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Three-site interacting spin chain in a staggered field: Fidelity versus Loschmidt echo
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We study the the ground state fidelity and the ground state Loschmidt echo of a three-site interacting XX chain
in presence of a staggered field which exhibits special types of quantum phase transitions due to change in the
topology of the Fermi surface, apart from quantum phase transitions from gapped to gapless phases. We find that,
on one hand, the fidelity is able to detect only the boundaries separating the gapped from the gapless phase; it is
completely insensitive to the phase transition from the two Fermi points region to the four Fermi points region
lying within this gapless phase. On the other hand, the Loschmidt echo shows a dip only at a special point in the
entire phase diagram and hence fails to detect any quantum phase transition associated with the present model.
We provide appropriate arguments in support of this anomalous behavior.
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I. INTRODUCTION

The desire to build a quantum computer to solve quantum
problems efficiently has led to immense recent developments
in the studies of quantum information theory in many-body
systems and its connection to quantum phase transitions. Many
important quantum information theoretic measures exhibit
interesting scaling behavior close to a quantum critical point
(QCP) of a quantum many-body system. One such measure
is the ground state quantum fidelity, which is an overlap of
the ground state wave function at two different values of the
parameters of the quantum Hamiltonian [1–6]. The fidelity
has attracted the attention of condensed matter physicists in
recent years because of its ability to detect a quantum critical
point without an a priori knowledge of the order parameter
of the system, which otherwise is the conventional way of
probing a quantum phase transition (QPT) [6–8]. The quantum
fidelity shows a dip at a QCP, while the fidelity susceptibility
(which defines the rate at which the fidelity changes for a
finite system in the limit when the two parameters under
consideration are infinitesimally close in the parameter space)
shows a peak right there and has a scaling form given in terms
of some of the exponents associated with the corresponding
QPT [3]. Similarly, the fidelity has been conjectured to exhibit
an interesting scaling relation involving the quantum critical
exponents also in the thermodynamically large system for a
finite separation between the parameters [9].

Although approaches based on the fidelity and the fidelity
susceptibility have been successful in detecting various types
of quantum phase transition points, for example, ordinary
critical points separating two gapped phases through a gapless
point [1,2] or topological QPTs [10] or QPTs in a Bose-
Hubbard model [11], its usefulness in a general scenario is
not yet fully settled. The absence of a peak in the fidelity
susceptibility when νd > 2 (where ν is the correlation length
exponent associated with the QCP of a d-dimensional system)
has been argued in Refs. [12,13]. It has also been shown that
in the marginal case (νd = 2), a sharp dip in the fidelity
is absent at the QCP using the example of Dirac points
in two dimensions [14]. On the other hand, the presence
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of a quasiperiodic lattice introduces extra peaks in fidelity
susceptibility, which cannot be detected by studying the energy
spectrum [13]. To show one more contradiction, we present a
model where the fidelity detects the onset of a gapless quantum
critical region but not the transition between two different
phases within this gapless quantum critical region.

One of the other important quantities which bridges a
connection between the quantum information theory and
QPT is the ground state Loschmidt echo (L) [15–17]. The
Loschmidt echo is the measure of the overlap (at an instant
t) of the same initial state, the ground state of the initial
Hamiltonian of a many-body system H (λ), but evolving under
the influence of the two Hamiltonians, H (λ) and H (λ + δ);
in this sense, it is the dynamical counterpart of the static
fidelity [1]. This L also shows a dip at the QCP, thus enabling us
to detect it. From the viewpoint of quantum information theory,
the Loschmidt echo can be used to measure the quantum
to classical transition (or the transition from a pure to the
mixed state) of a qubit coupled to an environment consisting
of the many-body system. In this case, it is the interaction
between the qubit and the many-body system that changes
the parameter λ of the Hamiltonian to λ + δ [15]. The notion
of L was actually introduced in connection to the quantum
to classical transition in quantum chaos [18–22] and is now
extended to various other systems undergoing a QPT like an
Ising model [15], Bose-Einstein condensate model [23], and
Dicke model [24]. It has also been studied experimentally
using NMR experiments [25–27].

