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dc electric field effect on the anomalous exponent of the hopping conduction in the one-dimensional
disorder model
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The dc electric field effect on the anomalous exponent of the hopping conduction in the disorder model is
investigated. First, we explain the model and derive an analytical expression of the effective waiting time for
the general case. We show that the exponent depends on the external field. Then we focus on a one-dimensional
system in order to illustrate the features of the anomalous exponent. We derive approximate expressions of the
anomalous exponent of the system analytically. For the case of a weak field, the anomalous exponent is consistent
with that of diffusive systems. This is consistent with the treatments of Barkai et al. [Phys. Rev. E 63, 046118
(2001)] and our result supports their theory. On the other hand, for the case of a strong field and a strong disorder,
the time evolution of the exponent clearly differs from that in the weak field. The exponent is consistent with the
well-known expression of the anomalous exponent in the multiple trapping model at mesoscopic time scales. In
the long-time limit, a transition of the anomalous exponent to the same value of the weak field occurs. These
findings are verified by the Monte Carlo simulation.
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I. INTRODUCTION

Hopping conductance is a dominant mechanism of electric
conductivity in noncrystalline materials. In the hopping con-
ductance, each charge carrier hops from one localized state
to another with the aid of thermal activation. Moreover, it is
widely known that the collective behavior of carriers exhibits
anomalous diffusion (subdiffusion) [1]. Experimentally, one
can observe the anomaly in the long-tail of the time-of-flight
(TOF) signal [1–3].

Anomalous diffusion is characterized by the anomalous
exponent α, and has been studied in the context of continuous-
time random walk (CTRW) thoroughly [4]. This exponent
exhibits itself in the power-law behaviors of the mean and
mean-squared displacement with respect to time t . The
diffusion is referred to as the subdiffusion if 0 < α < 1 holds.
In this case, the anomalous exponent and the exponent of the
waiting time of the walker, w(t) ∼ t−(1+α), are consistent with
each other. As generalized cases, the accelerating and retarding
anomalous diffusions are known in various situations, both
theoretically and experimentally [5–12]. In these cases, α

depends on time; i.e., α = α(t). To be precise, α(t) increases
(decreases) as the time evolves in the accelerating (retarding)
anomalous diffusion.

It is well known that CTRW has succeeded in describing the
long-tail of the TOF signals in a certain range of time scales by
treating α as a fitting parameter [1]. However, the relation of α

to physical quantities of interest, such as the external field, the
density of state (DOS) of the trap levels, or the spatial structure
of the hopping sites, cannot be addressed in the framework of
CTRW. Hence, it is significant to study this issue for physically
understanding the mechanism of the hopping conductance.

Such relations have been partially given by two representa-
tive models of the hopping conductance, i.e., the “multiple
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trapping model” (MTM) [13–15] and the “Scher-Montroll
model” (SMM) [1,3,16,17]. The MTM is a well-known
phenomenological model. In this model, carriers are trapped
for certain times which are determined from the depths of
trap levels, then released and trapped again in an another
one. Repeating this process, the distribution of the carriers
in the trap levels in the long-time limit is obtained. Using
this, the mobility is determined. It is worth emphasizing that
the drift process of carriers is treated as a single trap level
problem [13]. The anomalous exponent is related to the typical
width of the DOS of the trap levels Tc and the temperature T as
α = T/Tc [13]. The DOS is assumed to be of the exponential
type, p(ε) = e(ε−εC )/(kBTc)/(kBTc) (ε � εC), where ε is the
energy and εC is that of the edge of the conduction band. This
type of DOS is typical for disordered inorganic semiconductors
and well explains the experimental results [14]. Although α is
expressed in such a simple form, the relation of α to the external
field and the spatial structure of hopping sites is unclear, since
they are not considered in the MTM.

The SMM is an effective media model in mesoscopic scales.
In the SMM, spatial structures of hopping sites are partially
taken into account. The number density of the hopping sites
is assumed to be constant, the lattices of the sites are smeared
out into a continuum media, and the hopping activation energy
is replaced by its average value [1,16,17]. The exact form of
the waiting time is obtained with the aid of the mathematical
technique in Ref. [18]. However, the relation of α to the
external field, the DOS, and the microscopic spatial structure
of hopping sites is unclear, since they are not taken into account
in the SMM.

On the other hand, two microscopic models have been used
in order to study the hopping conductance. One is the “polaron
model” [19–21], and the other is the “disorder model” [22],
which is studied in this paper. In these models, the external
field, the microscopic spatial structure of the hopping sites, and
the DOS are taken into account. The polaron model is suitable
for a system with strong electron-phonon couplings and with
relatively negligible effects of the energy disorder [23]. In the
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polaron model, the strong electron-phonon couplings strongly
distort the surroundings of a carrier which is in the localized
state, and this distortion lowers the energy of the carrier
(self-trapping). Because the carrier moves together with the
associated distortion, the carrier with the distortion can be
regarded as a quasiparticle which is referred to as the polaron.
As far as the authors know, the relation of α of the polaron
model to the physical quantities is still an open issue.

In contrast to the polaron model, the disorder model is
suitable for a system where the anomalous charge transport
is dominantly activated by the static energy disorder of the
hopping sites, and where the effect of the weak electron-
phonon coupling is relatively negligible. In the disorder model
[22], as we will briefly review later, the hopping rate between
two sites is described by the conventional model of [24], which
is based on [25]. To solve the model of [24], a Monte Carlo
(MC) simulation has been performed [22], and the effect of the
electric field on the mobility has been studied recently [26].
From the viewpoint of the anomalous exponent, we have
shown the relation of α to the microscopic spatial structure
of the hopping sites for a diffusive system [27]. In addition,
we have also shown that α depends on time. However, the
effect of the external field on α is still unknown. In this paper,
we study this issue.

The paper is organized as follows. In Sec. II, we present
our theory. In particular, we explain the model we study and
its related issues in Sec. II A, and we calculate the exact form
of the effective waiting time and derive the asymptotic form of
the anomalous exponent theoretically in Sec. II B. In Sec. III,
the result is verified by the MC simulation. In Sec. IV, we
discuss the relation of our results to the previous studies. In
Sec. V, we summarize our study.

II. THEORY

A. Model

In this study, we consider the disorder model [22]. The basic
framework is essentially the same as the one in Ref. [27],
except that an external field acts on the carriers. In the
following, we explain the DOS, the hopping rate, and the
waiting time of the model which we use in this study.

1. Density of states

Amorphous semiconductors have conduction and valence
band tails which are shown schematically in Fig. 1(a). The
existence of the tail is first pointed out by Urbach [28] and it
is referred to as the Urbach tail. The states in the band tails are
localized; they are separated from the extended states by the
critical energy which is referred to as the mobility edge [29].
The energies εC and ε′

C in Fig. 1(a) are the mobility edges
in the conduction and the valence bands, respectively. Tiedje
et al. have shown that the exponential band tail well explains
the experimental results of the temperature dependence of the
anomalous exponent for inorganic amorphous semiconductors
[14]. A recent calculation of the electronic density of states
also supports that the band tails are well approximated by the
exponential functions [30]. In this study, we adopt as the DOS

FIG. 1. (Color online) Schematic figures of DOS. (a) Overall
view: The conduction and valence bands (extended states) and their
tails (localized states). States in the band tails are separated from
the conduction (valence) bands by the mobility edges εC (ε ′

C).
(b) Exponential tail of the conduction band. Its typical width is
denoted as Tc.

the exponential type. Then the DOS can be expressed as

p(ε) = 1

kBTc

e(ε−εC )/(kBTc), (1)

where ε � εC and Tc is the typical width of the DOS [see
Fig. 1(b)].

