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In lattice systems, the effects of optical phonons on heat transport are usually neglected due to their relatively
small group velocities compared with acoustic phonons, or even assumed to be negative because introducing
optical phonons may simultaneously reduce the group velocities of acoustic phonons. In order to well understand
the role played by optical phonons, we propose a one-dimensional anharmonic lattice model with alternating
interactions, where the optical phonons can be conveniently tuned. We find that in contrast to previous studies,
the optical phonons (in coordination with the nonlinearities) can enhance heat transport in the thermodynamical
limit, suggesting that optical phonons can also play an active role. The underlying mechanism is related to the
effects of two kinds of nonlinear excitations, i.e., the optical and the gap discrete breathers (DBs). These DBs
release energy and in turn facilitate heat transport.
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I. INTRODUCTION

In solid-state physics, the optical phonons are usually
believed not to contribute to thermal conduction for their
relatively small group velocities compared with acoustic
phonons [1]. For this reason the effects of optical phonons
are often neglected [2] or even suggested to be negative [3].
However, it should be noted that such a belief is based on
the analysis to linear lattices with (approximated) harmonic
interactions; anharmonic (or nonlinear) interactions may result
in qualitatively different properties. For example, a cubic
anharmonicity can cause an optical phonon to split into two
acoustic phonons [4] and thereby contribute to heat transport.
In fact, recently many exceptions to the mentioned belief
have been found in both experimental and numerical studies
[5–11]; e.g., Mittal and Mazumder [8] have showed that
optical phonons contribute significantly to thermal transport in
thin silicon films. Shiomi and Maruyama [9] have performed
molecular dynamics simulations of carbon nanotubes; they
found the great contribution of optical phonons to the observed
non-Fourier heat conduction. But unfortunately, in anharmonic
lattices, the mechanism of the interactions between optical
phonons and heat transport is still unclear.

To investigate this problem theoretically, such an anhar-
monic lattice model is necessary: its spectra contains the
optical mode on one hand, and its heat transport properties
should be easy to investigate on the other hand. A natural can-
didate satisfying the first requirement is the one-dimensional
(1D) diatomic lattice with the Fermi-Pasta-Ulam-β (FPU-β)
interparticle interaction, where the mass ratio of the light
particles to the heavy particles, denoted by r , can be used as a
control parameter. However, the heat conduction properties of
the diatomic FPU-β lattice is hard to access numerically. In this
respect, Dhar and Saito [12,13] have performed simulations for
some r values. Their results suggest that the heat conductivity
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κ may diverge with the system size L as κ ∼ Lα (where α is
a constant), which is in agreement with the generally believed
divergence in 1D momentum conserving lattices with sym-
metric interactions [13–19]. (For 1D momentum conserving
lattices with asymmetric interactions, refer to recent progress
in Ref. [20].) They have also argued that the divergent exponent
α is independent on the mass ratio r and showed that it is about
1/3, the same as that in monatomic FPU-β lattices [12,13].
This argument implies that introducing the optical phonons
does not change the value of α and thus does not change the
heat transport properties significantly. However, it is worth
noting that in their studies, all the reported results of κ are
for r values that are very close to 1. For small r values, they
pointed out that the temperature profile is ill-behaved, implying
that there is a serious thermalization problem in this system.
Recently, an effort [21] to understand this thermalization
problem was made in diatomic harmonic lattices by noting that
in any given normal mode, the mean kinetic energy of a particle
depends on its mass. In this study, certain stochasticity is added
to the dynamics, and it is found that the thermalization problem
would be cured in the thermodynamic limit. Obviously, this
cannot be the case in FPU-β lattices where the dynamics is
completely deterministic.

Therefore, the diatomic lattice is not an ideal model to
investigate the role the optical phonons may play in heat
transport because of the thermalization problem. In order to
overcome this difficulty, in this paper we propose a variant
lattice, i.e., the lattice with alternating interactions instead.
This system not only has tunable phonons, but, as we will show
in the following, also is free of the thermalization problem.
These advantages are very favorable to our aim here.

