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Ising-like phase transition of an n-component Eulerian face-cubic model
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By means of Monte Carlo simulations and a finite-size scaling analysis, we find a critical line of an n-component
Eulerian face-cubic model on the square lattice and the simple cubic lattice in the region v > 1, where v is the
bond weight. The phase transition belongs to the Ising universality class independent of n. The critical properties
of the phase transition can also be captured by the percolation of the complement of the Eulerian graph.
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I. INTRODUCTION

In this paper we study an n-component Eulerian face-cubic
(EFC) model [1,2] with partition sum

Z =
∑
G

vNbnNc , (1)

where G is an Eulerian graph with Nb bonds and Nc clusters.
The word “Eulerian” means the number of bonds connected to
each site must be even. A cluster is defined as an isolated site or
a group of sites connected by the bonds. This model originates
from the face-cubic model [3], of which the Hamiltonian is

H/kBT = −
∑
〈i,j〉

[K �si · �sj + M(�si · �sj )2]. (2)

Here �si = (si1,si2, . . . ,sin) is an n-component cubic spin, with
one and only one of the components having a nonzero value
±1. This model obviously combines the degrees of freedom
of the Ising model and the n-state Potts model; thus the
Hamiltonian can be alternatively written as

H/kBT = −
∑
〈i,j〉

(Kσiσj + M)δτiτj
, (3)

where σi and τi are the Ising spin and the Potts spin, respec-
tively. The Hamiltonian (1) can be obtained by a graphical
expansion of Hamiltonian (3) under a restriction cosh K =
exp(−M); see Refs. [1,2] for details. In the expansion, the
bond weight v is related to the inverse temperature K by
v = tanh K . However, in the EFC model (1) the bond weight
v is allowed to be larger than 1, and n can be any real value,
instead of an integer.

The face-cubic model has many applications, such as the
adsorbed monolayers [4], the long polymer chains [5,6],
and so forth. The model has rich critical properties. A
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renormalization-group study [7] of the face-cubic model dates
back to the1980s. In two dimensions, the critical EFC model
belongs to the same universality class of the O(n) loop
model [8] for n < 2. For n = 2, the model belongs to an
universality class that is different to the O(2) loop model
due to the marginally relevant cubic field [2,9]. For n > 2,
the phase transition of the model becomes discontinuous. In
three-dimensional simple cubic lattice, the phase transition
of the EFC model is continuous and belongs to the O(n)
loop universality class when n � no with no = 2.1(1). For
no < n � nt with nt = 2.7(1), it still undergoes a second-order
transition that is in a different universality class. For nt < n <

np with np ≈ 4.54, it displays a first-order phase transition at
finite temperature v < 1 [10].

In two dimensions a two-to-one Ising-spin representation of
the configuration of the model is possible. Concretely, the Ising
spins are located in the faces of the lattice (or the vertices of
the dual lattice), and two nearest-neighboring faces should take
different signs if and only if the edge between them is occupied
by a bond. Basing on the Ising-spin configurations, one can
define magnetization and its Binder ratio in order to investigate
the critical properties of the model [9]. Furthermore the critical
properties of the model can also be captured by the percolation
of the Ising clusters [9]. In three dimensions, the Ising-spin rep-
resentation is not applicable because of the different topology
of space, but the critical properties can still be captured by the
percolation of the clusters of the Eulerian graph [10].

In the current paper, we study the EFC model in a region
with bond weight v > 1. We find an Ising-like phase transition
for all n. In a two-dimensional square lattice, such a phase tran-
sition is in fact an antiferromagnetic Ising phase transition. Its
critical properties can be investigated by sampling a staggered
magnetization and the corresponding Binder ratio, based on
the Ising-spin representation. We further show that the critical
properties of such a phase transition can also be captured by
the percolation of the complement of the Eulerian graph.
This percolation game is repeated in a three-dimensional
simple cubic lattice, and a phase transition that belongs to
the three-dimensional Ising universality class is found.

052125-11539-3755/2013/88(5)/052125(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.052125


CHENGXIANG DING, WENAN GUO, AND YOUJIN DENG PHYSICAL REVIEW E 88, 052125 (2013)

II. ALGORITHM

For a Monte Carlo simulation of the model, two efficient
nonlocal algorithms can be selected. A cluster algorithm is
given by Deng et al. [11], which is also applicable for an
O(n) loop model. Such an algorithm is based on the Ising-spin
representation of the configurations of the model, therefore it
seems applicable only in two dimensions. In addition, for a
two-dimensional lattice with periodic boundary conditions, a
configuration with a single loop wrapping the system cannot be
represented by the Ising-spin configuration. This is not a severe
problem because the critical property is not affected by the
boundary conditions. However, if one wants to study the model
in the full state space, the worm algorithm [12] is a good choice.
In three dimensions, because the Ising-spin representation is
not applicable, the worm algorithm should be chosen. Local
algorithms, e.g., the plaquette update [13], can also be used, but
the simulation will severely suffer from critical slowing down.