2. Hopping rate between two sites

The intuitive picture of the hopping conduction is that
carriers hop between the localized states. This implies that the
hopping conduction is dominant at low temperatures where
thermal activation of the carriers to the extended states, which
results in the band conduction, can be neglected. In such
situations, we can adopt the approximation that the states above
(below) the Fermi energy εF are unoccupied (occupied). Then,
the carriers hop between the empty states in the conduction
band tail, whose DOS is approximated by Eq. (1) (localized
states in Fig. 1).

In this study, as an electric field �E(�r) at the position �r =
(x,y,z), we consider a constant field �E = (−E,0,0) (E � 0)
in the negative direction of the x axis. Under this electric
field, an external force �F = (F,0,0) ≡ (eE,0,0) acts on each
carrier with charge −e. Here, e(>0) is the elementary charge.
In addition, assuming that the number of the carriers is small
enough compared to the number of the states, the occupation
of the states can be neglected. Then, the hopping probability
per unit time of the carrier to hop from site i to site j , which
we denote νij , is approximately given as [24]

νij = ν0e
−2Rij /ξ−(εji−Fxji )�(εji−Fxji )/kBT . (2)

Here, ξ is the localization length of the localized state, εi is
the energy of site i on the position �ri ≡ (xi,yi,zi), Rij is the
distance of sites i and j , xji ≡ xj − xi is the relative coordinate
of sites i and j in the x direction, εji ≡ εj − εi is the difference
of the energy of site i and j , ν0 is the magnitude of the hopping
rate, �(x) is the Heaviside step function, where �(x) = 1
for x > 0 and 0 otherwise, and T is the temperature. This
hopping rate is usually used in the disorder model and is well
verified [22].
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3. Waiting time

In this subsubsection, we briefly review the waiting time
w(t) of the CTRW [4], and that of the disorder model. In
CTRW [4], if the carrier is at the position x = 0 at t = 0, the
probability distribution that the carrier is found at position x

at time t is given by

ρ(x,t) =
∑
x ′ �=x

∫ t

0
dτρ(x ′,τ )ψ(x,x ′,t − τ ) + �(x,t)δx0. (3)

Here, �(x,t) ≡ 1 − ∫ t

0 dτw(x,τ ), and ψ(x ′,x,t) denotes the
probability density that the carrier hops from x to x ′ after
waiting time t . Using ψ(x ′,x,t), the waiting-time probability
distribution w(x,t) is expressed as

w(x,t) =
∑
x ′ �=x

ψ(x ′,x,t).

In the disorder model, it is assumed that ψ(x ′,x,t) is given by
the product of w(t) and the spatial part of the probability distri-
bution φ(x ′,x); i.e., ψ(x ′,x,t) = w(t)φ(x ′,x). Here, φ(x ′,x) is
normalized as

∑
x ′ φ(x ′,x) = 1. In this study, we are interested

in the time-dependent part w(t).
Defining �i by �i ≡ ∑

j∈N νij (N represents the set of all
the sites in the system), we can express the waiting time of the

carrier on site i as

wi(t) = �ie
−�it . (4)

The spatial distribution of the hopping sites causes the disorder
of energy. In the disorder model, the disorder of the hopping
sites is assumed to be moderate and their positions fluctuate
around the structured lattice points. However, we incorporate
the effect of the spatial disorder to that of the disorder of the
site energy for the sake of simplicity, and an assumption that
the sites are situated on structured lattice points with lattice
spacing a is used in this study.

B. Anomalous exponent of disorder model in the dc electric field

1. General system

Now we calculate the anomalous exponent. We formulate
general exact results for arbitrary spatial dimensional systems,
where the carrier at each site can hop to all the sites in
the system. It is important that the waiting-time probability
distribution, Eq. (4), depends on the energy of the site.
If the energy is distributed according to some probability
distribution, then the effective waiting time of the system,
which we denote 〈w(t)〉F , is given by the ensemble average
with respect to the energy distribution [31]. Its explicit
expression is (see Appendix A)

〈w(t)〉F =
⎛
⎝∏

j∈N

∫ ∞

−∞
dεjipL(εij )

⎞
⎠ wi(t) =

⎛
⎝∏

j∈N

∫ ∞

−∞
dεji

e
− |εji |

kB Tc

2kBTc

⎞
⎠(∑

k∈N
Kkie

− (εki−Fxki )�(εki−Fxki )
kB T e

− ∑
l∈N Kli exp[− (εli−Fxli )�(εli−Fxli )

kB T
]t

)
,

(5)

where

Kji ≡ ν0e
−2Rji/ξ . (6)

Here, 〈· · ·〉F denotes an ensemble average when the carriers are subject to an external driving field. We have omitted the subscript
i in the expression 〈w(t)〉F , because it is assumed that the system has a translational invariance, as a result of the spatial coarse
graining due to the integration with respect to site energies. In Eq. (5), we have used the fact that the energy difference εji obeys
the Laplace distribution pL(εji) ≡ e−|εji |/kBTc/(2kBTc). Using the transformations of integral variables [32], we can calculate the
integrals in Eq. (5) analytically. After tedious but straightforward calculations which we show in Appendix B, we obtain the
effective waiting time as follows:

〈w(t)〉F =
∑
k∈N+

⎧⎨
⎩KkiI

(1)+
ki

∏
j∈N+,j �=k

I
(0)+
ji

∏
m∈N0,m�=k

I
(0)0
mi

∏
l∈N−,l �=k

I
(0)−
li

⎫⎬
⎭

+
∑
k∈N0

⎧⎨
⎩KkiI

(1)0
ki

∏
j∈N+,j �=k

I
(0)+
ji

∏
m∈N0,m�=k

I
(0)0
mi

∏
l∈N−,l �=k

I
(0)−
li

⎫⎬
⎭

+
∑
k∈N−

⎧⎨
⎩KkiI

(1)−
ki

∏
j∈N+,j �=k

I
(0)+
ji

∏
m∈N0,m�=k

I
(0)0
mi

∏
l∈N−,l �=k

I
(0)−
li

⎫⎬
⎭ . (7)

Here, N+ (N−) represents a set of neighboring sites which satisfy the condition xli > 0 (xli < 0), N0 represents a set of
neighboring sites which satisfy the condition xli = 0, and

I
(0)+
li ≡

(
1 − 1

2
e
− Fxli

kB T
T
Tc

)
e−Kli t + 1

2
e
− Fxli

kB T
T
Tc

T

Tc

(Klit)
− T

Tc γ

(
T

Tc

,Kli t

)
,

I
(1)+
li ≡

(
1 − 1

2
e
− Fxli

kB T
T
Tc

)
e−Kli t + 1

2
e
− Fxli

kB T
T
Tc

T

Tc

(Klit)
−1− T

Tc γ

(
T

Tc

+ 1,Kli t

)
,
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I
(0)0
li ≡ 1

2
e−Kli t + 1

2

T

Tc

(Klit)
− T

Tc γ

(
T

Tc

,Kli t

)
,

I
(1)0
li ≡ 1

2
e−Kli t + 1

2
(Klit)