In addition to these advantages, we also note that the lattice
model with alternating interactions has a linear phonon spec-
trum, which is very similar to that in diatomic lattices [shown
in Sec. II and Fig. 1(b)]. Such a similarity may lead us to expect
that both of them would follow a similar heat conduction
behavior as well. Therefore, studying the heat conduction
properties in one of the systems can provide insights into that
in another system. Indeed, the investigations of localization

052128-11539-3755/2013/88(5)/052128(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.052128


DAXING XIONG, YONG ZHANG, AND HONG ZHAO PHYSICAL REVIEW E 88, 052128 (2013)

FIG. 1. (Color online) (a) The 1D lattice model with alternating
interactions. The interaction strength is denoted as k1 and k2 with
k1 � k2; (b) the linear phonon dispersion relation of this model for
several r (r = k1/k2).

modes in lattices with graded mass and graded interaction
have obtained the equivalent results, which then supports our
noting here [22]. Besides, we would like to mention that the
alternating lattice is also associated with some real systems,
such as the hydrogen-bonded chains with alternating intra-
and intermolecular covalent bonding interactions [23], the
alternating bond Ising chains (having a nonuniversal critical
dynamics by introducing the bonds alternating) [24], and the
supperlattices (can be viewed as chains with regularly varying
exchange interactions) [25]. In particular, it can model the
carbon nanotubes with bond length alternation, since the bond
force constant depends on the length. Recently, the thermal
conductivity in nanotubes with bond length alternation has
been investigated by molecular dynamics and crystal orbital
analysis [26]. It has been found that the bond alternation
can strongly modify the thermal conductivity in the armchair
nanotubes.

With this proposed lattice, we shall carefully examine the
heat conduction properties, with the aim to present a strong un-
derstanding of the role played by optical phonons. The rest of
this article is organized as follows: In Sec. II we shall describe
the model, provide its phonon spectra, and analyze why it can
avoid the thermalization problem. Section III will present the
results of heat conduction. We shall show the divergence of
the heat conductivity with the system size and how the heat
conductivity is enhanced by introducing optical phonons.
Section IV is focused on the underlying mechanism for the
enhancement. We shall relate it to the properties of discrete
breathers. Finally, our conclusions will be summarized in
Sec. V.

II. MODELS

We consider the 1D lattice model shown schematically in
Fig. 1(a). Compared with the diatomic lattice with alternating
mass, the model alternates the interactions with coupling
strengths k1 and k2 instead. We assume k1 � k2 here. The
Hamiltonian of this lattice with L (L being even) particles can

be represented by

H =
L/2∑
j=1

[
p2

2j−1

2μ
+ p2

2j

2μ
+ k1V (x2j − x2j−1)

+ k2V (x2j+1 − x2j )

]
, (1)

where xj is the displacement of the j th particle from its
equilibrium position and pj its momentum. The mass μ is
set to be unit. The interparticle interaction that we mainly
focus on is of the FPU-β type; i.e., V (x) = 1

2x2 + 1
4x4. For

demonstrating that the thermalization problem is ubiquitous
for diatomic lattices regardless of the types of interactions, the
Toda potential [V (x) = exp(−x) + x − 1] is also considered
for comparison. Similar to the mass ratio of the diatomic
lattice, a crucial control parameter of this lattice is the
coupling ratio r , which specifies the comparative strength
of two adjacent couplings. We denote it as r = k1/k2 and
assume k1 + k2 = 2, then r = 1 corresponds to the monatomic
lattice.

To show why such a lattice model is considered, let us see its
linear phonon spectra first. Making the harmonic approxima-
tion of the interactions in Eq. (1) and according to the Newton’s
law we have ẍ2j−1 = k1(x2j − x2j−1) − k2(x2j−1 − x2j−2) and
ẍ2j = k2(x2j+1 − x2j ) − k1(x2j − x2j−1). To solve these equa-
tions, usually the normal mode solutions (both particles vibrate
with the same frequency) of the form x2j−1 = Ae[iωq t−iq(2j−1)]

and x2j = Be[iωq t−iq(2j )] are supposed, where q is the wave
number and ωq is the corresponding frequency. Combining
the above equations, we get(

k1 + k2 − ω2
q

)
A − [k2e

−iq + k1e
iq]B = 0; (2)

and

−[k1e
−iq + k2e

iq]A + (
k1 + k2 − ω2

q

)
B = 0. (3)