In this paper we point out the inability of the fidelity
or L to detect certain special class of QCPs by taking
the example of a staggered transverse field in a three-spin
interacting spin-1/2 XX chain [28]. There are several studies
which explore the phase transition in similar or slightly
different three-site interacting Hamiltonians using tools like
zero and finite temperature magnetization and magnetization
susceptibility [28,29] and transport properties like spin Drude
weight and thermal Drude weight [29,30]. The effect of three-
site interaction has also been studied using the magnetocaloric
effect [31] or by using dynamic structure factors of the
ground state [32]. On the other hand, the effect of a three-
site interacting Hamiltonian is relatively less explored using
quantum information theoretic measures, which is the focus
of the present paper. There have been studies using Renyi
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entropy [33], concurrence, geometric discord and quantum
discord [34], average fidelity of state transfer [35], geometric
phase [36], L [37], and fidelity [38] of different versions of a
three-site interacting Hamiltonian. This study is an important
addition to the literature as to the best of our knowledge, the
fidelity and L of a Hamiltonian which also undergoes a very
unique type of quantum phase transition, namely, from two
Fermi points to four Fermi points, has not been investigated
before. We find surprising results due to the combined effect
of a staggered field and the three-site interacting term in the
calculations of fidelity and L, which are not a priori obvious.
It is worth mentioning here that many interesting experimental
observations, like magnetic properties of solid 3He, have been
interpreted as a consequence of the presence of multispin
interactions [39].

The outline of the paper is as follows: The model and its
zero temperature phase diagram along with a brief description
of the nature of the associated quantum phase transitions are
presented in Sec. II. With an aim to studying different QPTs
occurring in this model, we discuss the static probe, i.e., the
ground state fidelity and fidelity susceptibility in Sec. III, and
the dynamic probe given by the ground state Loschmidt echo
in Sec. IV. We summarize our results in the concluding Sec. V.

II. MODEL

In this section we briefly discuss the ground state phase
diagram of the one-dimensional three-spin interaction Hamil-
tonian in presence of a staggered field hs given by the
Hamiltonian [28]

HTS = −
N∑

j=1

J

2

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1

)

−
N∑
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4
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j σ
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)
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−
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(−1)jhsσ
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j , (1)

where σ are the usual Pauli matrices satisfying the standard
commutation relations and N is the system size. Performing
the Jordan-Wigner fermionization from spin-1/2 to spinless
fermions cj [40,41] with the following definitions:
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j

j−1∏
k=1

( − σ z
k

)
,

σ−
j = σx

j − iσ
y

j

2
=

j−1∏
k=1

( − σ z
k

)
cj ,

σ z
j = 2c

†
j cj − 1,

we get
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∑
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4

∑
j

(c†j cj+2 + c
†
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−
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(−1)jhs

(
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2

)
. (2)

Here cj is the Fermion annihilation operator at the site j .
To diagonalize the above Hamiltonian, it is convenient to
introduce two types of spinless fermions on the odd and even
sublattices given by

c2j−1 = aj−1/2 and c2j = bj .

Substituting this in Eq. (2) and performing a Fourier transfor-
mation we obtain

HTS =
∑

k

Hk

=
∑

k

[εa(k)a†
kak + εb(k)b†kbk + εab(k)(a†

kbk + b
†
kak)],

where

εa(k) = J3

2
cos k + hs, εb(k) = J3

2
cos k − hs,

(3)
εab(k) = −J cos(k/2),

and k = 4πn/N with −N/4 < n < N/4 for periodic bound-
ary conditions [42].

To make the subsequent calculations of the fidelity and L

more transparent, we introduce a set of basis vectors given by
|0,0〉,|ak,0〉,|0,bk〉,|ak,bk〉 where the first index represents the
presence or absence of the ak− particle, and the second index
denotes those of the bk particle. In these bases, the reduced
Hamiltonian Hk is given by

Hk =

⎡
⎢⎢⎣

0 0 0 0
0 εa(k) εab(k) 0
0 εab(k) εb(k) 0
0 0 0 εa(k) + εb(k)

⎤
⎥⎥⎦ . (4)