−1− T
Tc γ

(
T

Tc

+ 1,Kli t

)
,

I
(0)−
li ≡ 1

2
e

Fxli
kB T

T
Tc

(1− T
Tc

)
e
−Kli exp( Fxli

kB T
T
Tc

)t + 1

2
e

Fxli
kB T

T
Tc (Klit)

T
Tc γ

(
1 − T

Tc

,Kli t

)

− 1

2
e

Fxli
kB T

T
Tc (Klit)

T
Tc γ

(
1 − T

Tc

,Klie
Fxli
kB T

T
Tc t

)
+ 1

2
e
− Fxli

kB T
T
Tc

T

Tc

(Klit)
− T

Tc γ

(
T

Tc

,Klie
Fxli
kB T t

)
,

I
(1)−
li ≡ 1

2
eFxli/kBTc e−Kli t + 1

2
e

Fxli
kB T

T
Tc

T

Tc

(Klit)
−1+ T

Tc

[
γ

(
1 − T

Tc

,Kli t

)
− γ

(
1 − T

Tc

,Klie
Fxli
kB T

T
Tc t

)]

+ 1

2
e
− Fxli

kB T
T
Tc

T

Tc

(Klit)
−1− T

Tc γ

(
T

Tc

+ 1,Klie
Fxli
kB T t

)
.

Here,

γ (T/Tc,Kij t) ≡
∫ Kij t

0
dττ−1+T/Tc e−τ (8)

is the lower incomplete gamma function. Equation (7) is the exact form of the effective waiting time of the disorder model with
a constant external field.

Since the incomplete gamma function γ (T/Tc,Cγ ) coincides with the Gamma function � (T/Tc) at the same order of Cγ for
the case 0.05 � T/Tc � 1 [27], one can see that there are three characteristic time scales for |xki |; i.e.,

τli1 ≡ K−1
li , τli2 ≡ K−1

li e
F |xli |
kB T

T
Tc , τli3 ≡ K−1

li e
F |xli |
kB T . (9)

From the viewpoint of the dependence of the anomalous exponent on the external field and disorder, it is important that τli1

does not depend on either of them, τli2 depends on both of them, and τli3 depends only on Fa/kBT . It is clear from Eq. (9)
that these time scales reduce to a single value τli1 = τli2 = τli3 = K−1

li when no external field is applied. In other words, τli2 and
τli3 are generated by the external field. We will see how these time scales characterize the time evolution of the exponent in a
one-dimensional system in Sec. II B2.

If no external field is applied to carriers, Eq. (7) yields

〈w(t)〉0 =
∑
k∈N

1

2
Kki

[
e−Kki t + T

Tc

(Kkit)
−1− T

Tc γ

(
T

Tc

+ 1,Kki t

)] ∏
j∈N ,j �=k

[
1

2
e−Kji t + 1

2

T

Tc

(Kjit)
− T

Tc γ

(
T

Tc

,Kji t

)]
. (10)

Here, 〈· · ·〉0 denotes an ensemble average when no external field is applied to the carriers. Equation (10) is just the effective
waiting time for diffusive systems which we derived in Ref. [27].

2. One-dimensional system

Although Eq. (7) is exact, its physical meaning and dependence on the model parameters are not clear. In the following, in
order to illuminate the features of the effective waiting time, Eq. (7), we consider a one-dimensional system where carriers can
hop only to the nearest neighbors (Fig. 2) and derive approximate expressions of the anomalous exponent by extracting the
dominant contribution from the neighboring sites and by simplifying its analytic structure. We concentrate on the time scale
where effects of the next-nearest neighbors are negligible (t < τ2nd ≡ ν−1

0 e4a/ξ ).
For the case mentioned above, Eq. (7) becomes (see Appendix C)

〈w(t)〉F = K1

[(
1 − 1

2
e
− Fa

kB T
T
Tc

)
e−K1t + 1

2
e
− Fa

kB T
T
Tc

T

Tc

(K1t)
−1− T

Tc γ

(
T

Tc

+ 1,K1t

)]

×
[

1

2
e

−Fa
kB T

T
Tc

(1− T
Tc

)
e
−K1 exp( −Fa

kB T
T
Tc

)t + 1

2
e

−Fa
kB T

T
Tc (K1t)

T
Tc γ

(
1 − T

Tc

,K1t

)

− 1

2
e

−Fa
kB T

T
Tc (K1t)

T
Tc γ

(
1 − T

Tc

,K1e
−Fa
kB T

T
Tc t

)
+ 1

2
e

Fa
kB T

T
Tc

T

Tc

(K1t)
− T

Tc γ

(
T

Tc

,K1e
−Fa
kB T t

)]

+K1

[
1

2
e

−Fa
kB T

T
Tc e−K1t + 1

2
e

−Fa
kB T

T
Tc

T

Tc

(K1t)
−1+ T

Tc

{
γ

(
1 − T

Tc

,K1t

)
− γ

(
1 − T

Tc

,K1e
−Fa
kB T

T
Tc t

)}

+ 1

2
e

Fa
kB T

T
Tc

T

Tc

(K1t)
−1− T

Tc γ

(
T

Tc

+ 1,K1e
−Fa
kB T t

)]

×
[(

1 − 1

2
e
− Fa

kB T
T
Tc

)
e−K1t + 1

2
e
− Fa

kB T
T
Tc

T

Tc

(K1t)
− T

Tc γ

(
T

Tc

,K1t

)]
. (11)
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FIG. 2. A schematic figure of the system which is considered. It
is one-dimensional and hopping up to the first-nearest neighbors is
allowed.

Here, K1 ≡ ν0e
−2a/ξ . The three characteristic time scales in

this system are the following:

τ1 ≡ K−1
1 , τ2 ≡ K−1

1 e
Fa

kB T
T
Tc , τ3 ≡ K−1

1 e
Fa

kB T . (12)

Before further discussion, it is important to denote some
relations we use later. First, for the sites which satisfy the
condition K1t � 1, the following relations hold [27]:

T

Tc

γ
(

T
Tc

,K1t
)

(K1t)T/Tc
� 1, e−K1t � 1. (13)

Second, for the sites which satisfy the condition K1t  1, the
following relations hold [27]:

γ (T/Tc,K1t) � �(T/Tc), e−K1t � 0. (14)

Here, �(T/Tc) is the Gamma function. Now we derive
approximate expressions of the anomalous exponent, Eq. (11),
for the cases of weak and strong fields, respectively.

Weak-field cases. First, we consider the weak-field case
where the condition τ1 ∼ τ2 ∼ τ3 holds. In other words, we
consider the case where eFa/kBT � 1 + Fa/kBT holds.

Substituting eFa/kBT � 1 + Fa/kBT into Eq. (11), we
obtain

〈w(t)〉w � K1

[
e−K1t + T

Tc

(K1t)
−1− T

Tc γ

(
T

Tc

+ 1,K1t

)]

× 1

2

[
e−K1t + T

Tc

(K1t)
− T

Tc γ

(
T

Tc

,K1t

)]

+O

(
Fa

kBT

)
. (15)

In order to obtain an asymptotic analytic form of the anomalous
exponent, we consider a time scale where t  τ1 holds. From
Eq. (14), we obtain the following approximate expression for
Eq. (15),

〈w(t)〉w � K1
1

2

(
T

Tc

)2

(K1t)
−1−2 T

Tc �

(
T

Tc

+ 1

)
�

(
T

Tc

)

+O

( (
Fa

kBT

)2 )
∝ t−1−2 T

Tc . (16)

It is worth noting that the leading correction term is quadratic
in Fa/(kBT ) for t  τ1, since the linear terms cancel out.
Hence, we obtain the anomalous exponent in this limit αw as
follows:

αw � 2T

Tc

(t  τ1). (17)

This is coincident to the anomalous exponent for the purely
diffusive case [27]. Because the condition τ1 ∼ τ2 ∼ τ3 holds
in this case, both of the two nearest neighbors contribute to the

anomalous exponent at the same time scale, which is similar
to the purely diffusive case. As a result, the time evolution of
the anomalous exponent is also similar to that of the purely
diffusive case.