Equations (2) and (3) have nontrivial solutions only if the
determinant of the coefficient matrix is zero. This yields two
roots,

ω±
q = [

k1 + k2 ± (
k2

1 + k2
2 + 2k1k2 cos 2q

) 1
2
] 1

2 , (4)

which determines the linear phonon spectra of this lattice.
Combining k1 + k2 = 2, we are then able to plot the phonon
spectra for a fixed r . The results of the phonon spectrum for
several r values are summarized in Fig. 1(b), from which a
phonon spectra similar to the diatomic lattice can be clearly
seen, i.e., for a given r (r �= 1), the spectra contains an acoustic
branch (ω−

q ) and an optical branch (ω+
q ) with a gap bridging

them; the width of the gap is determined by r , a larger r

indicates a wider gap and leads to a smaller group velocity of
the acoustic branch.

Next, let us discuss why the thermalization problem is
avoided in this lattice. For this purpose we first show the
temperature profiles for both lattice models with alternating
masses (the diatomic lattices) and alternating interactions.
Four typical systems with interactions of FPU-β and Toda
types, respectively, are mainly considered here. To produce
each temperature profile, the Nose-Hoover heat baths [27] with
temperatures T+ = 3.0 and T− = 2.0 are coupled to two left-
and rightmost particles, and the velocity-Verlet algorithm [28]
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FIG. 2. (Color online) The temperature profile for the diatomic
lattice [(a) and (b)] and the lattice with alternating interactions [(c) and
(d)] with system size L = 240. For each lattice the mass (coupling)
ratio r is 0.25. In (a) and (c) the interparticle interactions take the
FPU-β type; in (b) and (d) they take the Toda type.

with a time step 0.005 is used to evolve the system. After the
system is evolved for a long enough time, we then examine
the temperature distribution along the lattice. The results for a
fixed mass (coupling) ratio r = 0.25 are summarized in Fig. 2,
from which a more well-behaved temperature profile for the
lattices with alternating interactions than the diatomic lattices,
regardless of the interaction types, can be clearly seen. It
is worth mentioning that such an advantage has also been
verified for other mass (coupling) ratios, suggesting that the
thermalization problem has been successfully avoided.

Then we examine the normal modes for both lattices,
aiming at tracing the origin of the thermalization problem.
Such a consideration is based on the understanding from
Ref. [21] that it is the dependence of the mean kinetic energy
of a particle on normal modes inducing the thermalization
problem. With this in mind we shall particularly focus on
modes in the q → 0 and q → π/2 limits, since they represent
the limiting behaviors of particles’ vibrations. We consider the
diatomic lattice first. Supposing x2j−1 = Ae[iωq t−iq(2j−1)] and
x2j = Be[iωq t−iq(2j )] as the normal mode solutions, then, under
the first condition q → 0 we have A/B = 1 for acoustic modes
and A/B = −1 for optical modes, where B (A) represents the
vibration amplitude of the particle 2j (2j − 1) [1]. This result
means that for q = 0 the adjacent particles vibrate in phase for
acoustic modes but out of phase for optical modes. Thus, the
reason for their name as acoustic mode and optical mode is
clear. Under the second condition q → π/2, we get A/B = 0
(B/A = 0) for acoustic (optical) modes. Such a result means
that for q = π/2, only one of the adjacent particles can move
for both kinds of modes. Now according to the understanding
[21], the reason for the thermalization problem in the diatomic
lattices can be understandable: the modes that only one of
the adjacent particles moves are generally existing in these
systems, which may lead to a large difference of the mean
kinetic energy between the adjacent particles, and thus results
in the ill-behaved temperature profile.

Now let us turn to the lattice with alternating interactions.
Under the first condition q → 0 and according to Eq. (4)
we have ω−

q = 0 and ω+
q = √

2(k1 + k2). Substituting them
into Eq. (2) or (3) we get A/B = 1 (A/B = −1) for acoustic
(optical) modes, which is similar to that in diatomic lattices.

While for the second condition q → π/2 the situation is quite
different. Following the same analysis we have A/B = −i

(A/B = i) for acoustic (optical) modes. This result means
that for q = π/2 the adjacent particles vibrate with a phase
difference of ±π/2, in contrast to the fact that only one of
the adjacent particles moves in diatomic lattices. Then based
on the understanding from Ref. [21], a large difference of the
mean kinetic energy between the adjacent particles may not
occur, thus, the thermalization problem is avoided.