We note that to diagonalize the above Hamiltonian, only
the basis |ak,0〉 and |0,bk〉 needs to be rotated since the
Hamiltonian in the other two bases is already diagonal; i.e.,
there is no mixing along these two directions. Let us denote
the two new directions for the two new quasiparticles αk

and βk as |αk,0〉 and |0,βk〉, which diagonalize the total
Hamiltonian giving four eigenenergies 0, E−(k), E+(k) and
E−(k) + E+(k) [=εa(k) + εb(k)] corresponding to the four
eigenstates |0,0〉, |αk,0〉, |0,βk〉, and |αk,βk〉 (=|ak,bk〉),
respectively. The two new eigenenergies with J set to unity
are

E±(k) = J3

2
cos k ±

√
h2

s + cos2(k/2) (5)

with the corresponding eigenvectors

|αk,0〉 = cos
θk

2
|ak,0〉 − sin

θk

2
|0,bk〉,

(6)
|0,βk〉 = sin

θk

2
|ak,0〉 + cos

θk

2
|0,bk〉,

where

tan θk(hs) = cos(k/2)

hs

. (7)

Hence, the Hamiltonian can now be written in a diagonalized
form as

HTS =
∑

k

E−(k)α†
kαk + E+(k)β†

kβk.
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The ground state of this Hamiltonian corresponds to all the
modes with negative energies filled, and hence depending
upon the parameter values of the Hamiltonian, the system
has various phases. We briefly discuss these phases below:

(1) When hs > J3/2: E+(k) > 0 and E−(k) < 0 for all
k, and hence the ground state for each mode is |αk,0〉
with total ground state energy Eg = ∑

k E−(k). This is the
antiferromagnetic (AF) phase.

(2) When
√

J 2
3 /4 − 1 < |hs | < J3/2: Some of the k modes

from the E+(k) branch become negative, whereas E−(k) is
negative for all the modes. This phase has two Fermi points
arising due to zeros of the E+(k) branch. In this region
the ground state for a given mode can be |αk,0〉 or |αk,βk〉
depending upon whether the E+(k) branch is empty or filled.
The total ground state energy in this phase is given by

Eg =
∑

k

E−(k)�[−E−(k)] + E+(k)�[−E+(k)],

where � is the Heaviside function. We call this phase the spin
liquid I (SLI) phase.

(3) When 0 < |hs | <
√

J 2
3 /4 − 1: In this limit, E−(k) also

crosses zero for some modes resulting in four Fermi points,
two from each branch. Hence, there are three possible ground
states for a given mode k depending upon the signs of the
energies E±(k) given by |αk,0〉, |0,0〉, and |αk,βk〉. Once again
the ground state energy is the sum over all the modes with
negative energies for each branch as written above. This phase
is called the spin liquid II (SLII) phase.

Following the above arguments, the phase diagram of the
model is shown in Fig. 1(a). To complete the discussion of the
phase diagram, let us now comment upon the nature of these
quantum phase transitions. We define a stiffness κ for a system
of size N as

κ = − 1

N

∂2Eg

∂h2
s

. (8)

A diverging κ points to a second order quantum phase
transition in the ground state of the system. In Fig. 1(b) we
present κ as a function of hs for two different values of J3,
which clearly shows that the phase transition from AF to SLI
phase and SLI to SLII phase is indeed a second order quantum
phase transition. The two gapless phases SLI and SLII are
characterized by two different types of power law decays of
transverse spin-spin correlation functions C(r)(=〈σx

n σ x
n+r〉 =

〈σy
n σ

y
n+r〉) as shown in Ref. [28]. These correlation functions

for hs = 0 are given by

C(r) = A1

r1/2
+ B1 cos(C1r)

r5/2
in SLI phase (9)

and

C(r) = A2 cos(C2r)

r
+ B2 cos(D2r)

r
+ E2 cos(F2r)

r3

+ G2 cos(H2r)

r3
in SLII phase, (10)

where all the constants (A1 . . . H2) are smooth functions of J3.
We now try to capture these phase transitions using the fidelity
approach, especially the phase transition from SLI to SLII, and
later discuss them in the light of Loschmidt echo.
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FIG. 1. (a) The phase diagram of the three-spin model in presence
of a staggered field. The solid lines correspond to the hs = ±J3/2
critical line, and the dotted lines correspond to hs = ±

√
(J 2

3 − 4)/4.
(b) The diverging κ for two different values of J3. For J3 = 1,
divergence occurs at hs = ±0.5 (AF to SLI), whereas for J3 = 4,
critical points where the divergences occur are at hs = ±2 (AF to
SLI) and hs = ±√

3 (SLI to SLII).