Strong-field cases. Next, we consider the strong-field limit
where τ1 � τ3 holds. In this limit, there are two situations
according to the value of T/Tc: (i) the strong-disorder case
(T/Tc � 1) where τ1 � τ2 � τ3 holds, and (ii) the weak-
disorder case (T/Tc ∼ 1) where τ1 � τ2 ∼ τ3 holds. We
investigate these two cases in the following.

First we consider the strong-disorder case. In a time scale
where τ2 � t � τ3 holds, by substituting Eqs. (13) and (14)
into Eq. (11), we obtain the effective waiting time in this limit
〈w(t)〉ss as follows:

〈w(t)〉ss � 1

4
K1e

− Fa
kB T

T

Tc

(K1e
− Fa

kB T t)−1− T
Tc �

(
T

Tc

+ 1

)

∝ t−1− T
Tc . (18)

Therefore, αss � T/Tc. Next, in a time scale where t  τ3

holds, we obtain

〈w(t)〉ss � 1

4
K1e

− Fa
kB T

(
T

Tc

)2

(K1e
− Fa

kB T t)−1− T
Tc

×�

(
T

Tc

+ 1

)
(K1t)

− T
Tc �

(
T

Tc

)

∝ t−1−2 T
Tc , (19)

which gives αss � 2T/Tc. From Eqs. (18) and (19), we obtain
the asymptotic expressions of the anomalous exponent in the
strong-field limit as

αss �
{

T
Tc

(τ3  t  τ2) ,
2T
Tc

(t  τ3) .
(20)

The time-dependent behavior in Eq. (20) is clearly different
from that of the weak-field case in Eq. (17). This is caused
by the strong external field. If the strong external field is
applied to the carriers, hops to the opposite direction of the
external field are suppressed and those in the same direction
are enhanced strongly. As a result, the anomalous behavior
of carriers which hop in the direction of the external field
appears first. This is the time region where α � T/Tc holds.
Next, the anomalous behavior of carriers which hop to the
opposite direction of the external field emerges. This is the time
region where α � 2T/Tc holds. It is worth mentioning that the
microscopic spatial structure, especially the discreteness of the
hopping sites, is necessary for the time-scale separation and
the discrete asymptotic values of the anomalous exponent in
Eq. (20). If the hopping sites distribute continuously, such
a time-scale separation does not occur and the anomalous
exponent would not be written in such simple approximate
forms. Hence, the microscopic spatial structure of the hopping
sites is important even in one-dimensional systems.

It is also worth noting that τ2 ∼ τ1 holds for a finite Fa/kBT

if T/Tc is small enough. It implies that the time scale where αss

approaches T/Tc is independent of Fa/kBT , if T/Tc is small
enough. On the contrary to this, since the time scale τ3 has
no dependence on T/Tc, the time scale where αss approaches
2T/Tc is determined by Fa/kBT solely.
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Second, we consider the weak-disorder case where τ1 �
τ2 ∼ τ3 holds. In this case, the effective waiting time is the
same as Eq. (19). Hence, the anomalous exponent αsw is given
by

αsw � 2T

Tc

(t  τ3). (21)

These findings are confirmed in the next section.
As stated before, we focus on the systems with the

exponential DOS throughout this study. For other types of
DOS, such as the Gaussian DOS, which is believed to be
typical to organic semiconductors, it is hard in general to obtain
simple asymptotic expressions of the anomalous exponent
due to mathematical difficulties. However, the time-dependent
behavior of the anomalous exponent can in principle be
obtained, even for these cases, by performing numerical
integrations of the effective waiting time.

III. SIMULATION

A. Anomalous behaviors

The approximate forms of the anomalous exponent in the
weak and strong external field limits given by Eqs. (17),
(20), and (21) are examined by the MC simulation of the
hopping conductance. Throughout this article, we study a
one-dimensional system with carriers allowed to hop up to
the nearest-neighboring sites, which is shown in Fig. 2.

Before examining Eqs. (17), (20), and (21), we confirm that
the time evolution of the spatial distribution of the carriers
shows anomalous behaviors such as anomalous diffusion
and anomalous advection-diffusion. We adopt the numerical
algorithm of Ref. [27], where hoppings of the walkers are
synchronized.

In Fig. 3, we show the time evolution of the spatial
distribution of the carriers. The horizontal axes are the
dimensionless positions of the carriers, which are normalized
by the lattice spacing, and the vertical axes are the numbers of
the carriers. The three symbols of figures (triangle, rectangle,
and circle) correspond to three different times. From Fig. 3(a),
one can see that the carriers exhibit anomalous diffusion if no
external field is applied. From Fig. 3(b), one can see that the
carriers exhibit anomalous diffusion-advection if an external
field is applied. Thus we have verified that the carriers show

TABLE I. Summary of simulation conditions. The parameter NP

is the number of carriers which is essentially the number of the trials
of the simulation performed. Other parameters are defined in the text.
All the carriers are initially rested at the origin for all cases.

Case NP Ns a/ξ ν0 [s−1] T/Tc Fa/kBT

III A-1 106 1010 10 1012 0.20 0
III A-2 106 1010 10 1012 0.20 1
III B 106 1010 10 1012 0.10, 0.20, 0.30 1
III C-1 105 1010 10 1012 0.10, 0.20, 0.30 15
III C-2 105 1010 10 1012 0.05, 0.20 15, 25
III C-3 105 1010 10 1012 0.20, 0.40, 0.60, 0.80 10

the anticipated anomalous behaviors. The conditions of the
simulations are collected in “Case III A-1” and “Case III A-2”
of Table I for the anomalous diffusion and the anomalous
advection-diffusion, respectively.

The process we are considering consists of many small
random steps. Each small random step is a hopping to
the nearest neighbors. As a result of many random steps,
the carriers diffuse and advect, and the statistical long-time
behavior of the carriers is obtained.