Combining the above analysis, now the reason for propos-
ing the lattice model with alternating interactions here is
obvious: it not only has a linear phonon spectra with tunable
phonons similar to that in diatomic lattice but also is free of
the thermalization problem. Thus, in the following we shall
make use of this lattice to study the heat conduction properties
for FPU-β system, exploring the role the optical phonons may
play in heat transport.

III. HEAT CONDUCTION

We employ the reverse nonequilibrium molecular dynamics
(RNEMD) method to study the heat conduction properties
of this system. This approach has been first proposed by
Müller-Plathe [29] for monoatomic fluids and then extended
by Bedrov et al. [30] to be applicable to molecular fluids
with internal constraints. The vasp [31,32] and lammps [33]
code modified to the RNEMD method is reported later. For
the method applying to 1D lattice systems, we have recently
presented a detailed implementation [19].

To adopt the RNEMD method, the heat flux is imposed by
dividing the lattice into sections of equal size and exchanging
kinetic energy (velocity swapping here) between the hot
and cold sections. This exchange then in turn results in
the temperature gradient. Compared with the usual method
that directly brings the two ends of the lattice in contact
with two heat baths at different temperatures to impose
the heat flux, the RNEMD method has its advantages: it
can suppress the boundary effects by applying the periodic
boundary conditions, and thus leads to a faster convergence to
the stationary state. This advantage has been well verified in
our previous work [19].

We start the simulations with a fully thermalized lattice at a
temperature T = 2.5. For compatibility with this temperature,
we take the exchange frequency to be 0.1 in adopting the
RNEMD method. We employ the velocity-Verlet algorithm
[28] with a time step of 0.005 to evolve the system. After the
nonequilibrium stationary state has been established, we then
examine the temperature profiles. As an example, Fig. 3(a)
shows the typical temperature profile with system size L =
4992 for r = 0.25, from which a well-behaved temperature
profile can be clearly seen. Obviously, the thermalization
problem is absent here. We note that such a well-behaved
temperature has also been verified for other r values. Based on
this fact, we are able to measure the heat flux and finally obtain
the heat conductivity according to Fourier’s law. To measure
the heat flux, usually a transient stage of time no less than 106,
which has been verified to be long enough for reaching the
stationary state, is discarded; then the next evolution of time
107 is performed for the time average. We have also verified
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FIG. 3. (Color online) (a) The temperature profile for the lattice
with alternating interactions for coupling ratio r = 0.25 and system
size L = 4992. Here the RNEMD method is used to produce such a
profile; (b) the heat conductivity κ versus L for r = 1 and r = 0.25,
where the dashed (dotted) line is for the best fitting of κ ∼ Lα , sug-
gesting that α = 0.325 ± 0.002 for r = 1 (dotted) (see also Ref. [19])
and α = 0.408 ± 0.002 for r = 0.25 (dashed), respectively. Note that
in (b) the error bars (not shown) are smaller than the symbol size.

that our results do not significantly depend on the particular
simulation details taken here.

Having derived the heat conductivity κ , we are then
able to examine the size dependence of κ . The result for
r = 0.25 is shown in Fig. 3(b), from which κ ∼ Lα can
be clearly recognized; it suggests α = 0.408 ± 0.002. This
result is in agreement with the power-law divergent behavior
of heat conductivity in 1D momentum conserving lattices
with symmetric interactions [14,15]. For comparison, the
dependence of α on L for r = 1, the monatomic FPU-β lattice,
is also plotted in Fig. 3(b); it suggests α = 0.325 ± 0.002 (see
Ref. [19]). Combing both results, we find that although the
value of κ for r = 0.25 is smaller than that for r = 1 at a
small L, it will finally overtake due to having a larger α.
The size to see such a reversing is around L ∼ 104–105. Since
the main difference between r = 1 and r = 0.25 is whether the
optical phonons are introduced, a larger α implies that optical
phonons can enhance heat transport in the thermodynamical
limit, i.e., L → ∞. The small size effects of κ may mainly be
induced by the simultaneous reduction of the group velocity
of acoustic phonons when the optical phonons are introduced
[see Fig. 1(b)].