III. FIDELITY

As mentioned in the Introduction, the ground state fidelity
is defined as the overlap between the two ground state wave
functions at different parameter values; for the present model
the fidelity is given by

F = 〈�G(hs)|�G(hs + δ)〉 =
∏
k

〈�k(hs)|�k(hs + δ)〉

=
∏
k

Fk, (11)

where |�G(hs)〉 is the total ground state at h = hs and |�k(hs)〉
is the ground state for the kth mode. Thus, while evaluating Fk ,
one has to carefully identify the ground state for the kth mode
depending upon the sign of E±(k). The various possibilities
are the following:

(1) Fk = 〈αk,0|αk,0〉δ = cos[ θk(hs )−θk (hs+δ)
2 ], with θk de-

fined in Eq. (7).
(2) Fk = 〈αk,βk|αk,βk〉δ = 〈0,0|0,0〉δ = 1.
(3) Fk = 〈αk,0|αk,βk〉δ = 〈αk,0|0,0〉δ = 0 with similar

cross-products also equal to zero.
Here we fix the notation of the bra/ket without any subscript

to denote the field hs and with a subscript δ when the field
is hs + δ, which will be followed throughout the rest of the
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FIG. 2. The ground state fidelity as a function of the staggered
field hs for two different values of J3. The SLII phase exists only for
J3 = 4, but this phase is not captured by the fidelity. Fidelity detects
only the gapped to gapless phase transition of the model, which occurs
at hs = ±J3/2. The inset shows the fidelity susceptibility for J3 = 4
as a function of the staggered field for the data corresponding to
the main figure with a peak at the AF to SLI phase transition for
hs = ±J3/2. For better clarity, we have removed the diverging value
of χF at the critical point as the jump is very large. In both main figure
and inset, N = 106 and δ = 0.01.

paper. We have also used the orthogonality of the basis states
in deriving the above steps. It is to be noted that within the
entire gapless region including SLI and SLII phase, there is
at least one k mode for which Fk = 0, and hence fidelity in
the entire gapless region is zero. With these considerations,
we numerically evaluate the fidelity using Eq. (11) which is
shown in Fig. 2. As discussed above, the fidelity is zero in
the entire gapless region. We also briefly comment upon the
behavior of the fidelity susceptibility χF , which is the second
order derivative of the fidelity with respect to a parameter of
the Hamiltonian, and in this case is given as

χF = −∂2F (hs,δ)

∂h2
s

.

As fidelity, fidelity susceptibility is also not able to capture
the SLI to SLII phase transition and is shown in the inset of
Fig. 2. To summarize, what we find is that the fidelity (fidelity
susceptibility) shows a dip (peak) at the boundary separating
the gapless and gapped phase, whereas it fails completely to
capture the phase transition occurring inside the gapless phase,
which could otherwise be detected by the conventional method
of diverging stiffness constant. We now proceed to study the
dynamic counterpart of fidelity, namely, the Loschmidt echo
in the next section.

IV. LOSCHMIDT ECHO

The ground state L, defined as the square of the overlap
of the initial wave function given by the ground state of the
Hamiltonian H (hs) but evolving under two different parameter
values of the Hamiltonian hs and hs + δ, is given as

L(t) = |〈�(hs,t)|�(hs + δ,t)〉|2, (12)

where |�(hs,t)〉 = e−iH (hs )t |�G〉 and |�(hs + δ,t)〉 =
e−iH (hs+δ)t |�G〉, |�G〉 being the ground state of the
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 0.85
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 1
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L

hs

J3=0.5
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FIG. 3. (Color online) Variation of ground state L with the
staggered field hs for two different values of the three-spin interaction
term with N = 106, t = 100, and δ = 0.001.

