αβ

ll′ = δll′ − T α
lmU

αβ

lml′m, (6)

where α,β ∈ {TM,TE}. In the above equation, Tlm and U
αβ

ll′ are
primarily determined by Mie coefficients for the gold particle
and the reflection coefficients defined in (4), respectively (for
full details see Ref. [15]). To numerically evaluate the Casimir
energy, the matrix M (m) must be truncated at a finite lmax.
The required value of lmax increases as d/R decreases. In
contrast to the PFA, the scattering-matrix formulation gives
the accurate Casimir energy for large separations. We chose
lmax = 20 for this study. The difference in the Casimir energy
between lmax = 19 and lmax = 20 at R = 500 nm is less
than 1%.

The sum of the gravitational force and buoyancy acting on
the gold particle is given by

Fg = − 4
3πR3(ρg − ρb)g, (7)

where ρg = 1.932 × 104 kg/m3 and ρb = 1.489 × 103 kg/m3

denote the mass densities of gold and bromobenzene [17], re-
spectively, and g = 9.8 m/s2 is the gravitational acceleration.
As a result, the resultant force F (d) acting on a gold particle of
radius R is given by the sum of the Casimir force, gravitational
force, and buoyancy. We define the potential energy of the gold
particle as

φ(d) = −
∫ d

de

F (z)dz, (8)

where de is the separation distance at the equilibrium
position.

Figure 2 shows the potential energy of a 500-nm-radius
gold particle. A very sharp potential barrier is observed at
approximately 3 nm. The inset shows the enlarged view
near the surface. The separation distance at the equilibrium
position is 82 nm. The absolute value of the Casimir energy
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FIG. 2. (Color online) Potential energy of a 500-nm-radius gold
particle as a function of separation distance between the gold particle
and the silica plate.

rapidly decreases as the separation distance between the gold
particle and the silica plate increases for large separations.
Thus, the contribution of the Casimir energy to the potential
energy decreases for large separations, and the potential energy
linearly increases as the separation distance increases.

The potential energy has a local maximum at approximately
3 nm; this value is rather smaller than the particle radius.
Here we recall that the PFA is valid for separations much
smaller than the particle radius [18]. Thus, the PFA gives a
satisfactory approximation for the potential barrier height of
particles larger than 3 nm in diameter. We later show that this
height mainly determines the escape rate.

Figure 3 shows the levitation height of the gold particle
as a function of particle radius. The Casimir force is linearly
proportional to the particle radius within the PFA, given in
(1), and the gravitational force is proportional to the cube
of the radius. Thus, the levitation height decreases with the
radius. The degree of applicability of the PFA at equilibrium
is accordingly improved with the increase in radius.

III. VERTICAL PROBABILITY DISTRIBUTION
FUNCTION

The most notable thermal effect on the dynamics of a
levitated particle is the Brownian motion caused by random
bombardments of the surrounding molecules in the liquid.
The Brownian motion of a particle in an unbounded space
is characterized by a diffusion constant D. In the large-
time regime, the mean-squared value of the free-particle
displacement that starts at time t = 0 from z = z0 is given by

〈[z(t) − z0]2〉 = 2Dt. (9)
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FIG. 3. (Color online) Dependence of separation distance
between a gold particle and a silica plate at the equilibrium position
on particle radius.

The diffusion constant of a particle in liquid is given by
Einstein’s relation [19]:

D = kBT

6πηR
, (10)

where η is the viscosity of bromobenzene. Using the exper-
imental data [17] η = 1.080 mPa s at 298.15 K we obtain
D = 6.36 × 10−13 m2/s for R = 500 nm.

We assume that a gold particle of mass m is initially located
at the equilibrium position and consider the particle spread
along the vertical axis. To obtain the probability distribution
of location of a particle P (z,t) at time t , we solve the Langevin
equation of Ornstein-Uhlenbeck theory [20] for a position
horizontal to the surface z(t) and a velocity v(t):

dz(t) = v(t)dt, (11)

dv(t) = F (z(t))
m

dt − βv(t)dt + dB(t), (12)

where β is the friction coefficient per mass, and B is the Wiener
process with a variance parameter 2β2D.