The worm algorithm for the O(n) loop model [14] or the
EFC model can be combined with the coloring trick [15,16]
in order to avoid a connectivity-checking procedure, which
is a nonlocal procedure for a basic updating step and thus is
very time consuming. However, the coloring trick is applicable
only for n � 1, and the algorithm with the coloring trick will
obviously suffer from the critical slowing down for large n.
Furthermore we find that, for a worm algorithm with the
coloring trick, the frozen part of the clusters often makes it
very difficult for a worm returning to the start point when
the bond weight is much larger than 1, which leads to a
sharp reduction of the efficiency. Such a problem is severe
even for n close to 1. Therefore, in our simulations, the
connectivity checking is still necessary. Furthermore, one can
use the simultaneous breadth-first connectivity checking [17]
to improve the efficiency.

III. VARIABLES AND FINITE-SIZE SCALING FORMULAE

In two dimensions, the sampled variables are in two types.
The first type is based on the Ising-spin configurations. They
are the staggered magnetization m and its Binder ratio Q,
which are defined as

m = 〈M〉, (4)

Q = 〈M2〉2

〈M4〉 , (5)

where M is

M =
∣∣∑N/2

ia=1 Sia − ∑N/2
ib=1 Sib

∣∣
N

, (6)

with Sia (Sib) the Ising spin in the ith face of the sublattice a

(b), and N the number of total faces. Such a definition of m is
similar to that of antiferromagnetic Potts model [18].

By sampling the two variables, we expect to determine the
critical point vc and two critical exponents yt and yh by the
following finite-size scaling formulas [19,20]:

Q = Q0 + a1(v − vc)Lyt + a2(v − vc)2L2yt + · · ·
+ b1L

y1 + b2L
y2 + · · · , (7)

m = Lyh−d (a + b1L
y1 + b2L

y2 + · · ·), (8)

where L is the linear size of the system, and d is the dimension
of the lattice. a1, a2, b1, and b2 are unknown parameters, and
y1 and y2 are the correction-to-scaling exponents, which take
negative values. Equation (8) is valid only at the critical point.

The second type of variables include the wrapping probabil-
ity R [21] and the worm return time τ , which can also be used
to determine the critical point and the two critical exponents
by the following finite-size scaling formulas:

R = R0 + a1(v − vc)Lyt + a2(v − vc)2L2yt + · · ·
+ b1L

y1 + b2L
y2 + · · · , (9)

τ = L2yh−d (a + b1L
y1 + b2L

y2 + · · ·), (10)

where (10) is valid only at the critical point.
The wrapping probability is defined as the probability that

there exists a cluster that spans the system and connects itself
along at least one of the directions, which forms a nontrivial
loop that wraps the system. Obviously such a definition
is applicable only for a system with periodic boundary
conditions. Generally R can be written as

R =
〈 ∑

α

Rα

〉/
nd, (11)

where nd is the number of directions. Rα is 1 (0) if there
is a (no) cluster that wraps the system along the α direction,
whether or not the cluster wraps along the other directions. For
example, on the simple cubic lattice, α usually takes the Eu-
clidean coordinate directions, thus α = x,y, or z and nd = 3.

The worm return time τ is defined as the number of updating
attempts of the worm (it is larger than the length of the
worm), which is proven to have similar critical behavior as
the susceptibility [14].

In saying “percolation,” one should distinguish the “com-
plementary percolation” from the “normal percolation.” In the
EFC model, each edge of the lattice has two states, linked or
vacant. Henceforth, an edge is considered to be occupied by a
“normal bond” if the state is linked, otherwise it is considered
to be occupied by a “complementary bond.” The percolation on
the lattice can be defined basing on the “normal bonds” or the
“complementary bonds,” which we call a “normal percolation”
or “complementary percolation,” respectively. For the normal
percolation of the EFC model, it has been studied both in two
and three dimensions [9,10]; in the current paper, we mainly
pay attention to the complementary percolation.

IV. RESULTS

A. Results on the square lattice

In two dimensions, our simulations are mainly performed
on the square lattice. Our numerical procedure is illustrated
by taking the n = 1.5 EFC model as an example. The largest
system size that we reached is L = 256, and each data point
is obtained by the average of 3 × 106 ∼ 1 × 107 samples. The
error bar is computed by dividing the data into 1000–2000
bins. Figure 1 is an illustrative plot of Q versus v for various
system sizes. The behavior of Q obviously indicates a phase
transition at the critical point vc ≈ 2.44. A fit of the data near
the critical point according to (7) gives vc = 2.436 84(2) and
yt = 0.997(5). The estimation of yt coincides with the exact
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FIG. 1. (Color online) Plot of the Binder ratio Q versus the bond
weight v for the n = 1.5 EFC model on the square lattice. The
systems shown here, with relatively small sizes, are just for illustrative
purposes.

value yt = 1 of the Ising model [22]; thus we expected the
phase transition belongs to the Ising universality class. This
is confirmed by the numerical estimation of yh. Extensive
simulations are done at the critical point vc. The data of m are
shown in Fig. 2. We fit the data according to (8) and obtain
yh = 1.8750(4), which is in good agreement with the exact
result yh = 15/8 [22].