Hamiltonian H (hs). In the momentum representation, as in
the case of fidelity, the expression for L gets decoupled as

L(t) =
∏
k

|〈�k(hs)|e−iHk (hs+δ)t |�k(hs)〉|2 =
∏
k

Lk, (13)

where |�k(hs)〉 is the ground state for the kth mode at h = hs .
Let us calculate Lk for different possible ground states:

(1) If |�k(hs)〉 = |αk,0〉
Lk = |〈αk,0|eiHk (hs+δ)t |αk,0〉|2. (14)

Since |αk,0〉 is the eigenstate of Hk(hs) and not Hk(hs + δ),
we need to rewrite it in terms of |αk,0〉δ , an eigenstate of
H (hs + δ). Using Eq. (6), we find that

|αk,0〉 = cos ηk|αk,0〉δ − sin ηk|0,βk〉δ, (15)

where 2ηk = θk(hs) − θk(hs + δ) and θk is given by Eq. (7).
Substituting the above transformation in Eq. (14), we get

Lk = 1 − sin2(2ηk) sin2

[
�E(k)t

2

]
(16)

with �E(k) = E+(hs + δ,k) − E−(hs + δ,k) =
2
√

(hs + δ)2 + cos2(k/2). The three-spin term does not
have any contribution in �E nor in ηk and hence does not
influence the position of the dip in Lk though it will affect
the magnitude of the dip in L as shown in Fig. 3; this is
because the number of k modes with |αk,0〉 as the ground
state changes as J3 is varied.

(2) If |�k(hs)〉 = |0,0〉 or |αk,βk〉, then Lk = 1 as these are
also the eigenvectors of the Hamiltonian Hk(hs + δ).

From Eq. (16), we find that L is unity deep inside the two
antiferromagnetic phases where 2ηk is infinitesimally small
for all k and small δ. The L (or Lk) will start deviating from
unity when the term sin2(2ηk) sin2(�Ekt/2) picks up a nonzero
value. It can be easily checked that 2ηk increases as �Ek

approaches zero due to diverging tan θk [see Eq. (7)] at hs +
δ = 0, causing a dip in L only at hs + δ = 0. Thus, L can
neither detect the AF to SLI phase transition discussed in
Sec. II, which is captured by the fidelity, nor the SLI to SLII
phase transition. Unlike the models studied so far where the
modes close to the critical mode contribute the most to the
decay of L, we will now show that it is not so in the present
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model, because the ground state for the critical mode k = π

at hs + δ = 0 is |αk,βk〉, for which Lk=π is unity. For the
same reasons, the modes close to this critical mode also do not
contribute to the decay of L. It is the other modes, away from
the critical mode k = π at hs + δ = 0 satisfying E+(k) > 0
and E−(k) < 0, which actually influence the behavior of L.
This is one of the most interesting observations of the paper.
Since the modes close to the critical mode are not involved
in the dynamics, various power-law scalings of L, which are
observed close to the QCP of other models [15], are not present
in this model.

To understand why L is not able to detect the various ground
state phases generated due to the presence of J3, let us revisit
Eq. (4). As mentioned before, |0,0〉 and |ak,bk〉 do not mix,
and we can concentrate on |ak,0〉 and |0,bk〉 bases. In these
two bases, Hk can be written as

J3

2
cos kÎ + (hs + δ)σ z − cos(k/2)σx = J3

2
cos kÎ + H0,

(17)

where Î is the 2 × 2 identity matrix. The noncommutativity
between the terms involving σx and σ z causes the time
evolution of the spin chain. On the other hand, the identity term
in Eq. (17) contributes only to the phase of the evolving wave
function and does not influence L, which is a modulus-squared
quantity. Hence, the dynamics is dominated by the minimum
energy gap of the second part H0 of the Hamiltonian [43],
which occurs at hs + δ = 0; consequently, L shows a dip right
here. Such an observation was also reported in the context of
defect generation for a similar model where the staggered field
is varied linearly as a function of time. The study finds that the
scaling of the defect density is insensitive to the QPTs driven
by the identity operator in the Hamiltonian [43].

Since L usually shows a dip in the vicinity of a QCP, one
refers to the staggered field hs + δ = 0 as a dynamical critical
point at which the energy gap vanishes for the dynamical
critical mode kd

c = π and probes the scaling of L close to
this dynamical critical point. We show below that L decays
exponentially with the system size N , whereas it decays
exponentially with δ2 for both the regions, |hs | > J3/2 and
|hs | < J3/2, as shown in Fig. 4.