The force acting on the gold particle near the equilibrium
position ze ≡ de + R can be expressed by

F (z) = −k(R)(z − ze) + O((z − ze)2), (13)

where k is the effective spring constant and depends on the
particle radius. For instance, k is 2.87 × 10−6 N/m for R =
500 nm. This spring constant is much smaller than that of
a typical AFM cantilever. By linearizing the force near the
equilibrium position, the Langevin equation can be exactly
solved [20,21]. The evolution of the probability distribution in
the short-time regime is approximately given by

P (z,t) ≈
[

2πD

ω2β

{
1 − e−βt

(
2β2

β2
1

sinh2 β1t

2
+ β

β1
sinh β1t + 1

)}]−1/2

× exp

⎡
⎣− (z − ze)2

2D
ω2β

{
1 − e−βt

( 2β2

β2
1

sinh2 β1t

2 + β

β1
sinh β1t + 1

)}
⎤
⎦ , (14)

where ω = √
k/m and β1 =

√
β2 − 4ω2.
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FIG. 4. (Color online) Changes in probability distributions of
finding a 500-nm-radius gold particle at separation distance d . The
solid line is the probability distribution function of a harmonic
potential with a spring constant k = 2.87×10−6 N/m.

As the particle moves away from the equilibrium position,
the nonlinearity of the force must be considered, and the
Langevin equation cannot be solved exactly. Thus, we used the
Monte Carlo method [22] to obtain the probability distribution
P (z,t). The Langevin equation in (12) is discretized as follows:

z(t + �t) = z(t) + v(t)�t, (15)

v(t + �t) = v(t) + F (z(t))
m

�t − βv(t)�t + , (16)

where  is the external Gaussian random force with a variance
β
√

2D�t .
Figure 4 shows the probability distribution of a 500-nm-

radius gold particle in bromobenzene that starts at z(0) = ze

and v(0) = 0, which is obtained by accumulating 106 samples
with �t = 59.3 ns. Since a potential barrier exists near the
surface, the distribution is asymmetric and the gold particle is
more frequently found above the starting position. The solid
line in Fig. 4 shows the distribution by means of the linear
approximation (14) for the force at t = 0.01 s.

IV. ESCAPE RATE

The Casimir energy decreases without limit as the gold
particle approaches a silica plate. Thus, the particle is strongly
attracted to the surface and eventually sticks to it. We
consider the temporal asymptotic behavior of the probability
distribution after long-time-scale evolution. Since the Monte
Carlo method involves significant computational complexity
for long-time simulations, alternatively, we may numerically
solve the Smoluchowski equation [23]. The Smoluchowski
equation, a special case of the single-variable Fokker-Planck
equation, describes one-dimensional Brownian motion of a
particle in a force field F (z) at the high-friction limit, and is
given by

∂P (z,t)

∂t
= −1

ξ

∂

∂z
[F (z)P (z,t)] + D

∂2P (z,t)

∂z2
, (17)

where ξ is the friction constant [20,23]. According to Stokes
law [24], the friction constant can be expressed by

ξ = 6πηR. (18)

Using separation of variables, we are looking for the
solution of the Smoluchowski equation in the following form:

P (z,t) = ϕ(z)e−λt . (19)

The eigenvalue λ is discretized using appropriate boundary
conditions described below. Since an orthonormal basis cannot
be constructed from the function ϕ(z), we define the function

ψn(z) = eφ(z)/2kBT ϕn(z), (20)

where ϕn(z) is an eigenfunction with λn (n = 0,1, ...) [23]. By
normalizing ψn(z), we have an orthonormality relation:∫ zmax

zmin

ψn(z)ψm(z)dz = δnm, (21)

where δnm is the Kronecker symbol. The upper bound zmax

and the lower bound zmin in (21) are defined below. By using
the orthonormality relation, the probability distribution of the
particle starting at the equilibrium position is expressed by

P (z,t) = e−φ(z)/2kBT
∑

n

ψn(z)ψn(ze)e−λnt . (22)

To obtain eigenvalues and eigenfunctions of the Smolu-
chowski equation, we used a finite-element method, in which
the space between zmin and zmax is divided into a set of small
segments. We denote the width of a piece of segment j as �j

and the number of segments as N . The minimum of segment
j is zj , and the maximum is zj + �j . We suppose that the
potential in the j th segment is constant, φj ≡ φ(zj + �j/2),
and the eigenfunction having the eigenvalue λn between zj

and zj + �j is given by

ψj,n(z) = Aj,n cos(knz) + Bj,n sin(knz), (23)

where kn = √
λn/D [25].

