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Occupation times on a comb with ramified teeth
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We investigate occupation time statistics for random walks on a comb with ramified teeth. This is achieved
through the relation between the occupation time and the first passage times. Statistics of occupation times in
half space follows Lamperti’s distribution, i.e., the generalized arcsine law holds. Transitions between different
behaviors are observed, which are controlled by the size of the backbone and teeth of the comb, as well as
bias. Occupation time on a nonsimply connected domain is analyzed with a mean-field theory and numerical
simulations. In that case, the generalized arcsine law is not valid.
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I. INTRODUCTION

The occupation time distribution in half space for Brownian
motion on a one-dimensional infinite line is well known. The
distribution converges to the arcsine law found by Lévy [1].
A general goal of this article is to find the deviation from the
arcsine law for a comb system.

The comb is a simplified model for various types of natural
phenomena which belong to the loopless graphs category.
Two examples are spiny dendrites of neuron cells [2] and
dendronized polymers [3]. The comb model consists of a
backbone and teeth (see Fig. 1), in which the latter originally
claimed to mimic dangling bonds on percolation clusters
[4–7]. The study of random walks on a comb structure was
initiated as a simple geometrical explanation for anomalous
subdiffusion. For an infinite comb, the resulting diffusion
is of the continuous time random walk (CTRW) class. We
consider ramified structures [8,9], where the comb’s backbone
is attached to various types of teeth, such as fractals [10,11]
(see Fig. 2).

Diffusion is measured along the backbone, i.e., the x

coordinate. The particle’s sticking times in the teeth are power
law distributed provided that the teeth are infinite. This is
related to a well-known feature of first passage times τ of
ordinary one-dimensional random walks in half space, which
follows power law statistics. More precisely, the probability
density function (PDF) of times in the teeth follows ψ(τ ) ∼
τ− 3

2 , τ � 1, if the teeth are infinite linear chains (see Fig. 1).
For simple comb structures, the resulting diffusion is slower
than normal, 〈x2〉 ∼ t

1
2 , where t is the total measurement

time.
Here we investigate distributions of occupation times, i.e.,

the total time a particle occupies a domain of interest. The
occupation times, also called residence times, are related to
phenomena such as the total time of phase persistence [12], the
total number of photons a molecule or a blinking quantum dot
emits [13–15], and the average total time a particle occupies
a region [16]. Occupation time analysis on combs is relevant
to the analysis of the reaction time or rate in a subspace of
a comblike system [17]. Single particle tracking allows one
to measure the statistics with high precision [18,19]. For a
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short time, the dynamics of a finite comb should resemble that
of an infinite comb (see details below). We expect to find an
occupation time statistics similar to that found in the theory of
weak ergodicity breaking (WEB) [20–23], e.g., the bimodal
Lamperti distribution that characterizes CTRW. For a large
enough comb, this statistics should persist for several time
scales until the particle reaches the finite boundaries of the
comb. Obviously, a cutoff will follow as the comb is fully
explored and we shall obtain the ergodic phase. Such cutoffs
have been observed in experiments of fluorescence statistics of
nanoparticles [24], surface diffusion on an Ag(100) substrate
[19], and analytical models [25]. Our work shows the relation
between the statistics of the first passage time (FPT) on a
single tooth, a cluster of teeth, and the occupation time. Thus,
we develop a method to compute first passage time statistics
on a comb. The CTRW systems that were examined to date are
finite and have a unique equilibrium, i.e., the occupation time
distribution reaches equilibrium. One important element in
this research is to check the convergence to asymptotic results
and to find the transition times between different behaviors
of the system. We find quasistationary states, which depend
on the finite size of teeth and backbone, and give estimates on
transitions between the different states. We also treat the biased
comb, which exhibits behaviors different than the unbiased
case.

We consider two classes of problems, which we call simply
and nonsimply connected problems. For the first class, we
divide the graph into two domains with a single transition path
from one part of space to the other through a single point.
We ask what is the total time a particle occupies the domain
of interest. Here we can use renewal theory to compute the
distribution of occupation times. This is made possible after
we compute the first passage time statistics on the comb
structure. On simply connected domains, we find Lamperti
statistics, similar to occupation time statistics found for CTRW
dynamics [20]. A more challenging case is occupation times
on nonsimply connected domains with multiple connections
(entries and exits) to the domain under investigation [26].
Unfortunately, here we do not have exact solutions. Thus,
simulations and mean-field theory are used to analyze these
problems. We find nontrivial occupation time statistics for
different types of nonsimply connected domains. This class
of nonsimply connected models exhibits statistics that are
different from those obtained with a simpler renewal approach.
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FIG. 1. (Color online) The comb is made of a backbone (the x

axis) and teeth. The comb is divided into two regions, ‘+’ and ‘−’,
with a single boundary between them (dash-dotted line). Occupation
times in state ‘+’ are an example of a simply connected problem.

II. THE COMB MODEL

Diffusion on infinite long comb structures has been widely
studied [10,27] since the resulting diffusion is anomalous. The
comb contains a backbone and teeth on which ordinary random
walk is performed. The backbone and teeth are composed of
sites. The teeth stem from the backbone sites. The particle
occupies each site for a constant period τ0 = 1 before jumping

FIG. 2. (Color online) Two examples of combs with ramified
teeth. (a) An example of a three-dimensional comb section with
ramified teeth is plotted in (x,y,z) space. The backbone is embedded
on the x axis. The definition of the ramified structure is given in
Sec. III A. (b) An example of a comb with ramified teeth. The teeth
are Sierpinski gaskets connected by a linear chain, i.e., the backbone.
The particle performs a random walk with delays in the teeth. The
finiteness of the teeth corresponds to a power law distributed first
passage time PDF, which is followed by an exponential cutoff at
large FPT [27].

to nearest neighbors. For now, we assume that each tooth is a
one-dimensional linear chain. The backbone and teeth lengths
are Lb and Lt , respectively (see Fig. 1). A particle performs
a discrete time random walk on the comb hopping to one of
its nearest neighbors with transition probabilities soon to be
specified.

The hopping probability on the backbone sites is q+
b to the

right neighbor and q−
b to the left neighbor. These are given by

q±
b = 1 ∓ ε

3
, (1)

where |ε| < 1 and the drift ε > 0 directs the movement
towards the − region. The probability to hop up to the tooth
is 1/3. The random walk performed on the teeth is unbiased
with a transition probability up or down equal to qt = 1/2.
The tooth’s extreme site is a reflecting boundary. The case of
ε = 0 is the unbiased random walk on the comb.

In what follows, we consider the occupation time of the
random walk in a given region. That is the total time a particle
spends in some domain for a random walk taking time t . We
consider different domains in which the occupation time is
calculated. We will start with a simply connected domain.