To comprehend this behavior, let us concentrate on S =
lnL, which using Eq. (16) can be put in the form

S =
∑

k

ln

(
1 − sin2 2ηk sin2 �Ekt

2

)
, (18)

where the summation is only over the relevant k modes
satisfying E−(k) < 0 and E+(k) > 0. Since sin2 2ηk is the
difference between two approximately equal angles in the limit
δ → 0, it is very small as the dynamical critical mode and the
nearby modes do not appear in the summation. We therefore
get a simplified expression

S � −
∑

k

4η2
k sin2

(
�Ekt

2

)

� −
∑

k

δ2 sin2(t cos k/2)

cos2(k/2)
, (19)
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FIG. 4. (Color online) The exponential decrease of L at hs + δ =
0 with (a) system size N for t = 0.1 and δ = 0.001 and (b) with δ2

for t = 1 and N = 106.

which explains the δ2 dependence of S or ln L. It is difficult
to estimate the system size dependence of L since the critical
mode, and the modes close to it do not contribute to the decay,
and hence no further simplifications can be done. However, one
can focus on the modes closest to the dynamical critical mode
kd
c = π for which E−(k) < 0 and E+(k) > 0 which contribute

maximally to L. In the early time limit, one gets

S � −
∑

k

δ2t2 ∝ −N,

which is consistent with Fig. 4.
Our study shows that L is not able to detect the various phase

transitions in the ground state phase diagram of the three-spin
interacting spin chain in presence of a staggered field. These
transitions are generated due to the three-spin interacting term
J3, which does not influence the dynamics of the Hamiltonian.
The L does not sense the presence of J3 and detects only the
QCPs corresponding to the case J3 = 0 even when J3 �= 0.

Although our study is restricted to a spin-1/2 model, the
excitation spectrum as given in Eq. (17) may exist in other
models also. For example, one may consider the Bose-Hubbard
model in the hard core limit in the presence of a period two
superlattice [44], which has a rich phase diagram containing
various phases like a superfluid, Mott insulator, hole vacuum,
and particle vacuum phase. We expect similar results for the
fidelity and L in this hard core boson model also.

To conclude, we mention a couple of works which study
the fidelity and L of models containing multispin interactions
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in Ising-type Hamiltonians [37,38]. In Ref. [37] the effect of
a complicated three-spin interaction on L is studied, and it
was reported that a particular term of the Hamiltonian does
not effect the position of the dip of L and modifies only the
sharpness of the decay. On the other hand, we have studied
here a completely different model with special types of QCPs
and presented the appropriate arguments on why L is not
able to detect the gapped to gapless phase transition points.
At the same time, the physics of our model is very different
from the model studied in Ref. [37] due to the presence of
a staggered field, which necessitates the introduction of two
types of quasiparticles, thus making the problem very different
from the models studied till now in the context of fidelity or
the Loschmidt echo.

V. CONCLUSIONS

The ground state fidelity, or equivalently the ground state
L, shows a dip at the quantum critical point and thus can
in principle be used to determine the phase diagram of any
model. We show that this is not always the case, taking an
example of a three-spin interacting spin chain in the presence
of a staggered field where the conventional method of the
divergence of the stiffness constant could detect all the critical
points but the method of fidelity and L failed. While fidelity

or fidelity susceptibility can capture the boundary between the
gapped to gapless phase transition and is unable to detect the
two Fermi points to four Fermi points phase transition within
the gapless region, the Loschmidt echo shows a completely
different picture. It is able to detect only one special point
in the entire phase diagram and is not able to capture the
critical points generated due to the presence of the three-spin
term. This is because the dynamics is entirely governed by the
noncommuting terms of the reduced 2 × 2 Hamiltonian in k

space and the identity matrix containing the three-spin term
adds a phase only to the wave function evolution. One of the
interesting observations of this paper, which has never been
reported anywhere else to the best of our knowledge, is that the
critical mode and its nearby modes do not contribute anything
to the decay of Loschmidt echo. This is in contrast to the usual
scenario where the modes around the critical modes contribute
a maximum. We would also like to point out here that in
Ref. [12] it was shown that the fidelity susceptibility will not
be able to detect any QPT if νd > 2, which is not the case here.
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