Do other r values lead to the above picture? To answer this
question we carefully examine the results of α(r), which are
summarized in Fig. 4. Therein two data points are extracted
from Fig. 3(b) while others are calculated additionally in
the same way. From Fig. 4 one can see that as r decreases
from 1 to 0, α increases first, reaches its maximum value
αmax ≈ 0.4 at rtr = 0.25, then decreases down to α ≈ 1/3
for r → 0. Thus, compared with r = 1, α can be generally
enhanced for r �= 1, but this enhancement is nonmonotonic; it
will disappear for r → 0. The result for r → 0 is reasonable
because r = 0 suggests k1 � k2, which indicates that one can

FIG. 4. (Color online) The dependence of α on the coupling ratio
r . The vertical dashed line indicates rtr = 0.25. Error bars give the
standard error for evaluating α by linearly fitting ln κ versus ln L.

treat the adjacent particles with coupling k2 as a whole, hence
the system with r → 0 is equivalent to a monatomic FPU-β
lattice with coupling k1 only, then α ≈ 1/3. Interestingly,
in the intermediate range of r , α changes continuously and
nonmonatomically with a turning point at rtr = 0.25, which
is in clear contrast to the argument [12] that even the optical
phonons are introduced, α is the same as that in 1D monatomic
FPU-β lattices without optical phonons.

IV. DISCRETE BREATHERS

Now we understand that optical phonons can also enhance
heat transport. In this section we discuss its mechanism.
From our current knowledge on the mechanism of heat
transport properties in monatomic FPU-β lattices [19], we
shall relate it to the properties of discrete breathers (DBs) [34].
DBs have been shown to have great contribution to heat
conduction, i.e., the properties of α, in 1D rotator lattices [35]
and 1D FPU-β lattices with both nearest-neighbor coupling
and next-nearest-neighbor coupling [19]. Nevertheless, these
studies are concerned with the monatomic lattices whose linear
phonon spectra containing only acoustic modes. When the
diatomic lattices or the lattices with alternating interactions
where the linear phonon spectra contains both acoustic modes
and optical modes are taken into account, the situation may
be quite different. The DBs properties studied in diatomic
lattices [36–46] indeed support this difference, i.e., a new kind
of DBs, the gap DBs with frequencies lying in the gap between
acoustic modes and optical modes can emerge when the mass
ratio is appropriate [46]. However, in spite of these studies,
at present whether and, if yes, what roles the gap DBs would
play in heat transport is still an open question. Motivated by
this, we are particularly interested in the DBs properties of our
systems and try to relate it with the results observed in Sec. III.

To study the DBs properties, we should obtain DBs at the
focused temperature T = 2.5 first. We employ the following
method [47]: A lattice of 1000 particles is initially thermalized
to T = 2.5 with Nose-Hoover heat baths [27]; then the heat
baths are removed, and the absorbing boundary conditions
are imposed [48]. If DBs exist, after a long enough time for
absorption, leading all the mobile excitations, such as phonons
and solitary waves absent, they may show up in the internal
segment of the lattice. In this way DBs can be identified. As
some examples, the snapshots of the energy profile of the
residual thermal fluctuations for several r are plotted in Fig. 5,
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FIG. 5. (Color online) Snapshots of the energy distribution of the
residual thermal fluctuations for r = 1 (a); r = 0.5 (b); r = 0.33 (c);
r = 0.25 (d); r = 0.2 (e); r = 0.14 (f), respectively.

from which a well-recognized snapshot of DBs for each r can
be clearly seen. We have verified that this is also the case
for other r values lying in [0,1], suggesting that DBs can
indeed exist in our systems. Some other details that should be
mentioned are that the linewidth of the DBs energy profiles for
different r is different, especially for r values below and above
rtr = 0.25, indicating that the properties of DBs for different
r may be quite different. Thus, it may be desirable to discuss
the space shapes of these DBs, which will be presented in our
further studies [49].

In order to identify the gap DBs, next we calculate
the power spectra P (ω) of the residual thermal fluctuaions
[see Fig. 5]. We recall that P (ω) for ω > 2 corresponds
to the optical DBs [36,37] and P (ω) for ω in the gap between
the acoustic and optical branches corresponds to the gap
DBs [40] first.

