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Transition state theory and the dynamics of hard disks
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The dynamics of two- and five-disk systems confined in a square has been studied using molecular dynamics
simulations and compared with the predictions of transition state theory. We determine the partition functions
Z and Z‡ of transition state theory using a procedure first used by Salsburg and Wood for the pressure. Our
simulations show this procedure and transition state theory are in excellent agreement with the simulations. A
generalization of the transition state theory to the case of a large number of disks N is made and shown to be in
full agreement with simulations of disks moving in a narrow channel. The same procedure for hard spheres in
three dimensions leads to the Vogel-Fulcher-Tammann formula for their alpha relaxation time.
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I. INTRODUCTION

The long relaxation times seen in supercooled liquids have
long been a challenge to understand [1,2]. Glassy behavior has
been extensively modeled by studying hard spheres in three
dimensions and hard disks in two dimensions. Some of this
work is reviewed in Ref. [3]. In this paper we study small
systems of disks, in particular two and five disks confined in a
square, first using event-driven molecular dynamics and then
by means of transition state theory [4,5]. In the final section
of the paper we use the insights gained from studying small
systems to speculate about the behavior of large numbers of
hard spheres or disks.

It is convenient from the outset to introduce the following
terminology. The transition state is the neck in configuration
space through which the system has to pass to escape its
initial state. A configuration of the N disks is defined by
the Nd coordinates of the disk centers (for disks, d = 2);
every configuration belongs to a state, which is the set of
configurations that can be reached from it without violating the
no-overlap constraint appropriate for hard disks and spheres.
The transition state theory will be found to work well when the
neck is narrow, that is, when there are long relaxation times in
the system.

We shall illustrate the process of escape from the initial
configuration for two simple systems, consisting of either two
or five disks confined in a square. For these simple systems
we can make explicit the narrow necks in configuration
space through which the system can escape from its initial
configuration near an inherent state [6]. We shall show that
transition state theory provides a quantitative account of the
slow relaxational processes in these small systems. The theory
requires that one evaluates a variant of the partition function
of the system at the neck (Z‡), and to do this we adopt the
procedure first used by Salsburg and Wood [7] to calculate the
pressure of hard spheres near their largest packing density.
We have checked its accuracy for these small systems by
comparing its predictions for the pressure of the system
and the relaxation times with results obtained directly from
event-driven molecular dynamics.

Of course, one is only interested in small systems of
disks because of the light their study might shine on large
systems of hard disks or spheres. We shall show that as N , the
number of disks or spheres, becomes large, then, under certain

circumstances, our transition state formula for the relaxation
time in the system goes over to the well-known Vogel-Fulcher-
Tammann (VFT) equation. These circumstances are evidently
realized in at least one case, that of disks moving in a narrow
channel [8–10]. The agreement is quantitative in this case [11].
For hard spheres in three dimensions their alpha relaxation
time can be fitted by the VFT form [12], but with the divergence
occurring at a density below that of random close packing.
This matter is discussed in Sec. V, where we then go on to
give a speculative extension to our procedure, which leads to
a generalized VFT formula where the divergence takes place
at a density similar to that of random close packing.

Throughout our study of two and five disks confined in a
square, L denotes the length of one side of the square and
r denotes the radius of the disks. The packing fraction φ is
then defined as the fraction of the area of the square that is
covered by the disks, φ = Nπr2/L2. The two-disk system
is studied in Sec. II. In Sec. III the inherent states and the necks
in configuration space which separate them are discussed for
the five-disk system. In Sec. IV we compare the results of our
event-driven molecular dynamics simulations for five disks
with the predictions of transition state theory.

II. THE TWO-DISK SYSTEM

Two disks confined to a square have been considered previ-
ously by Speedy [13]. For r < L/4 (or φ < φNeck � 0.3927)
the disks can pass each other, though this becomes more
difficult as r → L/4 (see Fig. 1). Awazu [14] studied an
autocorrelation function which developed a plateau in this
limit, and which he argued showed similarities with the α and
β relaxation processes found in glasses. For larger values of
r , the configuration space (disregarding the identity of the
disks) is broken into two states. For r → L/(2 + √

2 ), or
φ → φJ � 0.5390, the maximum density possible, the disk
centers lie on the same diagonal of the square. These (two)
limiting configurations are the inherent structures introduced
in Ref. [6].

Speedy [13] has considered the thermodynamics of this
system and, in particular, finds weakly nonanalytic contribu-
tions to the thermodynamic quantities, such as the pressure,
at r = L/4. Speedy used transition state theory to determine
the alpha relaxation time of the system, which according to
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FIG. 1. Mutually inaccessible configurations of a system of two
disks, illustrated for r = 0.27L, which is greater than the critical
value r = 0.25L below which the disks can pass each other.