B. Weak-field cases

Now, we examine the expression of the anomalous exponent
in Eq. (17). In order to estimate the anomalous exponent, we
have used the following relation [4]:

〈x(t)〉F ∝ tαF . (22)

Here, 〈x(t)〉F is the mean displacement and αF is the
anomalous exponent for the case when the external field is
applied to the carriers. Equation (22) holds if all the carriers
are rested at the origin initially. From Eq. (22), we can
estimate αF by fitting the simulation results at time t to the
function f (t) ∝ tα . In addition, we also consider the mean
velocity of carriers 〈v(t)〉, to which the carrier current I (t) is
proportional; i.e., I (t) ∝ 〈v(t)〉 ≡ d〈x(t)〉/dt . It is also known
that 〈v(t)〉 ∝ t−1+αF and 〈v(t)〉 ∝ t−1−αF holds for short and
long time scales, respectively, when the absorbing boundary
condition is implemented to the system. This behavior explains
well the TOF signal [1,33]. In the present cases, the absorbing
boundary condition is not implemented. Hence, 〈v(t)〉 is

FIG. 3. (Color online) The time evolution of the spatial distribution of the carriers, for the case (a) without and (b) with an external field.
The carriers exhibit anomalous diffusion when no external field is applied, while they exhibit anomalous diffusion-advection when an external
field is applied. The conditions of the simulation are shown in “Case III A-1” (left) and “Case III A-2” (right) in Table I, respectively.
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FIG. 4. (Color online) The time evolution of (a) the mean velocity, (b) the effective waiting time, and (c) the anomalous exponent, for the
case of a weak field. The anomalous exponent for the case of a weak field coincides with that for the diffusive case. The conditions of the
simulation are shown in “Case III B” in Table I. The value of τ1 is equal to 4.85 × 10−4 [s].

proportional to t−1+αF . Moreover, we estimate Eq. (11) by
calculating

〈w(t)〉F = 1

Ns

Ns∑
i=1

(νii+1 + νii−1)e−(νii+1+νii−1)t (23)

by MC simulation. Here, Ns is the number of the sample
sites. As we have shown in Sec. II B, the effective waiting
time is expected to scale as 〈w(t)〉F ∝ t−1−αwt , where αwt is
the anomalous exponent whose asymptotic value is given by
Eqs. (17), (20), and (21). We attach a subscript wt to α in order
to avoid confusion with αF .

We show the result of the MC simulation for the time
evolution of the mean velocity [Fig. 4(a)], the effective waiting
time [Fig. 4(b)], and the anomalous exponent αF derived from
the result of the mean displacement [Fig. 4(c)]. The exponents
can be read off from the slope of Figs. 4(a) and 4(b), which
are expected to be αF and αwt , respectively. The condition
of the simulation is shown in “Case III B” in Table I. We
have chosen Fa/kBT = 1 so that the condition τ1 ∼ τ2 ∼ τ3

holds. Then, the value of τ1 is equal to 4.85 × 10−4 [s].
The horizontal axes are the time and the vertical axes are
the mean velocity [Fig. 4(a)], the waiting time [Fig. 4(b)],
and the anomalous exponent [Fig. 4(c)], respectively. The
three symbols in the figures (triangle, rectangle, and circle)
correspond to three different values of T/Tc. One can see
that αwt is compatible with Eq. (17), and that the asymptotic
value of αF from Figs. 4(a) and 4(c) is also compatible with
Eq. (17).

C. Strong-field cases

We consider the strong-field limit. First, we examine the
validity of Eq. (20). We show the result of the MC simulation
for the time evolution of the mean velocity [Fig. 5(a)],
the effective waiting time [Fig. 5(b)], and the anomalous
exponent αF derived from the result of the mean displacement
[Fig. 5(c)]. The condition of the simulation is shown in “Case
III C-1” in Table I. We have chosen Fa/kBT = 15 so that the
condition τ1 � τ2 � τ3 holds. Then, the values of τ1 and τ3

are equal to 4.85 × 10−4 [s] and 1.59 × 103 [s], respectively.
The horizontal axes are the time and the vertical axes are the
mean velocity and the anomalous exponent, respectively. The
three symbols in the figures (triangle, rectangle, and circle)
correspond to three different values of T/Tc. One can see
that αwt is compatible with Eq. (20), and that the asymptotic
value of αF from Figs. 5(a) and 5(c) is also compatible with
Eq. (20). From Fig. 5(c), one can see that αF first decreases
from 1 to T/Tc, and then increases up to 2T/Tc. Moreover,
one can also see that the time scales where αF reaches 2T/Tc

are independent of the value of T/Tc.
In the previous section, it is also predicted that the time

scale where αF approaches T/Tc is independent of Fa/kBT ,
if T/Tc is small enough. In order to confirm this, we
performed simulations, where the conditions are shown in
“Case III C-2” in Table I. We have chosen T/Tc = 0.05,
0.2 and Fa/kBT = 15, 25. For the case T/Tc = 0.05, τ2 =
1.03 × 10−3 [s−1] for Fa/kBT = 15 and τ2 = 1.69 × 10−3

[s−1] for Fa/kBT = 25. For the case T/Tc = 0.2, τ2 =
2.06 × 10−2 for Fa/kBT = 15 and τ2 = 2.51 × 10−1 for

FIG. 5. (Color online) The time evolution of (a) the mean velocity, (b) the effective waiting time, and (c) the anomalous exponent, for the
case of a strong field. The conditions of the simulation are in “Case III C-1” in Table I. The values of τ1 and τ3 are equal to 4.85 × 10−4 [s] and
1.59 × 103 [s], respectively.
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FIG. 6. (Color online) The time evolution of (a) the mean velocity, (b) the effective waiting time, and (c) the anomalous exponent, for the
case of a strong field and a strong disorder. The time required for the anomalous exponent αF to approach T/Tc is almost independent of the
value of Fa/kBT for the case of T/Tc = 0.05, while it is not for the case of T/Tc = 0.20. The conditions of the simulation are shown in “Case
III C-2” in Table I.

Fa/kBT = 25. We show the results of the MC simulation
for the time evolutions of the mean velocity [Fig. 6(a)],
the effective waiting time [Fig. 6(b)], and the anomalous
exponent αF derived from the result of the mean displacement
[Fig. 6(c)]. The four symbols in the figures correspond
to four different pairs of T/Tc and Fa/kBT . From Figs.
6(a) and 6(c), one can see that the time scale where αF

approaches T/Tc is almost independent of the value of
Fa/kBT for the cases of T/Tc = 0.05. On the contrary, it
depends on the value of Fa/kBT for the cases of T/Tc =
0.20, as expected. This is consistent with the theoretical
prediction.

Finally, we confirm the validity of Eq. (21). We show
the results of the MC simulation for the time evolutions
of the mean velocity [Fig. 7(a)], the effective waiting time
[Fig. 7(b)], and the anomalous exponent αF derived from the
result of the mean displacement [Fig. 7(c)]. The conditions
of the simulation are shown in “Case III C-3” in Table I.
We have set Fa/kBT = 10 so that the condition τ1 � τ3

holds. Then, τ1 = 4.85 × 10−4 [s] and τ3 = 1.07 × 101 [s],
respectively. The horizontal axes are the time and the vertical
axes are the mean velocity, the waiting time, and the anomalous
exponent, respectively. The three symbols in the figures
(triangle, rectangle, and circle) correspond to three different
values of T/Tc. We also show the results of T/Tc = 0.2
(cross) for reference. One can see that αwt is equal to 2T/Tc

for all four cases [Fig. 7(b)]. This is consistent with the
theoretical prediction, Eq. (21). On the other hand, it is known
that αF is equal to 1 for the case αwt > 1 [4]. This is also

consistent with the results of the MC simulation [Figs. 7(a)
and 7(c)].

IV. DISCUSSION

In this section, we discuss the relation of our results to
previous studies for both the weak- and strong-field cases.
For the weak-field cases, Barkai et al. [33,34] have shown
that CTRW with the anomalous exponent α is described by
the fractional Fokker-Planck equation (FFPE) and the FFPE
describes the behavior of the SMM qualitatively. Because
the disorder model can be regarded as a CTRW model with
the anomalous exponent of Eq. (17), by the coarse graining
performed above, it is expected that the disorder model in this
limit is described by the FFPE and its behavior is qualitatively
consistent with the SMM. Moreover, although α is a parameter
in their theory, we have derived it from a microscopic physical
model. Therefore, our results make it possible to estimate
the transport coefficients in the FFPE quantitatively, and to
compare the results of the simulations with experiments or
other models, such as the SMM, quantitatively. These are
future works.