Such an Ising-like phase transition can also be described
by the complementary percolation of the Eulerian graph.
Figure 3 is the plot of R versus v, which can be compared
with the plot of Q. By fitting the data near the critical point
according to (9), we obtain vc = 2.436 85(3) and yt = 1.02(3).
These results are in agreement with the fit of Q. Furthermore,
the critical exponent yh can also be obtained from the fit of
τ according to (10), which gives yh = 1.8756(7). It coincides
with the result fit from m. Figure 4 is an illustrative plot of τ

versus system size L, with v = vc.
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FIG. 2. (Color online) Log-log plot of the staggered
magnetization m versus system size L for the n = 1.5 EFC
model on the square lattice. The straight line, with slope −1/8, is
added as a guide for the eye.
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FIG. 3. (Color online) Plot of the wrapping probability R (for
the complementary percolation) versus the bond weight v for the
n = 1.5 EFC model on the square lattice. The systems shown here,
with relatively small sizes, are just for illustrative purposes.

We also simulate the cases n = 0.5, 1, 2, 2.5, 3, and 5.
All results are listed in Table I. The yt can be fitted by (7)
or (9) and yh can be fitted by (8) or (10); in the table we
list the best estimations. It is clear that the critical exponents
for all n coincide with the exact values of the Ising model,
namely, the phase transition is in the universality class of the
two-dimensional Ising model.

B. Results on the simple cubic lattice

In three dimensions, our simulations are performed on the
simple cubic lattice. The sampled variables are the wrapping
probability for the complementary percolation and the worm
return time. The staggered magnetization and its Binder ratio
are no longer applicable. The largest system size that we
reached is generally L = 48 and the finite-size scaling analysis
is similar to that in two dimensions. All results are listed in
Table II. For the critical exponents of the three-dimensional
Ising model, there is no exact result, but there are numerical
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FIG. 4. (Color online) Log-log plot of the worm return time τ

versus system size L for the n = 1.5 EFC model on the square lattice.
The straight line, with slope 7/4, is added as a guide for the eye.
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TABLE I. Critical properties of the Ising-like transition of the
EFC model on the square lattice; the estimations of yt and yh can be
compared with the exact results: yt = 1 and yh = 15/8 [22].

n vc yt yh

0.5 2.3932(1) 1.00(1) 1.876(1)
1.0 2.414 21(1) 1.001(3) 1.8749(2)
1.5 2.436 84(2) 0.997(5) 1.8750(4)
2.0 2.461 00(3) 0.99(1) 1.875(1)
2.5 2.486 63(3) 0.99(1) 1.8748(5)
3.0 2.514 09(6) 0.99(2) 1.876(2)
5.0 2.6419(1) 0.98(3) 1.874(2)

ones for comparison [10,14,23,24]. Our estimations of yt

and yh are consistent with the three-dimensional Ising model
[23,24]. Therefore the phase transition is believed to be in the
universality class of the three-dimensional Ising model.

V. THE NATURE OF THE PHASE TRANSITION

In conclusion, we have found a critical line of the n-
component EFC model on the square lattice and the simple
cubic lattice in the region v > 1. The phase transition belongs
to the Ising universality class for all n. Here we discuss the
nature of this phase transition.

For the face-cubic model in (2) with a given value of n,
as the temperature 1/K decreases, the system undergoes a
second-order phase transition at a finite temperature 1/Kc > 0,
below which the face-cubic symmetry is spontaneously broken
and a long-range order develops for n � 2 in two dimensions,
although the transition belongs to the O(n) universality class
and the cubic anisotropy is irrelevant for n < 2 [2,25]. In
the language of the graphical model (1), an infinite cluster
emerges at the critical point 0 < v(cubic)

c = tanh Kc < 1, which
is actually the (normal) percolation threshold of clusters. For
n > 2, the transition line continues in the graphic model
(1) while the corresponding coupling Kc lies outside physical
region [11]. The cubic symmetry is expected to be broken
when v > v(cubic)

c .
The Ising-like phase transition occurs in the region v >

v(cubic)
c . Since the cubic symmetry of the model has been

broken for all n, it suggests that n no longer takes effect in
the Ising-like transition. To explore such an argument, we
measure the specific-heat-like quantities, the fluctuation of
bonds Cv = (〈N2

b 〉 − 〈Nb〉2)/L2, and the fluctuation of clusters
Cn = (〈N2

c 〉 − 〈Nc〉2)/L2, which are plotted in Figs. 5 and 6,
respectively. It is shown that there are two peaks of Cv but
only one peak of Cn. The peak of Cv in the region v < 1

