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Products of rectangular random matrices: Singular values and progressive scattering
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We discuss the product of M rectangular random matrices with independent Gaussian entries, which have
several applications, including wireless telecommunication and econophysics. For complex matrices an explicit
expression for the joint probability density function is obtained using the Harish-Chandra-Itzykson-Zuber
integration formula. Explicit expressions for all correlation functions and moments for finite matrix sizes are
obtained using a two-matrix model and the method of biorthogonal polynomials. This generalizes the classical
result for the so-called Wishart-Laguerre Gaussian unitary ensemble (or chiral unitary ensemble) at M = 1,
and previous results for the product of square matrices. The correlation functions are given by a determinantal
point process, where the kernel can be expressed in terms of Meijer G-functions. We compare the results with
numerical simulations and known results for the macroscopic level density in the limit of large matrices. The
location of the end points of support for the latter are analyzed in detail for general M . Finally, we consider
the so-called ergodic mutual information, which gives an upper bound for the spectral efficiency of a MIMO
communication channel with multifold scattering.
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I. INTRODUCTION

Random matrix theory has existed for more than half a
century, and its success is undeniable. A vast number of
applications is known within the mathematical and physical
sciences and beyond; we refer to [1] for a recent overview.
A direction within random matrix theory, which has recently
caught renewed attention is the study of products of random
matrices. Among others, products of matrices have been
applied to disordered and chaotic systems [2], matrix-valued
diffusions [3,4], quantum chromodynamics at finite chemical
potential [5,6], Yang-Mills theory [7–9], finance [10], and
wireless telecommunication [11]. In this paper, our attention
is directed towards the latter.

When considering products of matrices we are faced with
the fact that the product often possesses fewer symmetries than
the individual matrices. For example, a product of symmetric
matrices will not be symmetric, in general. For simplicity,
we look at matrices with a minimum of symmetry. Our
discussion concerns products of matrices drawn from the
Wishart ensemble. Thus, the matrices have independently,
identically distributed Gaussian entries. Also other proposals
exist, e.g. by multiplying matrices that are chosen from a
set of fixed matrices with a given probability. This problem
has applications in percolation, as was pointed out in [12].
However, it considerably differs from our approach, notably
due to the lack of invariance.

The statistical properties of the complex eigenvalues and
real singular values of a product of matrices from the
Wishart ensemble have been discussed in several papers (in
the former case they are usually called Ginibre matrices).
Macroscopic properties for eigenvalues of complex (β = 2)
matrices have been discussed in the limit of large matrices
using diagrammatic methods [4,13,14], while proofs are given
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in [15,16]. The macroscopic behavior of the singular values
and their moments have also been discussed in the literature
using probabilistic methods [17–19] as well as diagrammatic
methods [14].

Recently, the discussion of products of matrices from
Wishart ensembles has been extended to matrices of finite
size [20–23], but this discussion has so far been limited to the
case of square matrices. We want to extend this discussion
to include products of rectangular matrices. In particular, we
consider the product matrix

YM = XMXM−1 · · ·X1, (1)

where Xm are Nm × Nm−1 real (β = 1), complex (β = 2), or
quaternion (β = 4) matrices from the Wishart ensemble. This
paper is concerned with the singular values of such matrices,
and the spectral correlation functions of YMY †

M . A discussion
of the complex eigenvalues is postponed to a future publication
[24].

Matrix products like YM have direct applications in finance
[10], wireless telecommunication [17], and quantum entan-
glement [25,26]. The importance of the generalization from
square to rectangular matrices is evident from its applications
to, e.g. wireless telecommunication. Let us consider a multiple-
input–multiple-output (MIMO) communication channel from
a single source to a single destination via M − 1 clusters
of scatterers. The source and destination are assumed to be
equipped with N0 transmitting and NM receiving antennas,
respectively. Each cluster of scatterers is assumed to have Nm

(1 � m � M − 1) scattering objects. Such a communication
link is canonically described by a channel matrix identical
to the complex version of the product matrix (1). Here the
Gaussian nature of the matrix entries models a Rayleigh fading
environment. This model was proposed in [17], while the
single channel model (M = 1) goes back to [27–29]. There
is no reason to assume that the number of scattering objects
at each cluster in such a communication channel should be
identical, which illustrates the importance of the generalization
to rectangular matrices.
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This paper is organized as follows. In Sec. II we find
the joint probability density function for the singular values
of the product matrix (1) in the complex case. Starting
with general β = 1,2,4 it turns out that the restriction to
complex (β = 2) matrices is necessary, since our method relies
on the Harish-Chandra-Itzykson-Zuber integration formula
for the unitary group [30,31]. An explicit expression for
all k-point correlation functions for the singular values are
derived in Sec. III using a two-matrix model and the method
of biorthogonal polynomials. The spectral density and its
moments are discussed further in Sec. IV, while we return
to the above mentioned communication channel in Sec. V.
Section VI is devoted to conclusions and outlook. Some
properties and identities for the special functions we encounter
are collected in the appendix.