To measure P (ω), for each r , we take 100 instances of
simulation where different initial conditions are used, for the
average. For each instance, initially we start with a short lattice
of N = 200 particles (for facilitating the computation) that
was fully thermalized to the focused temperature by using
Nose-Hoover heat baths [27], then the heat baths are removed
and the absorbing boundary conditions are imposed [19]. After
the absorbing has been implemented for a long enough time,
we will obtain the DBs (shown in Fig. 5) and then calculate
the P (ω) for all particles along the lattice, which just gives the
spectra of all DBs.

In Fig. 6, the results of P (ω) for the r values investigated
in Fig. 5 are plotted. The shaded area in each panel of Fig. 6
indicates the gap between the optical and the acoustic branches
of the linear phonon spectrum [see Fig. 1(b)]. As r decreases
from 1 to 0, we may find that for larger r values [see Figs. 6(a)
and 6(b)], P (ω) has nonzero value only for ω > 2, suggesting
that all DBs are optical DBs. As r decreases, a new nonzero
part of P (ω) whose frequency components fall in the spectrum
gap and slightly above the acoustic branch, will appear [see
Fig. 6(c)], suggesting the emergence of one family of gap DBs.
More interestingly, if r is decreased further, in a narrow range

FIG. 6. (Color online) The power spectrum of the residual thermal
fluctuations for r = 1 (a); r = 0.5 (b); r = 0.33 (c); r = 0.25 (d);
r = 0.2 (e); r = 0.14 (f), respectively, all of which take arbitrary
units. The shaded area indicates the gap of the linear spectra between
the acoustic branch and the optical branch for each r [see Fig. 1(b)].
Notice that for r = 1 the gap is absent.

of 0.2 < r < 0.33, a second family of gap DBs arises, whose
frequency components are slightly below the optical branch
instead [see Fig. 6(d)]. It is worth noting that r = 0.25 is a
turning point, at which the two kinds of gap DBs have close
spectrum strength. Finally, for smaller r values (0 < r < 0.2),
the second family of gap DBs would disappear and only the
first family would survive. Therefore, our system is featured
by three families of DBs, one for optical DBs and two for
the gap DBs, characterized by their frequencies, respectively.
As the system parameter r changes from 1 to 0, a transition
from the optical DBs to the gap DBs takes place. Such a
feature is similar to that as observed in the diatomic FPU-β
lattices [38,39], which is interesting and whose details will be
discussed elsewhere [49].

Another detail in Fig. 6 that should be mentioned is that
all the DBs lie outside the linear phonon band, suggesting
that they all belong to the extraband DBs. We note that DBs
can be mainly classified into two categories, i.e., the intraband
DBs (with frequencies within the linear phonon band) and the
extraband DBs. We also emphasize that the roles of intraband
DBs and extraband DBs play in heat transport are quite
different, i.e., the extraband DBs may mainly localize energy,
but the intraband DBs can be scattering with phonons since
they have frequencies within the linear phonon band. In some
systems the intraband DBs can also be observed. For example,
we have shown a possible picture for the role the intraband
DBs play in heat conduction in Ref. [19].

Now let us turn to explaining the heat transport properties
observed in Fig. 4. As only the extraband DBs exist in our
system, we define η = ∫ ∞

0 P (ω)dω/
∫ ∞

0 P0(ω)dω, the ratio of
the residual energy after the absorption to the initial energy,
to measure the localization of energy induced by DBs, where
P0(ω) and P (ω) are the power spectra of the initial thermal
fluctuations and that after the absorption, respectively. Then it
is expected that a smaller η leads to less energy localization
and will finally facilitate heat transport in the thermodynamical
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FIG. 7. (Color online) The energy portion η of the residual
thermal fluctuations after a long enough time for absorption versus r .

limit. For several additional r values, we have calculated the
corresponding power spectrum in the same way as in Fig. 6
and evaluated η, finally summarized in the results in Fig. 7,
from which one can see that as r decreases from 1 to 0, η

decreases first, reaches its minimum value at rtr = 0.25, then
increases. Because a smaller η indicates a larger α for heat
conduction, the explanation from Fig. 7 is in accord with the
results of Fig. 4.