A. Occupation time on a simply connected domain

We divide the comb’s backbone into two regions: +,x � 0
and −,x < 0. Each has a backbone length of L+ and L− =
Lb − L+, respectively. The boundary is perpendicular to the
x axis, located between points (x,y) = (0,0) and (−1,0) (see
Fig. 1). Our goal is to find the occupation time fraction in space
+, i.e., the time the particle occupies the region (x � 0) over
the total measurement time. At time n = 0, the particle starts
the random walk on a site near the boundary.

For a particle starting on (0,0), let n+ be the number of
steps until the particle reaches (−1,0) for the first time (n+
is a discrete first passage time in state +). n− has a similar
meaning. The renewal sequence (n+

1 ,n−
1 ,n+

2 ,n−
2 , . . .) describes

the dynamics in states + and − (see Fig. 3). We define a two
state renewal process on the comb, where the particle jumps
between states + and −. This process will be useful later. The
observable

T+(N ) =
N∑

n=1

�[x(n) > 0] (2)

is the total occupation time of the + region, where �(·) is the
Heaviside step function, N is the total measurement time, and

FIG. 3. A two state renewal process. The particle jumps between
the + and − regions of the comb. The time intervals n+

i and n−
i are

the waiting times in states + and −, respectively. We assign values
of 1(0) according to the occupation of the +(−) region, respectively.
The total measurement time is N .
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x(n) is the x axis coordinate at time n. The occupation time
fraction of the + region is

p̄+ = T+(N )

N
. (3)

The first passage time on a segment is the first time a particle
exits it [28–30]. We now relate between the statistics of the first
passage time on one tooth with the PDF of the FPT on a region
+, using a method developed in [27]. The FPT on a tooth
is the time a particle reaches (x,0) starting from (x,1). The
discrete FPT probability function (PF) of a tooth for n � L2

t is

given by

FLt→∞(n) =
⎧⎨
⎩

�(n/2)

2�

(
1
2

)
�

(
n+3

2

) ∣∣∣∣
n�1

∼
√

2
π
n− 3

2 if n is odd,

0 if n is even.

(4)

We notice the famous n− 3
2 dependence in the long time limit

[27] (see some details in Appendix A). After a long enough
time, n � L2

t , the particle reaches the reflecting boundary,
which causes an exponential cutoff,

FLt
(n)|n�L2

t
∼

{
2
Lt

sin2
(

π
2Lt

)
cosn−1

(
π

2Lt

)∣∣
Lt�1 ∼ π2

2Lt
3 e

− π2

8Lt
2 (n−1)

if n is odd,

0 if n is even,
(5)

which is derived in Appendix A. An exact expression for FLt
(n) can be found, in principle, from the inversion of F̂Lt

(z). The Z
transform, F̂Lt

(z) = ∑∞
n=0 FLt

(n)zn, is a useful tool and is given by Eq. (A1). Let F̂±
L±,Lt

(z) be the Z transform of the discrete
FPT PF F±

L±,Lt
(n±) for the time in the ± region, which depends of course on L± and Lt . In Appendix B, we find

F̂±
L±,Lt

(z) =
√

q∓
b

q±
b

q∓
b sinh[L±φ̂c(z)] − q±

b sinh[(L± − 2)φ̂c(z)]

q∓
b sinh[(L± + 1)φ̂c(z)] − q±

b sinh[(L± − 1)φ̂c(z)]
, (6)

where

cosh[φ̂c(z)] = ŵLt
(z)

2z

√
q+

b q−
b

(7)

and

ŵLt
(z) = 1 − z

3
F̂Lt

(z). (8)

ŵLt
(z) is called the weighted delay time polynomial of

the particle inside each tooth [27]. For further details, see
Appendix B. Equation (6) relates between the first passage time
on a single tooth given by Eq. (A1) and the first passage time
on a domain with L+ or L− teeth. We notice two special cases
of Eq. (6). The first is the form of F̂L+,Lt

(z) in the unbiased
case, ε = 0,

F̂L+,Lt
(z) = cosh [(L+ − 1)φ̂c(z)]

cosh [L+φ̂c(z)]
. (9)

The second case is that of the infinite long section L+ → ∞,

F̂L+→∞,Lt
(z) = e−φ̂c(z) = ŵLt

(z)

2z

√
q+

b q−
b

−
√

ŵ2
Lt

(z)

4z2q+
b q−

b

− 1.

(10)

We switch to the continuum limit, where time is a
continuous variable (instead of n). Namely, we consider the
occupation fraction

p̄+ = T+/t, (11)

where t is the total measurement time. To do so, we switch
from the Z transform to the Laplace transform, applying a
technique from [20], taking z = e−uτ0 , where u is the standard
Laplace variable and τ0 = 1 is the constant time step between

consecutive jumps. We now briefly review the theory of
occupation time for two state renewal processes [12,13,20].

B. Renewal process statistics

The system jumps back and forth between two states + and
−. The ith sojourn time spent on each region is described by
the PDFs,

F±(τ ) ∼ A±

|�(−α±)|τ
−(1+α±), (12)

where τ is large and 0 < α± < 1. In this case, the averaged
times in states + and − diverge.

The power law behavior of the corresponding Laplace
transforms is

F̂±(u) =
∫ ∞

0
F±(τ )e−uτ dτ ∼ 1 − A±uα±

, (13)

in the small u limit. The total occupation time is the sum of
the sojourn times spent in the + state. We are only interested
in the long time limit result. If α+ and α− differ, the particle
is stuck in the state with smaller α in the long time limit.
The occupation time PDF turns into a Dirac δ function. If the
two α± are equal, α± = α, then the coefficients A± become
relevant.

The Lamperti PDF, here denoted as δα,Q(p̄+), describes
the PDF of the occupation time fraction, given by Eq. (11),
for such a renewal process [12,31]. It is a natural general-
ization of the arcsine distribution. It has appeared in several
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applications [14,20,22,32–35],

δα,Q(p̄+) = sin (πα)

π

Q(1 − p̄+)α−1p̄ α−1
+

p̄2α+ + Q2(1 − p̄+)2α + 2Q(1 − p̄+)αp̄ α+ cos (πα)
. (14)

α = α± is the power law exponent given in Eq. (13). We define
Q, which is the asymmetry parameter,

Q = A+

A− . (15)

The special case of α = 1/2 and Q = 1 is the well-known
arcsine law. Notice the two divergences of Eq. (14) on
p̄+ = 0,1. This happens since the particle gets stuck at one
of the states for a duration which is comparable to the total
measurement time. The divergences disappear for α = 1 as the
Lamperti PDF becomes a Dirac δ function. Its first and second
cumulants are