II. JOINT PROBABILITY DISTRIBUTION
OF SINGULAR VALUES

As mentioned in the introduction we are interested in the
statistical properties of the singular values of the product
matrix (1), which is governed by the following partition
function,

ZM
β =

M∏
m=1

∫
|DXm| exp[− TrXmX

†
m]. (2)

Here DXm denotes the Euclidean volume, i.e. the exterior
product of all independent one forms, while |DXm| is the
corresponding unoriented volume element.

Let us assume that the smallest dimension is N0 = Nmin.
We stress that the properties of the nonzero singular values of
YM are completely independent of this choice; see [24]. Thus,
the product matrix, YM = XM · · ·X1, has maximally rank N0.
It follows that the product matrix can be parametrized as [24]

YM = UM

(
YM

0

)
, (3)

where YM is a square N0 × N0 matrix with real, complex, or
quaternion entries, while UM is an orthogonal, a unitary, or a
unitary symplectic matrix for β = 1,2,4, respectively. From
Eq. (3) it is immediate that the nonzero singular values of
the rectangular matrix YM are identical to the singular values
of the square matrix YM . The ultimate goal is to derive the
joint probability density function for these singular values.
In [24] the invariance of the matrix measure for YM under
permutations of the matrix dimensions, Nm, was shown. This
invariance carries over to the joint probability density function
of the singular values as we will see.

The parametrization (3) follows directly from a
parametrization of each individual matrix,

Xm = Um

(
Xm Am

0 Bm

)
U−1

m−1, (4)

where U0 = 1N0 . The matrices Xm, Am, and Bm have the
dimensions N0 × N0, N0 × (Nm−1 − N0) and (Nm − N0) ×
(Nm−1 − N0), respectively. The entries of these matrices are
real for β = 1, complex for β = 2, and quaternion for β = 4.

Accordingly, we have

Um ∈

⎧⎪⎨⎪⎩
O(Nm)/[O(N0) × O(Nm − N0)],

U(Nm)/[U(N0) × U(Nm − N0)],

USp(2Nm)/{USp(2N0) × USp[2(Nm − N0)]},
(5)

for β = 1,2,4, respectively. The nonzero singular values of
the rectangular product matrix (1) are identical to the singular
values of the square product matrix YM = XMXM−1 · · · X1

with YM and Xm, m = 1, . . . ,M , defined above. For this
reason, we can safely replace the random matrix model
containing rectangular matrices with a random matrix model
containing square matrices, only. In terms of the new variables
we get for the partition function, in analogy to [32] for M = 1,

ZM
β ∝

M∏
m=1

∫
|DXm| detβνm/2(XmX†

m) exp[− Tr XmX†
m], (6)

where νm ≡ Nm − N0 � 0. A more general version of this
result will be derived in [24]. In the partition function (6) and
in most of this section we neglect an overall normalization
constant, which is irrelevant for the computations. We reintro-
duce the normalization in Eq. (16) and give the explicit value
in Eq. (21).

The Gaussian weight times a determinantal prefactor is
sometimes referred to as the induced weight. For M = 1 its
complex eigenvalues have been studied in [32].

In order to derive the joint probability density function
for the singular values of the product matrix YM and thereby
of Eq. (1), we follow the idea in [23], and reformulate
the partition function (6) in terms of the product matrices
Ym = XmYm−1 = XmXm−1 · · · X1, for m = 1, . . . ,M . In the
following we assume that the product matrices, Ym, are
invertible (note that this restriction only removes a set of
measure zero). We then know that [23]

M∏
m=1

|DXm| = |DY1|
M∏

m=2

|DYm| det−βN0/2(Ym−1Y
†
m−1). (7)

Changing variables from Xm to Ym in the partition function
Eq. (6) results in

ZM
β ∝

[
M∏

m=1

∫
|DYm|

]
detβνM/2(YMY

†
M ) exp[− Tr Y1Y

†
1 ]