V. CONCLUSIONS

To summarize, in order to study the effects of opti-
cal phonons on heat conduction, we have studied the 1D
lattice model with alternating interactions. Compared with
the diatomic lattices, our model is advantageous because it
avoids the thermalization problem. Our main finding is that
introducing the optical phonons can enhance heat transport
in the thermodynamical limit. This finding suggests that the
effects of optical phonons on heat transport cannot be neglected
simply because they have relatively small group velocities
compared with acoustic phonons. In addition, our study has
related the enhancement of heat conduction to the properties

of DBs. We find that two kinds of extraband DBs, the optical
DBs and the gap DBs, can generally exist in our model system,
and a change from the optical DBs to the gap DBs with the
coupling ratio can take place. During this change, the DBs
release energy and thereby enhance the heat transport.

Finally, we would like to point out that to enhance heat
transport in our system, only introducing the optical phonons
is inadequate, the anharmonic (nonlinear) interactions may
also play an essential role. A possible picture is that the an-
harmonicity causes a resonance between acoustic and optical
phonons, such as the second-harmonic generation found in
diatomic lattices [50], and if this resonance is appropriate,
the heat transport would be enhanced. The DBs shown in
Figs. 5 and 6 just act as the bridge of this resonance. The
gap (described by coupling ratio r) between the acoustic and
optical phonons branches can then be regarded (or assumed)
as the length of bridge, which we emphasize that is also
of great importance. Our result suggests that r should be
neither too long, nor too short, and maybe rtr = 0.25 is the
best.

So the results in Figs. 5–7 just present some primary
evidences to support the picture of the mechanism on the
interactions between optical phonons and heat transport. To
establish a more complete picture, further detailed investiga-
tions are still required.
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Jayanthi, and D. Gopi, J. Biol. Phys. 39, 15 (2013); A. Shimizu
et al., J. Am. Chem. Soc. 132, 14421 (2010).

[24] J. H. Luscombe, Phys. Rev. B 36, 501 (1987).
[25] L. L. Concalves and J. P. de Lina, J. Phys.: Condens. Matter 9,

3447 (1997).
[26] M. Alaghemandi, J. Schulte, F. Leroy, F. Müller-Plathe, and

M. C. Bohm, J. Comput. Chem. 32, 121 (2011).
[27] S. Nose, J. Chem. Phys. 81, 511 (1984); W. G. Hoover,

Phys. Rev. A 31, 1695 (1985).
[28] M. P. Allen and D. L. Tildesley, Computer Simulation of Liquids

(Clarendon, Oxford, 1987).
[29] F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997).
[30] D. Bedrov and G. D. Smith, J. Chem. Phys. 113, 8080 (2000).
[31] S. Stackhouse, L. Stixrude, and B. B. Karki, Phys. Rev. Lett.

104, 208501 (2010).
[32] D. Wang, L. Tang, M. Long, and Z. Shuai, J. Phys. Chem. C

115, 5940 (2011).
[33] http://lammps.sandia.gov
[34] S. Flach and C. R. Willis, Phys. Rep. 295, 181 (1998); S. Aubry,

Physica D 216, 1 (2006); S. Flach and A. V. Gorbach, Phys. Rep.
467, 1 (2008).

[35] O. V. Gendelman and A. V. Savin, Phys. Rev. Lett. 84, 2381
(2000); C. Giardina, R. Livi, A. Politi, and M. Vassalli, ibid. 84,
2144 (2000).

[36] V. M. Burlakov, S. A. Kiselev, and V. N. Pyrkov, Solid State
Commun. 74, 327 (1990); M. Aoki, J. Phys. Soc. Jpn. 61, 3024
(1992).

[37] R. Livi, M. Spicci, and R. S. MacKay, Nonlinearity 10, 1421
(1997).

[38] G. James and P. Noble, Physica D 196, 124 (2004).
[39] T. Cretegny, R. Livi, and M. Spicci, Physica D 119, 88 (1998);

G. James and M. Katner, Nonlinearity 20, 631 (2007).
[40] M. E. Manley, D. L. Abernathy, N. I. Agladze, and A. J. Sievers,

Sci. Rep. 1, 4 (2011).
[41] M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I.