TABLE II. Critical properties of the Ising-like transition of the
EFC model on the simple cubic lattice; the estimations of yt and yh

can be compared with the Monte Carlo results yt = 1.5868(3) and
yh = 2.4816(1) [24], which are much more accurate.

n vc yt yh

1.0 4.585 16(3) 1.58(1) 2.482(3)
1.5 4.585 26(5) 1.59(2) 2.484(5)
5.0 4.585 65(5) 1.57(3) 2.483(5)
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FIG. 5. (Color online) Plot of the fluctuation of bonds Cv versus
the bond weight v for the n = 1.5 EFC model on the square lattice.

corresponds to the threshold of the normal percolation of
the Eulerian graph, while the second peak corresponds to the
threshold of the complementary percolation. The appearance
of the peak of Cn at the threshold of the normal percolation
means the transition depends on n, which interprets the fact
that the critical exponents vary with n at this point [9]. The lack
of second peak of Cn at the threshold of the complementary
percolation indicates that the transition is independent of
parameter n. This is also reflected by the fact that, by varying
parameter n, the critical point vc is shifted only by a small
value, as shown in Tables I and II.

Since the properties of the transition are independent of n

in the region v > v(cubic)
c , the universality class of the phase

transition can be determined by an arbitrary n, and it is
convenient to chose n = 1. On an Eulerian lattice (coordinate
number is even) such as the square lattice or the simple cubic
lattice, a complementary graph of the EFC model is also an
Eulerian one. This leads to a result that the complement of
the n = 1 EFC model is also an n = 1 EFC model but with
bond weight 1/v. Therefore the complementary percolation
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FIG. 6. (Color online) Plot of the fluctuation of clusters Cn versus
the bond weight v for the n = 1.5 EFC model on the square lattice.
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transition of the Eulerian graph must belong to the Ising
universality class. Such a mapping also allows us to predict the
critical point of the complementary percolation of the n = 1
EFC model on an Eulerian lattice as

vc(complementary) = 1/vc(normal). (12)

On the square lattice, the threshold of the normal percolation
of the n = 1 EFC model is vc = √

2 − 1 [9]; it gives the
threshold of the complementary percolation vc = √

2 + 1,
which coincides with our numerical result vc = 2.414 21(1)
(Table I). On the simple cubic lattice, the percolation threshold
of the normal percolation of the n = 1 EFC model is vc =
tanh Kc = 0.218 0944(1) [23]. This predicts the critical point
of the complementary percolation vc = 4.585 170(1), which is
also verified by our numerical result (Table II).

In two dimensions, the Ising-like phase transition can be
understood via the dual-spin representation of the EFC model.
For the square lattice, the symmetry of the odd-even sites in the
dual lattice is broken when the cluster becomes dense enough at
very large v, which leads to an AF pattern in the dual-spin con-
figurations. An Ising-like transition from a disorder phase to an
AF ordered phase thus presents independent of n. The AF pat-
tern obviously depends on the lattice structure; thus the Ising-
like phase transition is lattice-dependent. For example, on the
honeycomb lattice in which the EFC model is equivalent to the
O(n) loop model due to the coordination number 3, we cannot
find such an Ising-like phase transition. There is only one peak

of Cn and the threshold of the complementary percolation
coincides with that of the normal percolation, i.e., the critical
point vc = 1/

√
2 + √

2 − n [26]. For the simple cubic lattice,
the simple dual-spin picture is not applicable. We do not have
a simple physical picture to interpret the Ising-like behavior. It
is not easy to predict the existence of such an Ising-like phase
transition in a three-dimensional lattice. It must be studied case
by case, especially for the lattice that is not Eulerian.

It is interesting to compare this Ising transition with the
recently studied Ising-like transitions in the square O(n) loop
model [27], in which the critical behaviors in the region
n > 2 and n < 2 are different, although the critical lines
connect at n = 2. In the spin language of the two models,
the low-temperature phase of the face-cubic model is ordered
for all n, but that of the loop model is critical in the sense that
the spin-spin correlation decays algebraically for n � 2, and
the O(n) critical line ends at n = 2. As a result of this fact, the
universality class of the Ising-like transition in the O(n) loop
model is a superposition of the low-temperature O(n) critical
behavior and the Ising behavior [27] for n < 2, while for n > 2
the transition resembles a hard-square lattice gas transition.
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