×
{

M∏
i=2

detβ(νi−1−νi−N0)/2(Yi−1Y
†
i−1)

× exp[− Tr YiY
†
i (Yi−1Y

†
i−1)−1]

}
. (8)

With this expression for the partition function we can express
everything in terms of the singular values and a family of
unitary matrices. We employ for each matrix Yi a singular
value decomposition [23] to write the product matrices as

Yi = Ui�iV
−1
i , (9)

where �i = diag{σ i
1,σ

i
2, . . . ,σ

i
N0

} are positive definite diago-
nal matrices; the diagonal elements are the singular values of
Yi (for β = 4 the singular values show Kramer’s degeneracy).
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The unitary matrices, Ui and Vi , belong to

Ui ∈

⎧⎪⎨⎪⎩
O(N0),

U(N0),

USp(2N0),

Vi ∈

⎧⎪⎨⎪⎩
O(N0),

U(N0)/ U(1)N0 ,

USp(2N0)/ U(1)N0 ,

(10)

for β = 1,2,4, respectively. It is well known that this change
of variables yields the new measure

|DYi | = |DUi ||DVi |
N0∏
k=1

dσ i
k

(
σ i

k

)β−1∣∣�N0 [(σ i)2]
∣∣β, (11)

where |DUi | and |DVi | are the Haar measures for their
corresponding groups and

�N (x) =
∏

1�a<b�N

(xa − xb) = det
1�a,b�N

[
xN−b

a

]
(12)

denotes the Vandermonde determinant. Inserting this
parametrization into the partition function (8) and performing
the shift U−1

�−1U� → U� for � = 2, . . . ,M , we obtain

ZM
β ∝

{
N0∏
k=1

[
M∏

m=1

∫ ∞

0
dσm

k

] (
σM

k

)β(νM+1)−1
e−(σ 1

k )2

×
M∏
i=2

(
σ i−1

k

)β(νi−1−νi−N0+1)−1

}
M∏

j=1

∣∣�N0 [(σ j )2]
∣∣β

×
M∏

�=2

∫
|DU�||DV�| exp

[− Tr U��
2
�U

−1
� �−2

�−1

]
. (13)

The integrations over V� are trivial and only contribute to the
normalization constant; the integration over U� is, however,
more complicated. For β = 2, the integrals over U� are Harish-
Chandra-Itzykson-Zuber integrals [30,31], while the integrals
for β = 1 and β = 4 are still unknown in closed form. For
this reason, we restrict ourselves to the complex case (β = 2),
where we can carry out all integrals explicitly, and obtain an
analytical expression for the joint probability density function.
Recall that the complex (β = 2) product matrix is exactly the
channel matrix used in wireless telecommunication to model
MIMO channels with multiple scattering.

With the restriction to the β = 2 case, U� should be
integrated over the unitary group, which yields [30,31]∫

U(N0)
|DU�| exp

[− Tr U��
2
�U

−1
� �−2

�−1

]
∝

∏N0
k=1

(
σ �−1

k

)2(N0−1)

�N0 [(σ �)2]�N0 [(σ �−1)2]
det

1�a,b�N0

[
e−(σ �

a )2/(σ �−1
b )2]

,

(14)

for � = 2, . . . ,M . Inserting this into the partition function (13)
with β = 2 gives an expression for the partition function solely

in terms of the singular values of the product matrices Yi ,

ZM ≡ ZM
β=2 ∝

[
N0∏
k=1

∫ ∞

0
dσM

k

(
σM

k

)2νM+1

]
�N0 [(σM )2]

×
{

M−1∏
i=1

[
N0∏
�=1

∫ ∞

0
dσ i

�

(
σ i

�

)2(νi−νi+1)−1

]

× det
1�a,b�N0

[
e−(σ i+1

a )2/(σ i
b )2]}[ N0∏

k=1

e−(σ 1
k )2

]
�N0 [(σ 1)2].

(15)

For notational simplicity we change variables from the singular
values to si

a = (σ i
a)2, i.e. the singular values (and eigenvalues)

of the Wishart matrices YiY
†
i (the singular values of YMY

†
M are

simply denoted by sa = sM
a ). Furthermore, due to symmetriza-

tion we can replace the determinants of the exponentials with
their diagonals, which will only change the partition function
by a factor (N0!)M−1. Exploiting this, the partition function
becomes

ZM = C−1
M

[
N0∏
b=1

∫ ∞

0
dsb (sb)νM

]
�N0 (s)

×
{

N0∏
a=1

[
M−1∏
i=1

∫ ∞

0

dsi
a

si
a

(
si
a

)νi−νi+1
e−si+1

a /si
a

]
e−s1

a

}
×�N0 (s1), (16)

where CM is a normalization constant.
The integrations over s1

a , . . . ,s
M−1
a have a similar structure.