Agladze, Y. Chen, A. Llobet, and A. Alatas, Phys. Rev. B 79,
134304 (2009).

[42] M. E. Manley, Acta Mater. 58, 2926 (2010).
[43] L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B 84, 144304

(2011).
[44] S. V. Dmitriev, A. A. Sukhorukov, A. I. Pshenichnyuk, L. Z.

Khadeeva, A. M. Iskandarov, and Yu. S. Kivshar, Phys. Rev. B
80, 094302 (2009)

[45] Y. Doi, A. Nakatani, and K. Yoshimura, Phys. Rev. E 79, 026603
(2009).

[46] L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B 81, 214306
(2010).

[47] G. P. Tsironis, A. R. Bishop, A. V. Savin, and A. V. Zolotaryuk,
Phys. Rev. E 60, 6610 (1999).

[48] G. P. Tsironis and S. Aubry, Phys. Rev. Lett. 77, 5225
(1996).

[49] D. Xiong, Y. Zhang, J. Wang, and H. Zhao (unpublished).
[50] V. V. Konotop, Phys. Rev. E 54, 4266 (1996).

052128-7

http://dx.doi.org/10.1103/PhysRevE.85.041118
http://dx.doi.org/10.1103/PhysRevE.85.041118
http://dx.doi.org/10.1103/PhysRevB.73.054201
http://dx.doi.org/10.1103/PhysRevB.73.054201
http://dx.doi.org/10.1007/s10867-012-9283-7
http://dx.doi.org/10.1021/ja1037287
http://dx.doi.org/10.1103/PhysRevB.36.501
http://dx.doi.org/10.1088/0953-8984/9/16/016
http://dx.doi.org/10.1088/0953-8984/9/16/016
http://dx.doi.org/10.1002/jcc.21605
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1103/PhysRevA.31.1695
http://dx.doi.org/10.1063/1.473271
http://dx.doi.org/10.1063/1.1312309
http://dx.doi.org/10.1103/PhysRevLett.104.208501
http://dx.doi.org/10.1103/PhysRevLett.104.208501
http://dx.doi.org/10.1021/jp108739c
http://dx.doi.org/10.1021/jp108739c
http://lammps.sandia.gov
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/j.physd.2005.12.020
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1103/PhysRevLett.84.2381
http://dx.doi.org/10.1103/PhysRevLett.84.2381
http://dx.doi.org/10.1103/PhysRevLett.84.2144
http://dx.doi.org/10.1103/PhysRevLett.84.2144
http://dx.doi.org/10.1016/0038-1098(90)90496-X
http://dx.doi.org/10.1016/0038-1098(90)90496-X
http://dx.doi.org/10.1143/JPSJ.61.3024
http://dx.doi.org/10.1143/JPSJ.61.3024
http://dx.doi.org/10.1088/0951-7715/10/6/003
http://dx.doi.org/10.1088/0951-7715/10/6/003
http://dx.doi.org/10.1016/j.physd.2004.05.005
http://dx.doi.org/10.1016/S0167-2789(98)00080-3
http://dx.doi.org/10.1088/0951-7715/20/3/005
http://dx.doi.org/10.1038/srep00004
http://dx.doi.org/10.1103/PhysRevB.79.134304
http://dx.doi.org/10.1103/PhysRevB.79.134304
http://dx.doi.org/10.1016/j.actamat.2010.01.021
http://dx.doi.org/10.1103/PhysRevB.84.144304
http://dx.doi.org/10.1103/PhysRevB.84.144304
http://dx.doi.org/10.1103/PhysRevB.80.094302
http://dx.doi.org/10.1103/PhysRevB.80.094302
http://dx.doi.org/10.1103/PhysRevE.79.026603
http://dx.doi.org/10.1103/PhysRevE.79.026603
http://dx.doi.org/10.1103/PhysRevB.81.214306
http://dx.doi.org/10.1103/PhysRevB.81.214306
http://dx.doi.org/10.1103/PhysRevE.60.6610
http://dx.doi.org/10.1103/PhysRevLett.77.5225
http://dx.doi.org/10.1103/PhysRevLett.77.5225
http://dx.doi.org/10.1103/PhysRevE.54.4266