〈p̄+〉 = Q

1 + Q
= A+

A− + A+ (16)

and

σ 2
p+ = 〈p̄2

+〉 − 〈p̄+〉2

= (1 − α)〈p̄+〉(1 − 〈p̄+〉) = (1 − α)
Q

(1 + Q)2
. (17)

C. Unbiased comb

1. The infinite long backbone and teeth

We now consider the infinite comb with infinite long teeth
and backbone [10,27,36], Lt,L± → ∞. We first consider the
unbiased case ε = 0. Taking the long time limit or u → 0, we
find the tooth’s asymptotic FPT PDF in Laplace space using
Eq. (A2),

F̂Lt→∞(u) ∼ 1 −
√

2u. (18)

The entire region’s FPT generating function, i.e., the continu-
ous analog of Eq. (6), is found using Eqs. (8), (10), and (18).
The generating function is

F̂±
L±→∞,Lt→∞(u) ∼ 1 − (2u)

1
4 , (19)

hence in this case

F±
L±→∞,Lt→∞(τ ) ∼ 2

1
4

∣∣∣∣�
(

− 1

4

)∣∣∣∣
−1

τ− 5
4 . (20)

Although the domains + and − are infinite, the particle always
returns with probability 1 to the boundary site. In particular,
from Eqs. (13), (14), and (19), we have α± = 1/4 and Q = 1.
Hence, using Eq. (14), the occupation time statistics has the
form of a Lamperti function,

δ 1
4 ,1(p̄+) = 1√

2π

[(1 − p̄+)p̄+]−
3
4

√
p̄ + √

1 − p̄+ + √
2 [(1 − p̄+)p̄+]

1
4

.

(21)

2. Infinite backbone and finite teeth

We consider an infinite comb with an infinite backbone and
finite teeth. At short times, the particle does not “feel” the
finiteness of the teeth. Thus, according to Eq. (60), for short
times t � L2

t , the system behaves as an infinite comb with
Eqs. (18)–(21) being valid. The occupation fraction’s statistics
is given by Eq. (21). Once t � L2

t , the generating function of
the tooth’s FPT PDF turns to

F̂Lt
(u) ∼ 1 − 2

(
Lt − 1

2

)
u, (22)

as the finiteness of the teeth takes effect. In other words, the
small u expansion is now analytical, unlike Eq. (18), and the
average FPT is finite. The region’s FPT PDF is derived from
the generating function using Eqs. (8), (10), and (22),

F̂±
L±→∞,Lt

(u) ∼ 1 −
√

2(1 + Lt )u. (23)

It exhibits a nonanalytical behavior since L± → ∞. See
Sec. III C for further discussion. Thus, now

F±
L±→∞,Lt

(τ ) ∼
√

1 + Lt

2π
τ− 3

2 (24)

Comparing with Eq. (13), we see that A+ = A− and α+ =
α− = 1/2. The occupation fraction PDF is found from
Eq. (14),

δ 1
2 ,1(p̄+) = 1

π

1√
(1 − p̄+)p̄+

, (25)

which is the famous arcsine law. Since the teeth are finite, the
diffusion is effectively one dimensional. Hence we get Lévy’s
well-known result for the statistics of occupation times in the
half plane for one-dimensional Brownian motion.

3. Finite backbone and infinite teeth

We now consider a comb model with infinite long teeth and
a finite backbone of length Lb. We divide it into two regions of
backbone lengths L+ and L− (see Fig. 1). The sojourn waiting
time PDF of each tooth is determined using Eq. (18). As the
particle begins its movement near the boundary site (0,0), it
does not sense the finiteness of the backbone, provided that
L+ and L− are both much larger than unity. The emerging
statistics is that of the infinite backbone and teeth model and the
occupation time fraction PDF is given by Eq. (21), δ 1

4 ,1(p̄+),
for short (but not very short) times.

Figures 4 and 5 depict simulations. Regarding Fig. 4
with L+ = L−, for not too long times, the system attains a
quasistationary state. This state is simply the case of the comb
of infinite backbone and teeth found for time scales when the
particle did not have time to reach the reflecting boundaries.
To calculate the short time variance of p̄+, we use Eq. (17),
where α = 1/4 and Q = 1, to find σ 2

p+ = 3/16 = 0.1875
accordingly. The first quasistationary state exists for several
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FIG. 4. (Color online) The variance of p̄+ vs time t , where p̄+ is
the occupation time fraction in half space. The comb has infinite long
teeth and a backbone with varying size, illustrated in the figure. After
a transition time which depends on Lb, which is the number of sites
on the backbone, the particle “feels” the finiteness of the backbone
and transits from a quasiequilibrium state to the final equilibrium. The
variance for short times is that of an infinite backbone and teeth model,
σ 2

p̄+ = 0.1875. At long times, the equilibrium for the finite backbone
and infinite teeth model has a variance σ 2

p̄+ = 0.125. Averages over
20 000 trials were used in the simulation.

time scales. The particle reaches one of the reflecting boundary
sites of the backbone at time tf ∼ π

2 min (L4
+,L4

−) (see further
details in Sec. IV). After this transition time, the backbone
is no longer effectively infinite. The long time equilibrium
(the final plateau in Fig. 4) is found using Q = 1 due to
symmetry and α = 1/2 due to the excursions into the infinite
long teeth. Equation (17) gives σ 2

p+ = 1/8 = 0.125 and the
occupation time statistics is δ 1

2 ,1(p̄+). In Fig. 4, the transition
from δ 1

4 ,1(p̄+), in the short times, to δ 1
2 ,1(p̄+), in the long

times, behaves in qualitative agreement with tf as the backbone
length Lb is varied.

Let us explain the numerical results presented in Fig. 5. In
the figure, we see that the PDF of p̄+ is nonsymmetric for long
measurement times. In the general case, after tf , the Laplace
transform of the FPT PDF in regions ± is found using Eq. (6),

F̂±
L±,Lt→∞(u) ∼ 1 − 2

(
L± − 1

2

)√
u

2
, (26)

where the subtraction of the half stems from the reflecting
boundary condition [the derivation of this result is similar to
the derivation of Eq. (22)]. The multiplication factor of two
is explained by the back and forth movement of the particle
on the backbone. In this case, α = 1/2 and, if L+ �= L−, we
have asymmetry. The statistics of the occupation fraction is
now given using Eqs. (14) and (26),

lim
t→∞ δ

1
2 ,

L+− 1
2

L−− 1
2

(p̄+) = 1

π

L+− 1
2

L−− 1
2
[(1 − p̄+)p̄+]−

1
2

p̄+ + (L+− 1
2

L−− 1
2

)2
(1 − p̄+)

. (27)

A similar result is also found in [20] with a one-dimensional
CTRW model. The ensemble average of the occupation

FIG. 5. (Color online) The PDF of occupation fraction for a comb
system with finite backbone and infinite teeth: simulations (crosses)
vs theory (curves). The region of interest is L+ = 25 for a backbone of
length Lb = 75. For short times (t = 4 × 103), the occupation time
statistics behaves as if the system has infinite teeth and backbone.
Its PDF is given by δ 1

4 ,1(p̄+), which is given by Eq. (21) (the dashed
curve). Afterwards, the occupation fraction PDF converges to its final
equilibrium δ 1

2 ,0.495(p̄+), given by Eq. (27) (the dot-dashed curve).