Hence, we can perform all these integrals in a similar fashion.
We write the first exponential containing s1

a as a Meijer G-
function using Eq. (A10), i.e.

�N0 (s1)
N0∏
a=1

e−s1
a = det

1�a,b�N0

[
G

1, 0
0, 1

( −
b − 1

∣∣∣∣ s1
a

)]
. (17)

After a change of variables all the integrals can be performed
inductively using the identities (A7) and (A5). These integra-
tions finally give the joint probability density function, Pjpdf,
for the singular values s1, . . . ,sN0 of the Wishart matrix YMY

†
M ,

PM
jpdf(s1, . . . ,sN0 ) = C−1

M �N0 (s)

× det
1�a,b�N0

[
G

M, 0
0, M

( −
νM, νM−1, . . . , ν2, ν1 + b − 1

∣∣ sa

)]
.

(18)

The partition function is thus given by

ZM =
N0∏
a=1

∫ ∞

0
dsa PM

jpdf

(
s1, . . . ,sN0

)
. (19)

This generalizes the joint probability density function for
the product of square matrices from the Wishart ensemble
given in [23] to the case of rectangular matrices. In principle,
all k-point correlation functions for the singular values,
RM

k (s1, . . . ,sk), can be calculated from the joint probability
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density function (18) as

RM
k (s1, . . . ,sk)

= N0!

(N0 − k)!

N0∏
a=k+1

∫ ∞

0
dsa PM

jpdf

(
s1, . . . ,sN0

)
. (20)

Due to the Meijer G-function inside the determinant (18) this is
a nontrivial computation for M � 2. In complete analogy to the
square case [23], it turns out that the correlation functions are
more easily obtained using a two-matrix model and the method
of biorthogonal polynomials. We discuss this in Sec. III,
including other methods of derivation.

The normalization constant in Eqs. (15) and (18) is

CM = N0!
N0∏
n=1

M∏
m=0

�[n + νm], (21)

such that the partition function is equal to unity, which
is straightforward to check using the Andréief integration
formula. The one-point correlation function (or density) is
normalized to the number of singular values,∫ ∞

0
ds RM

1 (s) = N0, (22)

which becomes evident in the following section.

III. TWO-MATRIX MODEL AND BIORTHOGONAL
POLYNOMIALS

The purpose of this section is to find an explicit expression
for the k-point correlation functions (20). We follow the idea
in [23] and rewrite our problem as a two-matrix model by
keeping the integrals over the s1

a ’s and sM
a ’s in Eq. (16) while

integrating over the remaining variables. Within this model we
exploit the method of biorthogonal polynomials to achieve our
goal. First, we use the identity (A5) for the Meijer G-function
to write the partition function (19) with M � 2 as

ZM =
N0∏
a=1

∫ ∞

0
dsa

N0∏
i=1

∫ ∞

0
dti P̃

M
jpdf(s ; t ), (23)

where the joint probability density function is given by

P̃ M
jpdf(s ; t ) = CM�N0 (s)�N0 (t) det

1�k,�,�N0

[
wM

ν (sk,t�)
]
, (24)

where sa ≡ sM
a and ta ≡ s1

a , and the weight function depending
on all indices νm collectively denoted by ν reads

wM
ν (s,t) = tν1−1e−tG

M−1, 0
0, M−1

( −
νM, νM−1, . . . , ν2

∣∣∣∣ s

t

)
. (25)

The structure of the joint probability density function (24)
is similar to that of the two-matrix model discussed in [33].
Although the focus in [33] is on a multimatrix model with an
Itzykson-Zuber interaction, the argument given is completely
general and applies to our situation as well. The (k,�)-point
correlation functions for this two-matrix model are defined as

RM
k,�(s ; t ) = (N0!)2

(N0 − k)!(N0 − �)!

×
N0∏

a=k+1

∫ ∞

0
dsa

N0∏
i=�+1

∫ ∞

0
dti P̃

M
jpdf(s; t). (26)

Obviously, we can obtain the k-point correlation functions (20)
by integrating out all ti’s, i.e. setting � = 0.