It is also worth noting that Richert et al. [35] have shown
that the Einstein relation [36]

D

μ
= kBT

e
(24)

does not hold in the disorder model. Here, D is the diffusion
constant and μ is the mobility. They have shown that

FIG. 7. (Color online) The time evolutions of (a) the mean velocity, (b) the effective waiting time, and (c) the anomalous exponent, for the
case of a strong field and a weak disorder. The anomalous exponent αF approaches 1 as T/Tc increases. The conditions of the simulation are
shown in “Case III C-3” in Table I.
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the disorder model shows a deviation from the Einstein
relation and the magnitude of the deviation increases as time
evolves.

On the other hand, Barkai et al. [33,37] have shown the
following features. If the anomalous exponents of the waiting
time of a system with and without a driving force, αF and α0,
are the same, i.e., the condition

α0 = αF = α (25)

holds, the corresponding mean square displacements, 〈x(t)〉F
and 〈x2(t)〉0, are proportional to tα , and the generalized
Einstein relation

〈x2(t)〉0 = 2
kBT

F
〈x(t)〉F (26)

holds instead of Eq. (24) [37]. Moreover, Barkai [33] has
conjectured that the generalized Einstein relation would hold
for the hopping conduction by assuming that the condition
α0 = αF holds. Because we have shown that Eq. (25) holds for
the disorder model in the weak-field limit, our results support
their assumptions. Therefore, the generalized Einstein relation
Eq. (26), rather than Eq. (24), holds in the disorder model.

For the strong-field and strong-disorder cases, it is impor-
tant that α takes the value of T/Tc, which is the same as that
of the MTM, before approaching 2T/Tc. This implies that
there is a time region in this case that the anomalous exponent
of the disorder model coincides with that of the MTM. The
relation of the disorder model to the MTM has been studied by
Hartenstein et al. [38]. They have numerically shown that the
waiting times of both models are similar if α of both models
are equal. In this study, we have theoretically found a time
region where α of both models are equal.

Throughout this study, we have mainly focused on the
one-dimensional system with a dc electric field. It is worth
noting that the extrapolation of our analytical results to three-
dimensional systems would not be straightforward, because
the behaviors of the hopping conduction depend on the
dimensionality of the system in the presence of an external
field. In addition, it is significant to analyze systems with
ac fields and compare the result with previous studies, such
as the coherent medium approximation, the bond percolation
model [39,40]. These are future works. Finally, we note that a
model which has a different type of the hopping rate and the
energy barrier has been studied in Ref. [41]. The exact form
of the anomalous exponent has been obtained and is different
from our results. Detailed comparison of the two works might
be intriguing.

V. SUMMARY

In this study, we have theoretically investigated the dc
electric field effect on the anomalous exponent of the hopping
conduction in the disorder model. First of all, we have
calculated the effective waiting time of a general system with
an external field and shown that the time evolution of the
anomalous exponent depends on the external field. We have
found that there are three typical time scales for each pair of
sites, which are (1) the typical time scale of the diffusion, (2)
the time scale in which the anomalous behavior of the hopping

in the direction of the field appears, which depends on the
strength of the disorder and the external field, and (3) the time
scale in which the anomalous behavior of the hopping in the
opposite direction of the field appears, which is independent
of the strength of the disorder.

Next, we have focused on a one-dimensional system where
carriers can hop only to the nearest neighbors, and calculated
the effective waiting time of this system. We have analytically
identified the anomalous exponent from the asymptotic form
of the effective waiting time. For the case of a weak field, we
have shown that the anomalous exponent is given by 2T/Tc

and is consistent with that of diffusive systems. For the case of
a strong field, we have considered strong- and weak-disorder
cases. For the strong field and the strong-disorder case, the
time evolution of the anomalous exponent clearly differs from
that for the case of a weak field. The anomalous exponent first
decreases from 1 to T/Tc, and then increases up to 2T/Tc. We
have also shown that the time scale in which the anomalous
exponent approaches T/Tc is independent of Fa/kBT , if
T/Tc is small enough. In contrast, the time scale in which
the anomalous exponent approaches 2T/Tc is determined by
Fa/kBT solely. For the strong field and the weak-disorder
case, the exponent is equal to 1. It is reasonable that the
transport is normal in the weak-disorder limit.

We have verified the above theoretical predictions by means
of MC simulation of the hopping conductance. We have chosen
a one-dimensional system with carriers allowed to hop only
to the nearest-neighboring sites. The hopping process consists
of many small random steps, which results in the statistical
long-time behavior of the carriers, i.e., anomalous diffusion
and advection. We have demonstrated that the carriers actually
show the expected anomalous behavior.

Then, we have verified the effect of an external field on the
anomalous exponent. For the case of a weak field, we have
verified that the anomalous exponent is consistent with that of
diffusive systems. For the case of a strong field and a strong
disorder, we have verified that the anomalous exponent first
decreases from 1 to T/Tc, and then increases up to 2T/Tc in the
long-time limit. Characteristic time scales of these behaviors
are consistent with the theoretical predictions. For the case of
a strong field and a weak disorder, we have verified that the
value of the anomalous exponent of the effective waiting time
is equal to 2T/Tc. In addition, the exponent of the collective
behavior of the carriers is equal to 1 for the case 2T/Tc > 1.
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APPENDIX A: DERIVATION OF EQ. (5)

In this Appendix, we derive Eq. (5). First, the hopping rate
from site i to site j is given by Eq. (2),

νij = ν0e
−2Rij /ξ−(εji−Fxji )�(εji−Fxji )/kBT . (A1)

Then, defining �i by �i ≡ ∑
j∈N νij (N represents the set of

all the sites in the system) and Kji ≡ ν0e
−2Rji/ξ , the waiting
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time of a carrier on site i is expressed as

wi(t) = �ie
−�it =

∑
k∈N

Kkie
− (εki−Fxki )�(εki−Fxki )

kB T e
− ∑

l∈N Kli exp[− (εli−Fxli )�(εli−Fxli )
kB T

]t
. (A2)

Finally, using the fact that the energy difference εji obeys the Laplace distribution pL(εji) ≡ e−|εji |/kBTc/(2kBTc), the effective
waiting time of the system is given by the ensemble average with respect to the energy distribution,

〈w(t)〉F =
⎛
⎝∏

j∈N

∫ ∞

−∞
dεjipL(εij )

⎞
⎠ wi(t) =

⎛
⎝∏

j∈N

∫ ∞

−∞
dεji

e
− |εji |

kB Tc

2kBTc

⎞
⎠

(∑
k∈N

Kkie
− (εki−Fxki )�(εki−Fxki )

kB T e
− ∑

l∈N Kli exp[− (εli−Fxli )�(εli−Fxli )
kB T

]t

)
.

(A3)

Thus, we have derived Eq. (5).