This PDF is depicted in the figure at t = 1012. Notice the asymmetry
in the final state due to the fact that L+ �= L−. Averages over 110 000
trials were used in the simulation.

fraction is

〈p̄+〉 = L+ − 1
2

L+ + L− − 1
. (28)

In Fig. 5, we portray the occupation fraction PDF of a system
with Lb = 75,L+ = 25 and Lt → ∞ for short and long times.
For short times, the occupation time statistics behaves as if the
system has infinite teeth and backbone, as expected. At long
times, it sets in a stationary state of finite backbone and infinite
teeth with δ 1

2 ,0.495(p̄+) according to Eq. (27).

D. Nonsimply connected spaces

1. Periodic partitioning

Until now, we divided the system into two regions, +
and −. Importantly, these regions are connected by a single
link between sites. In these cases, applying renewal theory
leads to exact expressions for large times. For occupation time
statistics, one can of course divide the system in many other
ways. One example is shown in Fig. 6, where a comb with
infinite backbone and teeth is considered. We define two types
of teeth, i.e., those with squares and those with circles. In each
unit cell (circumvented by a rectangle), we have Lp+ teeth
with squares and Lp− teeth with circles, where L± → ∞. We
consider the occupation fraction on the teeth with squares,
i.e., the + region (see Fig. 6). In this example, Lp+ = 2 and
Lp− = 3. Here there is no single boundary site separating the
+ and −, as in previous cases. Still, we can use the symmetry
and map the problem onto a finite system, which backbone
length is Lp+ + Lp− teeth, with periodic boundary conditions
at the exterior backbone sites (see Fig. 7). The system is divided
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FIG. 6. (Color online) An infinite comb structure with periodic
partitioning. The teeth are divided periodically into unit cells
(circumvented by rectangles), containing Lp+ + Lp− = 5 teeth. The
region of interest is made up of all the teeth with squares. Lp+ = 2
teeth in each unit cell.

into two regions of Lp+ and Lp− teeth. The FPT PDF of region
+ is defined as the earliest time for a particle on the exterior
teeth of the backbone domain + to exit to the − domain. In
the small u limit, Eq. (6) gives

F̂±
Lp±,Lt→∞(u) ∼ 1 − Lp±

√
u

2
. (29)

Hence α = 1/2, as expected. More interestingly, Eq. (29)
differs from Eq. (26) due to the periodic boundary conditions
at the two exterior backbone sites. The PDF of the occupation
time fraction is found using Eq. (14),

δ 1
2 ,

Lp+
Lp−

(p̄+) = 1

π

Lp+
Lp−

[(1 − p̄+)p̄+]−
1
2

p̄+ + (Lp+
Lp−

)2
(1 − p̄+)

. (30)

The FPT on the teeth is responsible for the exponent α = 1/2
in the Lamperti PDF given by Eq. (30). The average occupation
probability is found using Eq. (16),

〈p̄+〉 = Lp+
Lp+ + Lp−

. (31)

In Sec. II C3, as L± � 1, Eqs. (27) and (28) converge to
Eqs. (30) and (31), respectively, since the boundary conditions
turn out to be noninstrumental for our observable.

FIG. 7. (Color online) A comb structure with periodic boundary
conditions. The comb has a finite long backbone and infinite long
teeth. The + region of interest are the two teeth with squares. Lp+ =
2,Lp− = 3 in this example.

FIG. 8. The occupation time of the nonsimply connected infinite
comb. We consider occupation times in the region x > 0 and x being
odd using a mean-field approach. The region of interest is marked by
squares.

2. Unbalanced periodic partitioning

We now analyze a more challenging case. Consider the
occupation time on odd positive x (see Fig. 8),

todd x>0 =
∞∑

k=0

∫ t

0
dτ�[x(τ ) = 2k + 1]. (32)

Our goal is to find the occupation time fraction statistics on
this domain.

We define the total occupation time on the x > 0 region
as tx>0 and t as the total measurement time. The PDF of
p̄x>0 = tx>0/t is given by Eq. (21),

F (p̄x>0) = δ 1
4 ,1(p̄x>0). (33)

The total time in the region of interest is todd x>0. Now we
return to the occupation fraction. We use the equation

todd x>0

t
= tx>0

t

todd x>0

tx>0
(34)

as a starting point for the solution. Notice that tx>0/t

and todd x>0/tx>0 have a known Lamperti distribution. This
equation holds in its probabilistic counterpart,

P [odd x > 0] = P [x > 0] P [odd|x > 0]. (35)

P [x > 0] is the probability of occupying the positive x axis
and P [odd|x > 0] is the conditional probability of occupying
the odd sites of the x axis while staying at x > 0. Our goal of
interest is to find the PDF of P [odd x > 0] = todd x>0/t .

The statistics of P [odd|x > 0] are given by the result in
Sec. II D1 with m = n = 1, i.e., its PDF is in the long time
limit,

F (P [odd|x > 0]) = δ 1
2 ,1(P [odd|x > 0]). (36)

The random variables P [odd|x > 0] and P [x > 0] are corre-
lated. To treat the problem approximately, we use a mean-field
(MF) approach. Namely, we neglect the correlations between
the P [odd|x > 0] and P [x > 0] random variables. Since the
PDFs of P [x > 0] and P [odd|x > 0] are known, i.e., Eqs. (33)
and (36), respectively, we find the PDF of our observable
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within the MF approximation,

δMF
odd x>0(P [odd x > 0]) =

∫ 1

0
dP [x > 0]

∫ 1

0
dP [odd|x > 0] δ 1

4 ,1(P [x > 0])δ 1
2 ,1(P [odd|x > 0])δ(P [odd x > 0]

−P [x > 0] P [odd|x > 0])

=
∫ 1

0

dP [x > 0]

P [x > 0]
δ 1

4 ,1(P [x > 0])δ 1
2 ,1

(
P [odd x > 0]

P [x > 0]

)
. (37)

The cumulants of the MF approximation can be calcu-

lated analytically, 〈P [odd x > 0]
MF〉 = 1/4 (which is ex-

act) and 〈(P [odd x > 0]
MF

)2〉 − 〈P [odd x > 0]
MF〉2 = 13

128 =
0.102 . . .. The above was compared to a numerical simulation
for an infinite unbiased comb with a particle initiated next
to the boundary between the regions. Our numerics show
〈P [odd x > 0]〉 = 1/4 as expected and

σ 2
odd x>0 = 〈P [odd x > 0]

2〉 − 〈P [odd x > 0]〉2 = 0.109 . . . .