The benefit of the two-matrix model is that we can exploit
the method of biorthogonal polynomials as in [33]. We
choose a family of monic polynomials qM

j (t) = t j + · · · and
pM

j (s) = sj + · · · , which are biorthogonal with respect to the
weight (25),∫ ∞

0
ds

∫ ∞

0
dt wM

ν (s,t)qM
i (t)pM

j (s) = hM
j δij , (27)

where hM
j are constants. Furthermore, we introduce the

functions ψM
j (t) and ϕM

j (s) defined as integral transforms of
the biorthogonal polynomials,

ψM
j (t) ≡

∫ ∞

0
ds wM

ν (s,t)pM
j (s), (28)

ϕM
j (s) ≡

∫ ∞

0
dt wM

ν (s,t)qM
j (t). (29)

Note that ψM
j (t) and ϕM

j (s) are not necessarily polynomials.
It is evident from the biorthogonality of the polynomials (27)
that we have the orthogonality relations∫ ∞

0
dt qM

i (t)ψM
j (t) =

∫ ∞

0
ds pM

i (s)ϕM
j (s) = hM

j δij . (30)

Moreover, it follows from the discussion in [33] that the (k,�)-
point correlation functions are given by a determinantal point
process,

RM
k,�(s ; t ) = det

1 � a,b � k

1 � i,j � �

[
KM

11 (sa,sb) KM
12 (sa,tj )

KM
21 (ti ,sb) KM

22 (ti ,tj )

]
, (31)

where the four subkernels are defined in terms of the
biorthogonal polynomials and the weight function as

KM
11 (sa,sb) =

N0−1∑
n=0

pM
n (sa)ϕM

n (sb)

hM
n

,

KM
12 (sa,tj ) =

N0−1∑
n=0

pM
n (sa)qM

n (tj )

hM
n

,

(32)

KM
21 (ti ,sb) =

N0−1∑
n=0

ψM
n (ti)ϕM

n (sb)

hM
n

− wM
ν (sb,ti),

KM
22 (ti ,tj ) =

N0−1∑
n=0

ψM
n (ti)qM

n (tj )

hM
n

.

In particular we have that the k-point correlation functions (20)
for the singular values of the product matrix YMY

†
M are given

by

RM
k (s1, . . . ,sk) = det

1�a,b�k

[
KM

11 (sa,sb)
]
. (33)

The goal is to find the biorthogonal polynomials, qM
j (t) and

pM
j (s), and the norms, hM

j , and thereby all correlation functions
for the singular values of the product matrix, YM . Note that we
use a slightly different notation for the subkernels than in [23];
the notation in this paper is chosen to emphasize the fact that all
the statistical properties of the singular values are determined
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by the biorthogonal polynomials, qM
j (t) and pM

j (s), and the
weight function, wM

ν (s,t).
In order to find the biorthogonal polynomials we follow the

approach in [23] and start by computing the bimoments,

IM
ij ≡

∫ ∞

0
ds

∫ ∞

0
dt wM

ν (s,t)si t j

= (i + j + ν1)!
M∏

m=2

(i + νm)!, (34)

for M � 2. Here the integration has been performed using
integral identities for the Meijer G-function, see Eqs. (A4)
and (A5). Using Cramer’s rule, the biorthogonal polynomials,
as well as the norms, can be expressed in terms of the
bimoments as [34,35],

qM
n (t) = 1

DM
n−1

det

⎡⎢⎢⎢⎢⎣
IM

00 IM
10 · · · IM

(n−1)0 1

IM
01 IM

11 · · · IM
(n−1)1 t

...
...

...
...

IM
0n IM

1n · · · IM
(n−1)n tn

⎤⎥⎥⎥⎥⎦ ,

(35)

pM
n (s) = 1

DM
n−1

det

⎡⎢⎢⎢⎢⎣
IM

00 IM
01 · · · IM

0(n−1) 1

IM
10 IM

11 · · · IM
1(n−1) s

...
...

...
...

IM
n0 IM

n1 · · · IM
n(n−1) sn

⎤⎥⎥⎥⎥⎦ ,

where

DM
n ≡ det

0�i,j�n

[
IM
ij

] =
n∏

i=0

M∏
m=0

(i + νm)!. (36)

The norms can be expressed as

hM
n = DM

n

/
DM

n−1 =
M∏

m=0

(n + νm)!. (37)

Recall that νi ≡ Ni − N0 � 0 are non-negative integers by
definition (ν0 = 0).