Awazu is the time τ to flip between the two configurations.
The origin of this behavior can be obtained from transition
state theory [4,5]. In this well-studied approximation, which
works best when the transition rate over a barrier is small, the
transition rate R between two states varies as

R = 1/τ ∼ v
Z‡

Z
, (1)

where v is a typical particle speed and Z‡ is the partition
function evaluated at the top of the barrier along the trajectory
which separates the states; see Ref. [5] for a full description
of the transition state formalism and the definition of Z‡.
In the case of two disks passing this means that instead of
the full partition function integral over (x1,y1) and (x2,y2),
there is a constraint that y1 = y2 ≡ y, so it is effectively a
three-dimensional integral. The integral over y gives a trivial
factor (L − 2r), and the remaining two integrals give a factor
(1 − φ/φNeck)2 in the limit φ → φNeck by the argument used by
Salsburg and Wood [7]. Z itself is essentially just a constant:
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FIG. 2. Molecular dynamics transition rates (1/τ ) between
metastable “glassy” states of the two-disk system, as the packing
fraction, φ, approaches the critical value φNeck � 0.3927 correspond-
ing to r = 0.25L. The gradient of the straight-line fit to the last
five points is −1.986, which is close to the value −2 predicted by
transition state theory.

FIG. 3. (a) Representative configurations of the “crystalline”
(left) and “glassy” (right) states of a five-disk system, connected
by a transition state (center), shown here with the largest radius,
r � 0.1863L, for which the transition between crystalline and glassy
states is possible; (b) two frozen glass states (left and right) and the
transition state (center) connecting them, shown with the maximum
radius, r � 0.1942L, for which a transition between glass states is
possible.

it has a very mild singularity, Zreg + C(1 − φNeck/φ)5/2,
when the packing fraction φ approaches φNeck from above
[13]. Transition state theory thus predicts a slope of −2 in
Fig. 2 for the dependence of the relaxation time on packing
fraction as φ → φNeck. (The full integrals for Z‡ and Z

were explicitly evaluated by Speedy [13].) Our event-driven
molecular dynamics results (Fig. 2) are consistent with the
transition state theory prediction that τ ∼ 1/(1 − φ/φNeck)α ,
with α = 2, for the case of two disks in a square box, in the
limit φ → φNeck.

III. CONFIGURATIONS OF THE FIVE-DISK SYSTEM

The configuration space of five disks confined to a square
has been analyzed previously: Bowles and Speedy [15] have
discussed the thermodynamics and dynamics; Hinow [16] has
studied the jammed states of this system; and Carlsson et al.
[17] have given a detailed analysis of how the topology of
the configuration space depends on r . We refer to Fig. 3 for
configurations of the disks at two critical values of the radius.

Below the fluid-crystal critical point, i.e., for r < rcg �
0.1863L, the system is fluid (any pair of disks can exchange
position), but for slightly greater values of r the configuration
space is fractured into two states: a “crystal” state in which one
disk is surrounded by the four others, confined near the corners
of the box, and a “glass” state in which all five disks lie close
to the walls of the box and are unable to change their order.
Above r = rgg � 0.1942L, the glass state fractures further into
four “frozen” glass states of the kind illustrated in Fig. 3(b),
in which one disk is confined near a corner of the box. Above
r = rg � 0.1964L, the system can exist only in the crystalline
state.

It may be noticed that rcg � 0.1863L differs significantly
from the value 0.1871 stated by Carlsson et al. [17]. We have
been unable to find a path between glasslike and crystal-like
metastable states that passes via the configuration proposed
in their paper. We find, moreover, that their proposed state
with r � 0.1871L is not a stationary point of the softened
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FIG. 4. The dead-end configuration at r � 0.1871L, which has
been incorrectly identified as a saddle point in Refs. [16,17].

potential energy function E introduced in Ref. [17]: instead,
it is a minimum of |∇E|2 at which ∇E �= 0. It is a dead-end
configuration, illustrated in Fig. 4: it can be reached from the
crystal by the steps in the first two panels of Fig. 3(a), but
progress to the glass state of the third panel is not possible
as the central disk cannot escape to the edge of the square.
On the other hand, we can show that our own configuration
at r � 0.1863L lies on a path between crystal-like and glass-
like states and also that this configuration corresponds very
precisely to an ordinary saddle point of E. Such a reaction
path is illustrated by an animation provided in the supplement
to this paper [18].