The particle experiences a strong attractive force for d < 3
nm. We suppose the particle to be almost completely absorbed
when the separation is 2 nm or below and place an absorbing
wall at z0 = zmin ≡ 2.0 nm + R as the boundary condition.
On the other hand, since the potential energy monotonically
increases above de, we place a reflecting wall at zN = zmax ≡
1.5 μm + R, where the potential energy exceeds the local
maximum near the surface. We observe a gap between φj

and φj+1. Accordingly, the potential energy is discontinuous
at zj+1. The jump conditions for the eigenfunctions at zj+1 [23]
are given by

lim
z→zj+1−0

eφ(z)/2kBT ψn,j (z) = lim
z→zj+1+0

eφ(z)/2kBT ψn,j+1(z),

(24)

lim
z→zj+1−0

e−φ(z)/2kBT ψ ′
n,j (z) = lim

z→zj+1+0
e−φ(z)/2kBT ψ ′

n,j+1(z).

(25)

These equations can be rewritten as

Mj (zj+1,kn)

[
An,j

Bn,j

]
= Mj+1(zj+1,kn)

[
An,j+1

Bn,j+1

]
. (26)
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Here the matrix Mj (z,kn) is defined by

Mj (z,k) =
[

eφj /2kBT cos(kz) eφj /2kBT sin(kz)

−ke−φj /2kBT sin(kz) ke−φj /2kBT cos(kz)

]
.

(27)

The amplitudes (Aj+1,Bj+1)T are determined from (Aj,Bj )T

as[
An,j+1

Bn,j+1

]
= M−1

j+1(zj+1,kn)Mj (zj+1,kn)

[
An,j

Bn,j

]
. (28)

Let us consider the characteristic equation of eigenvalues.
Using the boundary condition that ψn(z0) = 0 at the absorbing
wall, the amplitude (An,N−1,Bn,N−1)T is given by[

An,N−1

Bn,N−1

]
= S(k)

[
C sin knz0

−C cos knz0

]
, (29)

S(kn) ≡ M−1
N−1(zN−1,k)MN−2(zN−1,k)

· · ·M−1
1 (z1,k)M0(z1,k), (30)

where C is later determined by a normalization condition.
Since the boundary condition at the reflecting wall is ψ ′

n(zN ) =
0, the eigenvalue is determined as a root of the characteristic
equation

[S21(k) sin kz0 − S22(k) cos kz0] cos kzN

+ [−S11(k) sin kz0 + S12(k) cos kz0] sin kzN = 0, (31)

where Sij (k) denotes the element in the ith row and j th column
of the matrix S(k). We note that the eigenvalue is determined
independently of the constant C. Finally, C is determined from
the normalization condition

N−1∑
j=0

∫ zj+1

zj

ψ2
n,j (x,kn)dx = 1. (32)

For R = 500 nm, we obtain the minimum eigenvalue λ0 =
7.96 × 10−10 s−1 and the next minimum eigenvalue λ1 = 57.4
s−1 by numerically solving the characteristic equation (31)
with �j = 0.1 nm for z � 800 nm and �j = 10 nm for z >

800 nm. The next to the minimum eigenvalue is significantly
larger than the minimum eigenvalue. Thus, for large t , the
asymptotic probability distribution is expressed as

P (z,t) ≈ e−φ(z)/2kBT ψ0(z)ψ0(ze)e−λ0t . (33)

Figure 5 shows a comparison of the probability distribution
obtained by the Monte Carlo simulation with the approximate
probability distribution (33) at 0.1 s. Although no stationary
solution exists for the Smoluchowski equation in the consid-
ered system, the eigenfunction with the minimum eigenvalue
can be used to express a satisfactory approximate function of
the probability distribution for the long term.