(38)

The following figures depict the statistics (see Fig. 9) and the
time evolution of the variance (see Fig. 10).

E. Biased comb

We now turn on a bias in the backbone, which is a constant
drift to the left ε > 0. The random walk on the teeth remains
unbiased. This is analogous to a flow through a structure with a
main channel (the backbone) [6] or a charged particle diffusing
in a field aligned with the backbone.

FIG. 9. (Color online) PDF of occupation time fraction for
the nonsimply connected domain in Fig. 8: simulations (crosses)
vs theory (curve). The occupation times are calculated on the
odd numbered sites x > 0. The occupation time fraction PDF is
approximated by Eq. (37) (the solid curve). The simulation graph
was calculated at a long measurement time t = 1013. Over 44 000
systems were used in the simulation. MF theory seems to work well.

1. Biased infinite backbone and infinite teeth

We consider the occupation fraction in x > 0, namely, a
simply connected system. For a biased process with ε > 0,
the particle will eventually end up in region −. Hence the
occupation fraction in state + is trivial in the long time limit.
Namely, the PDF of p̄+ is a delta function δ(p̄+), so p̄+ = 0.
For short times and a small bias, the particle is not affected
by the bias (when it starts close to the boundary between
domains). Then, p̄+ has a PDF like the unbiased case of
δ 1

4 ,1(p̄+), given by Eq. (21). This transition is shown in Fig. 11

where we plot σ 2
p̄+ versus time. For short times, Eq. (17) gives

σ 2
p̄+ = 0.1875 since α = 1/4 and Q = 1. For long times, we

have σ 2
p̄+ = 0, since, as mentioned, the bias drives the particle

to region − (see Fig. 11). As expected, the transition time
between these two behaviors increases as |ε| decreases. Let
us estimate this transition time. In Sec. IV, we show that the
mean square displacement is [see Eq. (57)]

〈x2(t)〉|t→∞ ≈ 4ε2 t + 2

√
2t

π
. (39)

FIG. 10. (Color online) The variance of the occupation time
fraction vs measurement time for a nonsimply connected system
on the infinite comb. The region of interest is the odd numbered
sites x > 0. The σ 2

odd x>0 as a function of the measurement time
converges to 0.109 . . .. Also shown is the MF prediction of the
variance 0.102 . . .. Here, 44 000 random walks on a comb were used
in the simulation.
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When ε = 0, 〈x2(t)〉|t→∞ ∼ √
t is well known. The first term

O(t) in Eq. (39) is larger than the second O(
√

t) when t > td ,

td ∼ 1

2π ε4
. (40)

We see a very long transition time that decays like ε−4.
Equation (40) is in qualitative agreement with our numerical
simulation (see Fig. 11). Here, td1 = 2.5 × 104, td2 = 1.6 ×
107, td3 = 2.5 × 108, and td4 = 1.6 × 1011 for ε1 = 5 × 10−2,
ε2 = 10−2, ε3 = 5 × 10−3, and ε4 = 10−3, respectively.

2. Biased finite backbone and infinite teeth

We consider a system containing a finite backbone and
infinite teeth. The FPT PDF of the teeth is determined by the

generating function given by Eq. (18). The FPT PDF of the +
and − regions is given in Laplace space using Eq. (6). In the
small u limit,

F̂L±,Lt→∞(u) ∼ 1 − 1

|ε|
∣∣∣∣1 − (1 ∓ ε)

(
1 ∓ ε

1 ± ε

)L±−1∣∣∣∣
(

u

2

) 1
2

.

(41)

By using renewal theory from Sec. II B, the occupation time
PDF is found to be the Lamperti function δ 1

2 ,Q(p̄+) with

Q =
∣∣∣∣∣1 − (1 − ε)

(
1−ε
1+ε

)L+−1

1 − (1 + ε)
(

1+ε
1−ε

)L−−1

∣∣∣∣∣ (42)

and

σ 2
p̄+ = |[(1 + ε)L+−1 − (1 − ε)L+][(1 + ε)L− − (1 − ε)L−−1]|

2[(1 + ε)L++L−−1 − (1 − ε)L++L−−1]2
(1 − ε)L−−1(1 + ε)L+−1. (43)

In Fig. 12, we show σ 2
p̄+ versus time with one transition

between two quasistationary states. The first step is to hop to
the + domain with probability 1

2 . Thus, at t → 0, 〈p̄+〉 = 1/2
and σ 2

p̄+ = 1/4. The system then settles in a quasistationary
diffusion state which corresponds to an unbiased infinite
backbone and teeth system with σ 2

p̄+ = 0.1875. Here the bias
is unimportant, as explained already. At a longer time, we
see a transition to the behavior described by Eq. (43), i.e.,
σ 2

p̄+ = 0.0802 or σ 2
p̄+ = 0.0514 for ε = 0.01 or ε = 0.05,

respectively. In principle, we may have three quasiequilibrium
states, namely, two transitions. This may happen if |ε|
is very small such that |ε| �

√
2 π−1 max(L+,L−)−1. The

FIG. 11. (Color online) The infinite comb system L±,Lt → ∞,
with a biased backbone ε > 0. The occupation time fraction exhibits
the behavior of an infinite comb for time t � (2πε4)−1 and |ε| � 1.
The occupation time fraction PDF is δ 1

4 ,1(p̄+) for short times. At

t � (2πε4)−1, σ 2
p̄+ → 0. Averages over 50 000 trials.

quasiequilibrium states are (i) a diffusive phase, where ε,Lb

are unimportant and the PDF of occupation is δ 1
4 ,1(p̄+). (ii)

Since ε is very small, particles “feel” the finiteness of the
backbone Lb (but not the bias) and Eq. (27) is valid. (iii) The
bias kicks in and σ 2

p̄+ converges to Eq. (43).