IV. DYNAMICS OF THE FIVE-DISK SYSTEM

As for the case of two disks, an event-driven molecular
dynamics algorithm [19] was used to simulate the motion of
the five-disk system and calculate the mean time of passage
between metastable states. The initial velocities of the disks
were drawn from the Maxwell-Boltzmann distribution.

A very simple method was used in our work to identify
when a transition had taken place. For the transition from
crystal to glass states, the simulation is started in a typical
“crystal” configuration with one disk [Fig. 3(a), shaded] near
to the center of the box. The shaded disk’s first collision with
any wall is an unambiguous sign that the transition to the glass
state has occurred. Transitions between metastable glass states
can be identified in a similar way. From Fig. 3(b), we can see
that a transition has occurred if a disk [e.g., the shaded disk
in Fig. 3(b)] makes a collision with a wall other than the one
it was close to in the initial configuration. For each kind of
transition, the time of first occurrence of the diagnostic event
is recorded and the simulation restarted with random initial
velocities.

Transition state theory requires us to evaluate Z‡ and Z. We
shall use the procedure introduced by Salsburg and Wood [7] to
determine these as it becomes essentially exact as the density
approaches its maximum value (called φJ ) appropriate for a
given inherent state. Thus for the crystal state rc = 0.2071L,
so φJ = 5πr2

c /L2 ≈ 0.6738. Let l = (V/N )1/d denote the
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FIG. 5. (Color online) Transition times between pairs of
metastable states. Results from molecular dynamics are compared
to the predictions of transition state theory for transitions between
(1) two glass states just below the “glass-glass” transition, where
φJ = 0.6061 and φNeck = 0.5925; and (2) the crystalline and glass
states, where φJ = 0.6738 and φNeck = 0.5453. In each case N = 5
and d = 2. The error bars for the molecular dynamics results are
comparable with the size of the data points.

average spacing between the centers of the particles, where
V = Ld . The Salsburg-Wood approximation is that as
φ → φJ , Z ∼ lNd (1 − φ/φJ )Nd , where here N = 5, d = 2.
Similarly, as φ → φNeck from below, Z‡ ∼ lNd−1

(1 − φ/φNeck)Nd−1, where φNeck = 0.5453. Hence, according
to transition state theory, the transition rate R from the crystal
to the glass state should vary as

R = 1/τ ∼ v

l

(1 − φ/φNeck)Nd−1

(1 − φ/φJ )Nd
. (2)

If the reaction coordinate is fixed at the value it takes in the
transition state, the hard-disk constraints define a configuration
space with nine spatial dimensions in our two-dimensional
hard disk system. Accordingly, the constrained partition
function should be expected to vary as (1 − φ/φNeck)9 using
the procedure of Salsburg and Wood [7].

Our simulations to test this for both the glass glass transition
and the crystal glass transition are plotted in Fig. 5. The
agreement is excellent as φ → φNeck.

To further examine the accuracy of the Salsburg-Wood
procedure for calculating Z and Z‡, we have determined from
our molecular dynamics simulations the pressure of the system
in the glass states. The temperature was obtained from the
average kinetic energy, using kBT = m〈v2〉/2. The results are
shown in Fig. 6. The Salsburg-Wood approximation for Z

predicts that the pressure

PV

NkBT
= 1 + d

φ

φJ − φ
, (3)

on using the relation P = kBT ∂ ln Z/∂V . The straight line
in Fig. 6 represents the prediction of the Salsburg-Wood
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FIG. 6. Pressure in the glass states. For the glass states, the
maximum possible packing fraction is at φJ = 0.6061. The packing
fraction at the neck φNeck = 0.5925 separates the two kinds of glassy
state and is marked by the dashed vertical line. The glass phase exists
only down to a packing fraction 0.5432 as a stable state and only data
obtained above this value are included. The straight line is Eq. (3).

calculation for the pressure, i.e., Eq. (3), and is in perfect
agreement with the data as φ → φJ . Notice that at the neck,
φ = 0.5925, which is indicated by the vertical dashed line in
Fig. 6, the singularities are so mild as to be invisible, which
means it is adequate to use in Eq. (2) the form of Z valid near
φJ , even for φ close to φNeck. (Also, the expression for τ is
dominated by the form of Z‡, which is rapidly approaching
zero as φ → φNeck, while Z is there only slowly varying.)

V. LARGE NUMBERS OF SPHERES OR DISKS

In our studies of two and five disks we found that a transition
between states in a region containing N particles generally
requires coordinated motion of all the N particles in order
to squeeze through the neck in the phase space. The rate at
which this will occur was given by the transition state formula
of Eq. (2). In this section we examine the consequences
of assuming that the formula can be extended to systems
containing a large number N of spheres or disks.