We compare the minimum eigenvalue with the escape rate
given by Kramers’ theory [23,26,27]:

rK = D

2πkBT

√
φ′′(ze)|φ′′(ζmax)|e−φ(ζmax)/kBT , (34)

where ζmax is the position near the surface where the potential
energy has a local maximum. For R = 500 nm, we have
rK = 9.13 × 10−10 s−1, which agrees well with the minimum
eigenvalue λ0 = 7.96 × 10−10 s−1.
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FIG. 5. (Color online) Comparison of the probability distribu-
tions at 0.1 s obtained by Monte Carlo simulation (solid circles) and
the solution of the Fokker-Planck equation using the eigenfunction
with the minimum eigenvalue (solid line).

We address the dependence of the duration of quantum
levitation on the particle radius. According to Kramers’ escape
theory, the escape rate is mainly determined by the height
of the potential barrier φ(ζmax). If the separation distance is
much smaller than the particle radius, the Casimir energy is
proportional to the particle radius. On the other hand, the
gravitational potential is proportional to the cube of the particle
radius. Thus, the potential barrier disappears for large particle
radii. Figure 6 shows that the potential barrier height decreases
above R = 2.3 μm, which indicates a decrease in the duration
of quantum levitation.

We conjecture that the duration of quantum levitation
monotonically decreases below R = 500 nm. To roughly
estimate the duration of quantum levitation for submicron
gold particles, we show in Fig. 7 the escape rates rK (solid
line) obtained by Kramers’ theory and the minimum eigen-
values (solid circles) for 150 � R � 500 nm. The difference
between the escape rates obtained by Kramers’ theory and
by the minimum eigenvalues for the Smoluchowski equation
increases as the radius decreases due to the decrease in the
gaps between the minimum eigenvalues and others. However,
both data sets suggest that the duration exponentially decreases
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FIG. 6. (Color online) Potential barrier height near the silica
surface as a function of particle radius.
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FIG. 7. (Color online) Semi-log plot of the escape rates obtained
by Kramers’ escape theory rK (a solid line) and the minimum
eigenvalue λmin (closed circles). The open circle at R = 150 nm
indicates a value obtained by Monte Carlo simulation.

with particle radius. The open circle in Fig. 7 is the escape rate
obtained by the Monte Carlo simulation for a 150-nm-radius
particle starting from the equilibrium position in which the
particle is removed when the separation distance is below
d = 2 nm. One can see good agreement between the simulated
and Kramers’ results. The corresponding escape rate RK is
estimated to be 0.06 s−1, and the duration of quantum levitation
is approximately estimated as 15 s.

V. EFFECT OF ESCAPE RATE ON HINDERED DIFFUSION

The diffusion constant of the gold particle along the vertical
axis was assumed to be constant in the previous sections.
However, the diffusion constant depends on the separation

hindered diffusion

non hindered diffusion

0.0 0.1 0.2 0.3 0.4

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1.

t s

P s
v
t

FIG. 8. (Color online) Decay of the probability of finding a
levitated particle having a constant diffusion constant (closed circles)
and that having a hindered diffusion constant, which depends on the
position(closed squares), in a semi-log scale.

distance due to the hydrodynamic effect [28–30] and is
expressed by

D(γ )

D∞
= 8 + 14γ + 6γ 2

17 + 21γ + 6γ 2
, (35)

where γ = d/R and D∞ is the diffusion constant of the
unboundedly moving particle. The diffusion constant
decreases as the particle approaches the surface and converges
to (8/17)D∞.

Figure 8 shows the survival probability of finding a levitated
particle Psv(t) at time t without being adsorbed on the silica
plate on a semilogarithmic scale for R = 150 nm, which
is obtained by Monte Carlo simulations. The decay of the
survival probability of a particle with a hindered diffusion
constant is reduced to that of a freely moving particle. Thus,
the escape rate decreases when the hindered diffusion effect is
considered. However, the hindered diffusion constant is limited
between (8/17)D∞ and D∞, and according to Kramers’ escape
theory, the correction factor to the escape rate is not below 8/17.