3. Finite backbone and finite teeth with bias

Finally, we consider a finite system. The FPT PDF of the
teeth is given in Laplace space by Eq. (22). We take the small
u limit of Eq. (6) to find the FPT PDF generating functions of

FIG. 12. (Color online) The comb system with a finite biased
backbone and infinite long teeth. The cases of interest are L+ = 202
sites out of Lb = 224 with ε = 0.05 (the solid curve) and L+ = 90
sites out of Lb = 100 with ε = 0.01 (the dashed curve). σ 2

p̄+ exhibits
a shoulder close to σ 2

p̄+ = 0.1875, which is the value for the unbiased
infinite comb. The occupation time fraction PDF converges to the
Lamperti PDF with α = 1

2 and Q according to Eq. (42). Averages
over 64 000 comb random walks are made.
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the + and − regions,

F̂L±,Lt
(u) ∼ 1 − Lt + 1

|ε|
∣∣∣∣1 − (1 ∓ ε)

(
1 ∓ ε

1 ± ε

)L±−1∣∣∣∣u. (44)

So the average times in + and − are finite. Its occupation
fraction PDF is a Lamperti δ1,Q(p̄+) with Q given in Eq. (42).
This is a δ function centered on

〈p̄+〉 = (1 − ε)L−−1

∣∣∣∣ (1 + ε)L+−1 − (1 − ε)L+

(1 + ε)L++L−−1 − (1 − ε)L++L−−1

∣∣∣∣.
(45)

This result is valid in the long time limit after the particle
has explored the finiteness of both backbone and teeth. It is
expected from the ergodic hypothesis.

III. RAMIFIED TEETH

A. A definition of ramified teeth

Until now, we examined a tooth comprised of a one-
dimensional linear chain of sites (see Fig. 1), which we call
a regular tooth. We now generalize the analysis for a simply
connected problem on a comb with ramified teeth. That means
we replace the teeth with fractal objects. See Fig. 2 and
details below. We are interested in structures that have a power
law FPT PDF [28]. Some examples are fractals such as the
Sierpinski gasket [9–11,27] and T fractal [9,27]. Other ramified
structures are given in [37].

B. The FPT exponent of an exactly decimable fractal

Diverging from our main scope, we remind the reader of
a family of fractals, in which the FPT exponent is directly
related to the local spectral dimension d̃s of the fractal [8,9,
27]. Exactly decimable fractals [9] are defined as decimation
invariant if it is possible to eliminate a subset of points (and all
the bonds connecting these points), obtaining a network with
the same geometry of the starting one. The spectral dimension
is defined by

d̃s = 2
d̃f

d̃w

, (46)

where d̃f is the fractal dimension and d̃w is the scaling
exponent of the random walk. As a reminder, a mass m

encircled by a hypersphere of radius r scales as m ∝ rd̃f .
The time t it takes to transverse a distance r scales as t ∝ rd̃w .
Notice that for the Euclidean lattice, d̃f = d is the Euclidean
dimension and d̃w = 2 for a simple Gaussian random walk.
Thus the local spectral dimension coincides with the Euclidean
dimension d̃s = d.

The first passage PDF behaves like F (t) ∼ t−(1+α) in the
long time limit. According to [10,27], for d̃s < 2, the FPT
exponent α is given by

α = 1 − d̃s

2
. (47)

The last equation is the main connection between the geometry
and the occupation time statistics of the system. This holds for
renewal processes, namely, for simply connected domains. The

next section links between the exponent α and the expression
for the occupation time statistics.

C. Occupation time statistics on a comb

We present a simple method for calculating the asymptotic
behavior of the first passage time PDF of the unbiased ramified
comb section. We consider two separate cases: infinite and
finite long backbone of combs with ramified teeth. We use
the discrete Eq. (6) to obtain an expression for the FPT PDF
of the ramified comb of infinite backbone segment length
L+ → ∞. First, we remind the reader that the sojourn time
in a tooth has the same asymptotic dependence on time as
the FPT out of the tooth. Thus the generating functions
of the sojourn time, �̂tooth(u), and the FPT, F̂tooth(u), are
related by

1 − �̂tooth(u) ∝ 1 − F̂tooth(u) ∝ uα, (48)

where 0 < α � 1. Using the same method of [20], we
transform the problem from the discrete time formalism to
continuous time t . We do so in Laplace space by inserting
z = �̂tooth(u) in Eq. (6). Instead of using the first passage
of the tooth, we replace it with an “effective” single site by
setting ŵLt

(z) = 2/3 in Eq. (8). For a ramified comb with
infinite backbone L± → ∞, Eq. (10) yields, in the small
u limit,

1 − F̂ ram comb
L+→∞ (u) ∝ u

α
2 . (49)

Now we have the tools to predict the occupation time statistics
of the ramified comb using Eq. (14),

F (p̄+) = δ α
2 ,1(p̄+). (50)

For an unbiased dynamics of the ramified comb with L± →
∞, we find an exponent that is half the size of the exponent
of the ramified tooth’s FPT PDF. For regular teeth of infinite
length, α = 1/2 and we get Eq. (21).

Consider a specific type of ramified tooth with d genera-
tions, which is constructed by the following rules. For d = 1,
the tooth is simply an infinite linear chain (like in the original
comb model). For d = 2, we use the linear chain (d = 1 object)
and from each site “grow” a linear chain [see Fig. 2(a)]. Such
objects can be extended to generation d. The ramified comb
has a FPT generating function F̂ ram comb

Lb→∞ (u) ∼ 1 − Bd
2d+1√

u in
the small u limit according to Eq. (49). So, in this example,
α = 2−d . If the tooth is finite, then this lasts for several time
scales. Following the effect of the particle reaching a boundary
at a certain generation, the FPT PDF Laplace transform
evolves to 1 − F̂ ram comb

Lb→∞ (u) ∝ 2d√
u. This effect occurs if the

particle reaches a boundary of either the extent of the comb’s
ramified teeth or the finite backbone. The transition of the
FPT PDF corresponds to the transition of the occupation
fraction statistics given by Eq. (14), where α coincides with
the exponent of the FPT PDF. Other related analyses are given
in [10,36].

For a finite backbone segment, we use the tools from [20]
and Secs. II C3, II D1, and II E2. For an unbiased ramified
comb domain with a finite backbone segment (and a reflecting
boundary condition at the end), we get

1 − F̂ ram comb
L+ (u) ∝ 2

(
L+ − 1

2

)
uα. (51)
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The occupation fraction PDF is the Lamperti function given
by Eq. (14), δα,Q(p̄+) with

Q = 2L+ − 1

2L− − 1
. (52)

We now turn to explore the transition times between quasista-
tionary statistics which prevail for several time scales.