APPENDIX B: DERIVATION OF EQ. (7)

In this Appendix, we derive Eq. (7). In the following we consider the case T/Tc < 1 and F � 0 in which we are interested in
this study. For other cases, e.g., F � 0, similar techniques would be applicable. We start from Eq. (5):

〈w(t)〉F =
⎛
⎝∏

j∈N

∫ ∞

−∞
dεji

e
− |εji |

kB Tc

2kBTc

⎞
⎠ (∑

k∈N
Kkie

− (εki−Fxki )�(εki−Fxki )
kB T e

− ∑
l∈N Kli exp[− (εli−Fxli )�(εli−Fxli )

kB T
]t

)
. (B1)

We can calculate the integrals in Eq. (B1) by two successive transformations of the integration variables [32].
We divide N into three sets N+, N0, and N−, according to the sign of xli . Here, N+ represents a set of neighboring sites which

satisfy the condition xli > 0, N0 represents that of neighboring sites which satisfy the condition xli = 0, and N− represents that
of neighboring sites which satisfy xli < 0.

First, we consider the case xli > 0. In this case, we can calculate the integral as follows:∫ ∞

−∞
dεli

e
− |εli |

kB Tc

2kBTc

e
−Kli exp[− (εli−Fxli )�(εli−Fxli )

kB T
]t =

∫ Fxli

−∞
dεli

e
− |εli |

kB Tc

2kBTc

e−Kli t +
∫ ∞

Fxli

dεli

e
− εli

kB Tc

2kBTc

e
−Kli exp(− εli−Fxli

kB T
)t
. (B2)

The first term in Eq. (B2) can be calculated as∫ Fxli

−∞
dεli

e−|εli |/kBTc

2kBTc

e−Kli t = e−Kli t − 1

2
e
− Fxli

kB T
T
Tc e−Kli t . (B3)

The second term in Eq. (B2) can be calculated by two successive transformations of the integration variables, i.e., Ali =
e−(εli−Fxli )/kBT for the first step, and Cli = KliAli t for the second. By the first transformation Ali = e−(εli−Fxli )/kBT , and using
dAli/dεli = −Ali/kBT , we obtain∫ ∞

Fxli

dεli

e
− εli

kB Tc

2kBTc

e−Kli exp[−(εli−Fxli )/kBT ]t = 1

2
e
− Fxli

kB T
T
Tc

T

Tc

∫ 1

0
dAliA

−1+ T
Tc

li e−KliAli t . (B4)

Then, by the second transformation Cli = KliAli t , we obtain

1

2
e
− Fxli

kB T
T
Tc

T

Tc

∫ 1

0
dAjiA

−1+ T
Tc

j i e−KjiAji t = 1

2
e
− Fxli

kB T
T
Tc

T

Tc

(Klit)
− T

Tc γ

(
T

Tc

,Kli t

)
. (B5)

Here,

γ (T/Tc,Kij t) ≡
∫ Kij t

0
dττ−1+T/Tc e−τ (B6)

is the lower incomplete gamma function. Substituting Eqs. (B3) and (B5) into Eq. (B2), we obtain∫ ∞

−∞
dεli

e−|εli |/kBTc

2kBTc

e−Kli exp[−(εli−Fxli )�(εli−Fxli )/kBT ]t =
(

1 − 1

2
e
− Fxli

kB T
T
Tc

)
e−Kli t + 1

2
e
− Fxli

kB T
T
Tc

T

Tc

(Klit)
− T

Tc γ

(
T

Tc

,Kli t

)
≡ I

(0)+
li .

(B7)

Similarly, we obtain ∫ ∞

−∞
dεli

e−|εli |/kBTc

2kBTc

e
− (εli−Fxli )�(εli−Fxli )

kB T e−Kli exp[−(εli−Fxli )�(εli−Fxli )/kBT ]t

=
(

1 − 1

2
e
− Fxli

kB T
T
Tc

)
e−Kli t + 1

2
e
− Fxli

kB T
T
Tc

T

Tc

(Klit)
−1− T

Tc γ

(
T

Tc

+ 1,Kli t

)
≡ I

(1)+
li . (B8)

052123-10



DC ELECTRIC FIELD EFFECT ON THE ANOMALOUS . . . PHYSICAL REVIEW E 88, 052123 (2013)

Next, we consider the case xli = 0. For this case, we can adapt the above mathematical techniques again:∫ ∞

−∞
dεli

e−|εli |/kBTc

2kBTc

e−Kli exp[−(εli )�(εli )/kBT ]t =
∫ 0

−∞
dεli

e−|εli |/kBTc

2kBTc

e−Kli t +
∫ ∞

0
dεli

e−|εli |/kBTc

2kBTc

e−Kli exp(−εli /kBT )t . (B9)

The first term in Eq. (B9) can be calculated as∫ 0

−∞
dεli

e−|εli |/kBTc

2kBTc

e−Kli t = 1

2
e−Kli t . (B10)

Using the variable transformations in the above, the second term in Eq. (B9) can be calculated as follows:∫ ∞

0
dεli

e−εli /kBTc

2kBTc

e−Kli exp(−εli /kBT )t = 1

2

T

Tc

(Klit)
− T

Tc γ

(
T

Tc

,Kli t

)
. (B11)

Substituting Eqs. (B10) and (B11) into Eq. (B9), we obtain∫ ∞

−∞
dεli

e−|εli |/kBTc

2kBTc

e−Kli exp[−εli�(εli )/kBT ]t = 1

2
e−Kli t + 1

2

T

Tc

(Klit)
− T

Tc γ

(
T

Tc

,Kli t

)
≡ I

(0)0
li . (B12)

Similarly, we obtain∫ ∞

−∞
dεli

e−|εli |/kBTc

2kBTc

e−εli�(εli )/kBT e−Kli exp[−εli�(εli )/kBT ]t = 1

2
e−Kli t + 1

2
(Klit)

−1− T
Tc γ

(
T

Tc

+ 1,Kli t

)
≡ I

(1)0
li . (B13)

Finally, we consider the case xli < 0. For this case, we can adapt the above mathematical techniques again:∫ ∞

−∞
dεli

e−|εli |/kBTc

2kBTc

e−Kli exp[−(εli−Fxli )�(εli−Fxli )/kBT ]t

=
∫ Fxli

−∞
dεli

e−|εli |/kBTc

2kBTc

e−Kli t +
∫ ∞

Fxli

dεli

e−|εli |/kBTc

2kBTc

e−Kli exp[−(εli−Fxli )/kBT ]t . (B14)

The first term in Eq. (B14) can be calculated as∫ Fxli

−∞
dεli

e−|εli |/kBTc

2kBTc

e−Kli t = 1

2
eFxli/kBTc e−Kli t . (B15)

The second term in Eq. (B14) can be calculated as∫ ∞

Fxli

dεli

e−|εli |/kBTc

2kBTc

e−Kli exp[−(εli−Fxli )/kBT ]t

=
∫ 0

Fxli

dεli

eεli /kBTc

2kBTc

e−Kli exp[−(εli−Fxli )/kBT ]t +
∫ ∞

0
dεli

e−εli /kBTc

2kBTc

e−Kli exp[−(εli−Fxli )/kBT ]t . (B16)

Using the variable transformations in the above, the first term in Eq. (B16) can be calculated as∫ 0

Fxli

dεli

eεli /kBTc

2kBTc

e−Kli exp[−(εli−Fxli )/kBT ]t = −1

2
e

Fxli
kB T

T
Tc e−Kli t + 1

2
e

Fxli
kB T

T
Tc

(1− T
Tc

)
e
−Kli exp( Fxli

kB T
T
Tc

)t + 1

2
e

Fxli
kB T

T
Tc (Klit)

T
Tc γ

(
1 − T

Tc

,Kli t

)

− 1

2
e

Fxli
kB T

T
Tc (Klit)

T
Tc γ

(
1 − T

Tc

,Klie
Fxli
kB T

T
Tc t

)
. (B17)