VI. CONCLUSION

In this study, we addressed the thermal effect on quantum
levitation. In particular, we considered the dependence of the
escape rate on particle radius by three methods: Monte Carlo
simulation, solution of the Smoluchowski equation using a
finite-element method, and calculation by Kramers’ escape
theory.

Monte Carlo simulations presented a change in the height
profile caused by thermal fluctuations of a gold particle
starting at an equilibrium position, which depends on the
particle radius. Since a potential barrier exists near the surface,
the height profile is asymmetric relative to the equilibrium
position. A longer tail is observed above the equilibrium
position. Collisions between a gold particle and bromobenzene
molecules can cause the gold particle to escape from the
equilibrium position over the potential barrier. Since a strong
attractive force exists very close to the surface, the gold particle
eventually sticks to it. Thus, quantum levitation does not
continue always. The duration of quantum levitation strongly
depends on the potential barrier near the surface.

The potential energy of the gold particle unboundedly
decreases as the particle approaches the surface. Thus, a
stationary height profile does not exist. To consider the
asymptotic behavior of the height profile at long times, we
calculated the minimum eigenvalue and its eigenfunction of the
Fokker-Planck equation for Brownian motion in a nonlinear
force field using a finite-element approach. The obtained
eigenvalue for a 500-nm-radius gold particle was considerably
smaller in comparison with the second minimum eigenvalue
and the height profile of a 500-nm-gold particle can be well
expressed in a practical time scale by the eigenfunction with the
minimum eigenvalue. We compared the minimum eigenvalue
with the value obtained by Kramers’ escape theory and showed
good agreement for large particle radii. The primary factor
that determines the escape rate is the Boltzmann factor at
the maximum of the potential barrier, which is e−29 ≈ 10−13

for R = 500 nm. The Boltzmann factor at the maximum of
the potential barrier increases further as the particle radius
increases up to R = 2.4 μm, and thus the escape rate decreases.

052133-6



THERMAL FLUCTUATIONS AND STABILITY OF A . . . PHYSICAL REVIEW E 88, 052133 (2013)

For larger particle radii, the gravitational potential increases
more rapidly than the Casimir energy and results in a decrease
of the potential barrier and an increase in the escape rate.

The potential barrier decreases as the particle radius
decreases below 2.3 μm. Calculations beyond the proximity
approximation [15,16] should obtain accurate escape rates
for smaller particle radii. However, the exponential increase
in the escape rate for decreasing particle radius, which is
observed in this study, would still hold. The adsorption
of a levitated particle onto the surface in the short-time
regime could be observed for particles below 150 nm in
radius.

According to Einstein’s equation for Brownian motion,
the diffusion constant is proportional to the mobility, which
is defined as the ratio of the velocity to the drag force.
Furthermore, according to Stokes law, if a particle can freely
move in a liquid, the mobility is inversely proportional to the
viscosity of the liquid, independent of the position. However,
in a confined system, the drag force changes near a wall
depending on the distance between the moving particle and the
wall. Thus, the diffusion constant also changes. The mobility
decreases near a wall; this effect lengthens the duration
of the quantum levitation. The lifetime of a 500-nm-radius
gold particle is significantly long if hindered diffusion is not
considered. Thus, we conclude that quantum levitation of a
1-μm-diameter gold particle is nearly stable with regard to its
vertical axis position in practical applications. The repulsive

Casimir force cannot fix a levitated particle in a plane parallel
to the silica plate, and a levitated particle exhibits unbounded
Brownian motion in the horizontal plane.

A well-known method to measure the height profile of
Brownian motion is total internal reflection fluorescence
microscopy [31]. A change in distance as small as 1 nm is
detected between a sphere in an aqueous solution and a trans-
parent plate. However, this method may not be available for
the measurement of a levitated particle in bromobenzene above
a silica plate because the refractive index of bromobenzene
is larger than that of silica at visual frequencies. Thus, the
total reflection condition is not satisfied. We must seek other
methods such as confocal tracking [32] and holographic
microscopy [33]. If the height profile of a levitated particle
is accurately measured, the Casimir potential can also be
measured. This is useful for understanding the Casimir force
because the effective spring constant near equilibrium is small
in comparison with a commercial AFM cantilever and high
sensitivity is expected.
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