IV. TRANSITION TIMES

Here we estimate transition times of the dynamics, namely,
the time scales when the particles start “feeling” the bound-
aries. These transitions depend on the dimensions of the system
and the value of the bias ε. We use a one-dimensional CTRW
on a lattice [10,38] as a tool to predict these transitions. In this
model, jumps are made to nearest neighbors with a transition
probability to the right (1 − ε)/2 and |ε| � 1. The motion is
unbiased for ε = 0. The sojourn time power law PDF is given
by

ψ(τ )|τ→∞ ∼ A

|�(−α)| τ−(1+α), (53)

where τ > 0 is the sojourn time, A > 0, and 0 < α < 1. In
this case, 〈τ 〉, which is the statistical average, diverges. The
Laplace transform of the sojourn time PDF is given in the
small u limit,

ψ̂(u) ∼ 1 − Auα. (54)

The mean square displacement is used to estimate transition
times. For CTRW, it is given in Laplace space by [10]

〈x̂2(s)〉 = 2ε2

s

{
ψ̂(s)

[1 − ψ̂(s)]

}2

+ ψ̂(s)

s[1 − ψ̂(s)]
, (55)

where s is the Laplace conjugate of t . For the infinite comb
mentioned in Secs. II C1 and II E1, α = 1/2 and Eqs. (18)
and (39) are valid. In the time domain, for an open system,

〈x2(t)〉|t→∞ ≈ 2ε2t2α

A2�(1 + 2α)
+ (1 − 4ε2)tα

A�(1 + α)
. (56)

Notice that in 〈x2(t)〉 we have two terms which are ε dependent
and ε independent. The latter term describes the fluctuations
in the absence of a bias. We consider only the long time limit
and |ε| � 1, thus

〈x2(t)〉|t→∞,|ε|�1 ≈ 2ε2t2α

A2�(1 + 2α)
+ tα

A�(1 + α)
. (57)

For shorter times, the diffusion term (i.e., the second term) is
dominant over the drift term. The time scale for this transition
occurs when these two terms coincide,

td ∼
[

A�(1 + 2α)

2ε2�(1 + α)

] 1
α

. (58)

Notice that the smaller is ε, the larger is td , and for α = 0.5,
we have td ∝ ε−4. This transition behavior is also found for
occupation times (numerically); see Sec. II E1.

We now study systems with finite backbone of length
L+ + L− (see Fig. 1). The teeth are infinite. When the
system reaches the boundary Lmin = min (L+,L−), we expect

a transition in the qualitative behavior of the system. Using
Eq. (57), 〈x2(tf )〉 ∼ L2

min, we find

tαf

A
∼ min

[
�(1 + α)L2

min,

√
�(1 + 2α)

2

Lmin

|ε|
]
. (59)

Another transition is found for the FPT of the teeth of length
Lt using Eq. (59) with α = 1,ε = 0 (normal diffusion),

tf |α=1,ε=0 ∼ L2
t , (60)

which is well known.

V. SUMMARY

Random walks on a partitioned infinite comb give nontrivial
occupation time statistics. We found that the method of par-
titioning dramatically affects the statistics. We examined two
main cases: simply and nonsimply connected problems. The
first were treated analytically as renewal processes. Nonsimply
connected problems are especially interesting since renewal
theory framework does not apply, namely, we have intricate
correlations between sojourn times in the domain. The problem
was analyzed heuristically with a mean-field approach. The
same system partitioned in various ways can fall into either
case of connectedness. For a nonsimply connected problem,
we suggest extending the mean-field approach to solve various
systems (details to be published).

For simply connected problems, the particle in our analysis
and simulations always starts near the boundary between the
two regions. We now assume the contrary: that the particle
starts far enough from the boundary. The time it takes to reach
the boundary may be of the order of time that the particle
“feels” the finiteness of the comb or the bias activated on
it. The resulting occupation time statistics will differ due
to the initial condition. Another example of the influence
of initial conditions is a comb with finite backbone and
long enough teeth, where a particle starts at the edge of
the backbone far away from the boundary. Trivially, the
immediate occupation time statistics will not be δ 1

4 ,1(p̄+), but
a δ function centered on 1 or 0 for x(t = 0) = L+ − 1 or
x(t = 0) = −L−, respectively. Thus our results depend on the
initial conditions. Further work is needed to investigate the
role of initial conditions.

The random walk on the comb is an approximation for
various physical phenomena [10]. Here we find the occupation
time statistics of a particle for various subspaces on a comb
system. The occupation time exhibits successive statistics
stretching for several time scales. In a real world experiment,
this understanding is crucial to correctly interpret the system’s
composition and evolution.

We find the transition times between quasistationary states
with different residence times statistics. The transitions are
controlled by the measurement time, the value of the bias,
and the finite dimension of the system [see Eqs. (40), (58),
and (59)]. For finite CTRW systems, the occupation time
statistics converges to a Lamperti PDF. Statistics of that kind
is also observed in the finite comb model for several decades
of time. Finally, the dynamics experiences a cutoff and the
distribution of the occupation time converges to a δ function.
This is, of course, ergodic behavior. Another example of the
transitions of occupation time statistics is for the biased comb
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with infinite long backbone and teeth, where the duration
of the initial Lamperti statistics δ 1

4 ,1(p̄+) is td ∝ ε−4. As
mentioned in the introduction, occupation times are related
to a diffusion-influenced reaction [17], hence the dynamical
evolution of the system can be viewed through fluorescence
quenching in a system, where the traps are concentrated in one
of the comb’s regions.
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APPENDIX A: FPT OF THE TOOTH

The first passage time on a tooth of the comb is the first
time that a particle exits the tooth. It can be analyzed using
techniques found in [7,20,27]. A single tooth, on x = 1 for
example, is depicted in Fig. 1. We assume the tooth is of length
Lt . For the calculation, an absorbing boundary condition is
placed at (1,0) at the edge of the tooth. A particle starts at site
(1,1) and travels along the tooth. The other edge of the tooth is
a reflecting boundary condition in site (1,Lt ). For the discrete
time analysis FLt

(n), the discrete FPT probability function
(PF) is the probability of exiting the tooth at n for the first
time. The generating function [27] is the Z transform,

F̂Lt
(z) =

∞∑
n=0

FLt
(n) zn = cosh [(Lt − 1)φ̂(z)]

cosh [Lt φ̂(z)]
, (A1)

where cosh [φ̂(z)] = z−1, |z| � 1 [27]. A similar derivation
will be given in Appendix B. For an infinite tooth, Lt → ∞,
the generating function is

F̂Lt→∞(z) = e−φ̂(z) = 1

z
−

√
1

z2
− 1. (A2)

FLt→∞(n) is given by the the coefficients of zn in the expansion
of Eq. (A2), which yields Eq. (4).