We shall first suppose that one is at a packing fraction below
that of the neck out of an inherent state whose largest density
is at a packing fraction φJ and that φNeck is the highest packing
fraction below φJ at which a neck first opens to allow escape
from the inherent state, and that one is in a configuration close
to that of the inherent state. Furthermore we shall assume that
when N is large,

φJ − φNeck = aφJ /N, (4)

where a is a positive constant of O(1). The assumption behind
Eq. (4) is that escape from a jammed state will become possible
if the volume of the system is increased by an amount of the
order of the volume of a single sphere. With this assumption,

and taking N to be large, Eq. (2) reduces to

1

τ
= 1

τ0

[
1 − aφ

(1 − φ/φJ )φJ N

]Nd−1

, (5)

where τ0 = l(1 − φ/φJ )/v denotes the typical time between
collisions of the disks. Then as N → ∞,

τ = τ0 exp

[
adφ

(φJ − φ)

]
, (6)

which is the Vogel-Fulcher-Tammann formula.
Given a particular configuration of the N particles with a

packing fraction φ we need to know the packing fraction φJ

of the nearby inherent state close to the initial configuration.
In other words, we need the Stillinger map to the jammed
inherent states [10,20]. For the problem of disks moving in a
long narrow channel such a map was explicitly constructed in
Ref. [10] and the function φJ (φ) exhibited. Except for quite
small values of φ, φJ (φ) is essentially a constant independent
of φ and close to the largest packing fraction possible in the
system. The map is similar to what would have been obtained
in an extremely rapid compression. The relaxation times τ in
this narrow channel system are consistent with Eq. (6) [8]. It
has proved possible to identify the inherent states and the necks
which have to be squeezed through to escape from the vicinity
of the inherent states, and as a consequence the value of the
coefficient a can be explicitly determined for this system [11].

In dimensions d > 1 much less can be said with certainty.
Fits of the alpha relaxation time to the VFT formula for three-
dimensional hard spheres were made by Brambilla et al. [12],
and a fit was achieved with a value of φJ ≈ 0.615. One might
have expected that the appropriate value of φJ if the map from
φ to the inherent state is essentially a rapid compression would
be that of random close packing, φrcp ≈ 0.64. The result that
φJ ≈ 0.615 was obtained for studies of τ at φ � 0.6, and it
might require data at larger values of φ to produce φJ values
closer to φrcp.

We have been assuming that the Stillinger map in two and
three dimensions, φJ (φ), is essentially a constant independent
of φ. This lack of any φ dependence of φJ (φ) seems unlikely
according to the studies in Refs. [21,22]. Suppose that instead
the Stillinger map in two and three dimensions takes the form,
for φ close to φrcp,

φJ (φ) ≈ φ + B(φrcp − φ)δ, (7)

with B > 0. To test this supposition, one would need to start the
rapid compression from the well-equilibrated fluid system at
a packing fraction near φrcp. Producing this initial state would
be difficult. If Eq. (7) is valid, it would lead to the following
expression for the alpha relaxation time:

τα(φ) = τ0 exp

[
A

(φrcp − φ)δ

]
. (8)

In Ref. [12], a good fit was obtained with δ = 2 and a value
for φrcp ≈ 0.64, a commonly quoted value.

In words, Eq. (7) states that if one starts from the
equilibrated system at a packing fraction φ close to φrcp, then
the rapid compression (or the Stillinger map) finds a jammed
state whose packing fraction φJ differs from φ only by a
quantity of order (φrcp − φ)δ , which is small when δ > 1. The
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physical implication is that equilibrated systems at such high
densities are always close to a jammed state. However, Eq. (7)
also assumes that φrcp is a well-defined density, and this is
contentious [23]. Notice that our difficulties in using Eq. (6)
stem from just not knowing the form of the Stillinger map
φJ (φ) for two- and three-dimensional systems. It is possible
that it takes a form that would leave τα finite for all φ less
than that of the maximum density. In this situation it could
be that for φ well below φrcpτα might appear to be diverging
as φ → φrcp, but if studies could be performed nearer φrcp the
relaxation times would be very long but finite.

In conclusion we have shown that the long relaxation times
seen in small systems of two and five disks confined in a square
are due to squeezing through necks in configuration space, and
can be understood quantitatively with the aid of transition state
theory. We have suggested that a similar mechanism might be
relevant to hard spheres in higher dimensions and could lead
either to the VFT formula or possibly a generalization of it.
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