The second term in Eq. (B16) can be calculated as∫ ∞

0
dεli

e−εli /kBTc

2kBTc

e−Kli exp[−(εli−Fxli )/kBT ]t = 1

2
e
− Fxli

kB T
T
Tc

T

Tc

(Klit)
− T

Tc γ

(
T

Tc

,Klie
Fxli
kB T t

)
. (B18)

Substituting Eqs. (B15), (B17), and (B18) ) into Eq. ((B14), we obtain∫ ∞

−∞
dεli

e−|εli |/kBTc

2kBTc

e−Kli exp[−(εli−Fxli )�(εli−Fxli )/kBT ]t

= 1

2
e

Fxli
kB T

T
Tc

(1− T
Tc

)
e
−Kli exp( Fxli

kB T
T
Tc

)t + 1

2
e

Fxli
kB T

T
Tc (Klit)

T
Tc γ

(
1 − T

Tc

,Kli t

)

− 1

2
e

Fxli
kB T

T
Tc (Klit)

T
Tc γ

(
1 − T

Tc

,Klie
Fxli
kB T

T
Tc t

)
+ 1

2
e
− Fxli

kB T
T
Tc

T

Tc

(Klit)
− T

Tc γ

(
T

Tc

,Klie
Fxli
kB T t

)
≡ I

(0)−
li . (B19)
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Similarly, we obtain∫ ∞

−∞
dεli

e−|εli |/kBTc

2kBTc

e−(εli−Fxli )�(εli−Fxli )/kBT e−Kli exp[−(εli−Fxli )�(εli−Fxli )/kBT ]t

= 1

2
eFxli/kBTc e−Kli t + 1

2
e

Fxli
kB T

T
Tc

T

Tc

(Klit)
−1+ T

Tc

[
γ

(
1 − T

Tc

,Kli t

)
− γ

(
1 − T

Tc

,Klie
Fxli
kB T

T
Tc t

)]

+ 1

2
e
− Fxli

kB T
T
Tc

T

Tc

(Klit)
−1− T

Tc γ

(
T

Tc

+ 1,Klie
Fxli
kB T t

)
≡ I

(1)−
li . (B20)

Substituting Eqs. (B7), (B8), (B12), (B13), (B19), and (B20) into Eq. (B1), we finally obtain the effective waiting time as follows:

〈w(t)〉F =
∑
k∈N+

⎧⎨
⎩KkiI

(1)+
ki

∏
j∈N+,j �=k

I
(0)+
ji

∏
m∈N0,m�=k

I
(0)0
mi

∏
l∈N−,l �=k

I
(0)−
li

⎫⎬
⎭

+
∑
k∈N0

⎧⎨
⎩KkiI

(1)0
ki

∏
j∈N+,j �=k

I
(0)+
ji

∏
m∈N0,m�=k

I
(0)0
mi

∏
l∈N−,l �=k

I
(0)−
li

⎫⎬
⎭

+
∑
k∈N−

⎧⎨
⎩KkiI

(1)−
ki

∏
j∈N+,j �=k

I
(0)+
ji

∏
m∈N0,m�=k

I
(0)0
mi

∏
l∈N−,l �=k

I
(0)−
li

⎫⎬
⎭ . (B21)

Thus, we have derived Eq. (7).

APPENDIX C: DERIVATION OF EQ. (11)

In this Appendix, we derive Eq. (11). For a one-dimensional system where carriers can hop only to the nearest neighbors,
Eq. (7) becomes

〈w(t)〉F = K1I
(1)+
i+1i I

(0)−
i−1i + K1I

(1)−
i−1i I

(0)+
i+1i . (C1)

Here, K1 ≡ ν0e
−2a/ξ and I

(1)+
i+1i , I

(1)−
i−1i , I

(0)+
i+1i and I

(0)−
i−1i are given by

I
(1)+
i+1i =

(
1 − 1

2
e
− Fa

kB T
T
Tc

)
e−K1t + 1

2
e
− Fa

kB T
T
Tc

T

Tc

(K1t)
−1− T

Tc γ

(
T

Tc

+ 1,K1t

)
, (C2)

I
(1)−
i−1i = 1

2
e

−Fa
kB T

T
Tc e−K1t + 1

2
e

−Fa
kB T

T
Tc

T

Tc

(K1t)
−1+ T

Tc

{
γ

(
1 − T

Tc

,K1t

)
− γ

(
1 − T

Tc

,K1e
−Fa
kB T

T
Tc t

)}

+ 1

2
e

Fa
kB T

T
Tc

T

Tc

(K1t)
−1− T

Tc γ

(
T

Tc

+ 1,K1e
−Fa
kB T t

)
, (C3)

I
(0)+
i+1i =

(
1 − 1

2
e
− Fa

kB T
T
Tc

)
e−K1t + 1

2
e
− Fa

kB T
T
Tc

T

Tc

(K1t)
− T

Tc γ

(
T

Tc

,K1t

)
, (C4)

I
(0)−
i−1i = 1

2
e

−Fa
kB T

T
Tc

(1− T
Tc

)
e
−K1 exp( −Fa

kB T
T
Tc

)t + 1

2
e

−Fa
kB T

T
Tc (K1t)

T
Tc γ

(
1 − T

Tc

,K1t

)

− 1

2
e

−Fa
kB T

T
Tc (K1t)

T
Tc γ

(
1 − T

Tc

,K1e
−Fa
kB T

T
Tc t

)
+ 1

2
e

Fa
kB T

T
Tc

T

Tc

(K1t)
− T

Tc γ

(
T

Tc

,K1e
−Fa
kB T t

)
. (C5)

Substituting Eqs. (C2)–(C5) into Eq. (C1), we obtain

〈w(t)〉F = K1

[(
1 − 1

2
e
− Fa

kB T
T
Tc

)
e−K1t + 1

2
e
− Fa

kB T
T
Tc

T

Tc

(K1t)
−1− T

Tc γ

(
T

Tc

+ 1,K1t

)]

×
[

1

2
e

−Fa
kB T

T
Tc

(1− T
Tc

)
e
−K1 exp( −Fa

kB T
T
Tc

)t + 1

2
e

−Fa
kB T

T
Tc (K1t)

T
Tc γ

(
1 − T

Tc

,K1t

)

− 1

2
e

−Fa
kB T

T
Tc (K1t)

T
Tc γ

(
1 − T

Tc

,K1e
−Fa
kB T

T
Tc t

)
+ 1

2
e

Fa
kB T

T
Tc

T

Tc

(K1t)
− T

Tc γ

(
T

Tc

,K1e
−Fa
kB T t

)]
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+K1

[
1

2
e

−Fa
kB T

T
Tc e−K1t + 1

2
e

−Fa
kB T

T
Tc

T

Tc

(K1t)
−1+ T

Tc

{
γ

(
1 − T

Tc

,K1t

)
− γ

(
1 − T

Tc

,K1e
−Fa
kB T

T
Tc t

)}

+ 1

2
e

Fa
kB T

T
Tc

T

Tc

(K1t)
−1− T

Tc γ

(
T

Tc

+ 1,K1e
−Fa
kB T t

)]

×
[(

1 − 1

2
e
− Fa

kB T
T
Tc

)
e−K1t + 1

2
e
− Fa

kB T
T
Tc

T

Tc

(K1t)
− T

Tc γ

(
T

Tc

,K1t

)]
. (C6)

Thus, we have derived Eq. (11).
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