The solution of the long time limit discrete PDF PF for the
finite tooth involves an Abelian theorem [7],

lim
n→∞

FLt
(n)

G(n)
= lim

z→z0

F̂Lt
(z)

Ĝ(z)
. (A3)

Here, z0 is the radius of convergence and G(n) is an auxiliary
function which behaves the same as FLt

(n) in the long
time limit. We notice that the poles of Eq. (A1) are z

p

j =
sec [ π

Lt
(j + 1

2 )], where j = 1,2, . . . ,Lt and |zp

j | > 1. FLt
(n)

takes a nonzero value only in odd times, thus only the absolute
values of the poles are relevant. The smallest, most dominant
pole in the long time limit is z

p

Lt
= sec ( π

2Lt
), which is also

the radius of convergence z0. The discrete FPT PF takes the
asymptotic form of FLt

(n)|odd n→∞ ≈ D(zp

Lt
)−n. This is the

form of the auxiliary function that we will use,

G(n) =
{(

z
p

Lt

)−n
if n > 0 is odd,

0 if n is even.
(A4)

This yields Eq. (5), which is valid at n � 2L2
t . The finite tooth

discrete FPT PF can be approximated at short times n � 2L2
t

by Eq. (4), which is a power law.

APPENDIX B: A COMB SECTION’s DISCRETE FPT PF

We examine a comb section with a backbone L+ and teeth
of length Lt . The comb section’s FPT F+

L+,Lt
(n) is given by the

inverse Z transform of F̂+
L+,Lt

(z), given by Eq. (6) (see Fig. 1).
We calculate the discrete FPT PF of the + segment using

the method in [27]. Px,y(n) is the probability of occupying the
(x,y) cell at time n. The particle starts at (1,0), thus P1,0(0) =
1. The boundary condition at (0,0) is absorbing. We write the
master equations

F+
L+,Lt

(n + 1) = 1 + ε

3
P(1,0)(n),

P(1,0)(n + 1) = 1 + ε

3
P(2,0)(n) + 1

3

∞∑
i=0

FLt
(n − i)P(1,0)(i),

P(2,0)(n + 1) = 1 + ε

3
P(3,0)(n) + 1 − ε

3
P(1,0)(n) + 1

3

∞∑
i=0

FLt
(n − i)P(2,0)(i),

. . .
(B1)

. . .

P(L+−2,0)(n + 1) = 1 + ε

3
P(L+−1,0)(n) + 1 − ε

3
P(L+−3,0)(n) + 1

3

∞∑
i=0

FLt
(n − i)P(L+−2,0)(i),

P(L+−1,0)(n + 1) = 2

3
P(L+,0)(n) + 1 − ε

3
P(L+−2,0)(n) + 1

3

∞∑
i=0

FLt
(n − i)P(L+−1,0)(i),

P(L+,0)(n + 1) = 1 − ε

3
P(L+−1,0)(n) + 1

3

∞∑
i=0

FLt
(n − i)P(L+,0)(i).
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The Z transform gives

F̂+
L+,Lt

(z) = q−
b zP̂(1,0)(z),

P̂(1,0)(z) = q−
b zP̂(2,0)(z) + 1

3zF̂Lt
(z)P̂(1,0)(z) + 1,

P̂(2,0)(z) = q−
b zP̂(3,0)(z) + q+

b zP̂(1,0)(z) + 1
3zF̂Lt

(z)P̂(2,0)(z),

. . .
(B2)

. . .

P̂(L+−2,0)(z) = q−
b zP̂(L+−1,0)(z) + q+

b zP̂(L+−3,0)(z) + 1
3zF̂Lt

(z)P̂(L+−2,0)(z),

P̂(L+−1,0)(z) = 2
3zP̂(L+,0)(z) + q+

b zP̂(L+−2,0)(z) + 1
3zF̂Lt

(z)P̂(L+−1,0)(z),

P̂(L+,0)(z) = q+
b zP̂(L+−1,0)(z) + 1

3zF̂Lt
(z)P̂(L+,0)(z).

The terms P̂(x,0)(z) and 1
3zF̂Lt

(z)P̂(x,0)(z) describe the occupation of the tooth’s sites. The latter is the resulting arrival of the
particle from the tooth itself onto the backbone site. The weighting time polynomial ŵLt

(z), given by Eq. (8), is derived from
both by its definition. The set of equations above [Eq. (B2)] can be further simplified:

F̂+
L+,Lt

(z) = q−
b zP̂(1,0)(z),

ŵLt
(z)P̂(1,0)(z) = 1 + q−

b zP̂(2,0)(z),

ŵLt
(z)P̂(2,0)(z) = q−

b zP̂(3,0)(z) + q+
b zP̂(1,0)(z),

. . .
(B3)

. . .

ŵLt
(z)P̂(L+−2,0)(z) = q−

b zP̂(L+−1,0)(z) + q+
b zP̂(L+−3,0)(z),

ŵLt
(z)P̂(L+−1,0)(z) = 2

3
zP̂(L+,0)(z) + q+

b zP̂(L+−2,0)(z),

ŵLt
(z)P̂(L+,0)(z) = q+

b zP̂(L+−1,0)(z).

Choosing a heuristic solution of a recurrence relation P̂(x,0) =
f̂x−1P̂(x−1,0) and inserting in Eq. (B3), one finds

f̂L+−1(z) = q+
b z

ŵLt
(z)

,

f̂L+−2(z) =
q+

b z

ŵLt (z)

1 − 2z2q+
b

3ŵ2
Lt

(z)

, (B4)

f̂x−1(z) =
q+

b z

ŵLt (z)

1 − q−
b z

ŵLt (z) f̂x(z)
for x = 2 . . . L+ − 2.

Equation (B4) with the two top equations of Eq. (B3) give

P̂1,0(z) =
1

ŵLt (z)

1 − q−
b z

ŵLt (z) f̂1(z)
,

(B5)

f̂0(z) ≡
q+

b z

ŵLt (z)

1 − q−
b z

ŵLt (z) f̂1(z)
.

By manipulating Eq. (B5) and extending it, we get

F̂+
L+,Lt

(z) = q−
b

q+
b

q+
b z

ŵLt (z)

1 − q−
b z

ŵLt (z) f̂1(z)
= q−

b

q+
b

f̂0(z). (B6)

The solution is obtained by assuming

f̂x(z) = ĝx(z)

ĥx(z)
. (B7)

We solve the recurrence relation obtained from Eq. (B7) and
the last equation in Eq. (B4),

ĝx−1(z) = q+
b z

ŵLt
(z)

ĥx(z),

ĥx−1(z) = ĥx(z) − q−
b z

ŵLt
(z)

ĝx(z), for x = 2 . . . L+ − 2,

ĥL+−1(z) = 1,

ĥL+−2(z) = 1 − 2q+
b z2

3ŵ2
Lt

(z)
. (B8)

The solution is exponential:

ĥx(z) = A+̂
L+−1−x
+ (z) + A−̂

L+−1−x
− (z). (B9)

By applying Eq. (B9) to the second equation in Eq. (B8), we
find

̂±(z) = e±φ̂c(z)

2 cosh φ̂c(z)
, (B10)

where the definition of φ̂c(z) is given in Eq. (7). By
continuing the development in Eqs. (B6) and (B8), we get
Eq. (6).
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