In order to get more explicit expressions for the biorthog-
onal polynomials, we define the bimoment matrix (34) for
M = 1 as the bimoments with respect to the Laguerre weight,

IM=1
ij ≡

∫ ∞

0
ds e−ssν1+i+j = (i + j + ν1)!. (38)

It follows that the polynomials (35) for M = 1 are the Laguerre
polynomials in monic normalization,

pM=1
n (s) = qM=1

n (s) = L̃ν1
n (s) ≡ (−1)nn!Lν1

n (s), (39)

where Lν1
n (s) are the associated Laguerre polynomials. We

recall that the Laguerre polynomials are defined as

L̃ν1
n (s) =

n∑
k=0

(−1)n+k

(n − k)!

(n + ν1)!

(k + ν1)!

n!

k!
sk (40)

and satisfy the orthogonality relation∫ ∞

0
ds e−ssν1L̃

ν1
k (s)L̃ν1

� (s) = hM=1
k δk�, (41)

with hM=1
k = k!(k + ν1)!.

The bimoment matrix, [IM
ij ]0�i,j�n, with M � 2 given by

Eq. (34) differs from the bimoment matrix, [I 1
ij ]0�i,j�n, given

by Eq. (38) by multiplication of a diagonal matrix. It directly
follows from this fact that the polynomials qM

n (t) are related
to the Laguerre polynomials as

qM
n (t) =

n−1∏
i=0

M∏
m=2

(i + νm)!
D1

n−1

DM
n−1

L̃ν1
n (t) = L̃ν1

n (t). (42)

The evaluation of the polynomials pM
n (s) is slightly more

complicated. For the polynomials qM
n (t), the factorization is

the same for all powers of t , but for the polynomials pM
n (s) we

have to treat the powers differently; in particular we substitute
sk → sk/

∏M
m=2(k + νm)!. Using the explicit expression for

the Laguerre polynomials (40) we find

pM
n (s) =

n∑
k=0

(−1)n+kn!

(n − k)!

[
M∏

m=1

(n + νm)!

(k + νm)!

]
sk

k!
, (43)

which is a generalized hypergeometric polynomial [see
Eq. (A2) in the Appendix)

pM
n (s) = (−1)n

M∏
m=1

(n + νm)!

νm!

× 1FM

( −n

1 + νM, . . . , 1 + ν1

∣∣∣∣ s). (44)

For νM = · · · = ν1 = 0 this polynomial reduces to the result
presented in [23], while the monic Laguerre polynomials are
reobtained by setting M = 1. Alternatively we may write
pM

n (s) as a Meijer G-function,

pM
n (s) = (−1)n

M∏
m=0

(n + νm)!

×G
1, 0
1, M+1

(
n + 1

0, − νM, . . . , − ν1

∣∣∣∣ s). (45)

This expression will be particularly useful in Sec. IV, where we
discuss the asymptotic behavior of the end points of support of
the spectral density. In Eq. (45) we have used the relation (A9)
between generalized hypergeometric polynomials and Meijer
G-functions. It might not be immediately clear that the Meijer
G-function in Eq. (45) is a polynomial. To see this, one
writes the Meijer G-function as a contour integral using its
definition (A3). The integrand has exactly n simple poles and
the contour is closed such that these poles are encircled. The
residue for each pole gives a monomial, such that the complete
contour integral yields a polynomial.

With the explicit expressions for the biorthogonal polyno-
mials (42) and (44), we are ready to compute the functions
ψM

n (t) and ϕM
n (s) defined in Eq. (29) and thereby implicitly

find all the subkernels (32). The functions ψM
n (t) turn out to

be polynomials, too,

ψM
n (t) =

M∏
m=2

(n + νm)! tL̃ν1
n (t), (46)

which can be directly obtained from the definition (29) using
the integral identity (A4).
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Likewise, we can obtain an explicit expression for the
functions ϕM

n (s) by inserting the polynomial (42) into the
definition (29). It follows from the integral identity (A5) that

ϕM
n (s) =

n∑
k=0

(−1)n+k

(n − k)!

(n + ν1)!

(k + ν1)!

n!

k!

×G
M, 0
0, M

( −
νM, . . . , ν2,ν1 + k

∣∣∣ s). (47)

However, it is possible to get a more compact expression.
Recall that the Laguerre polynomials can be expressed using
Rodrigues’ formula,

L̃ν1
n (t) = (−1)nt−ν1et dn

dtn
(tn+ν1e−t ). (48)

We insert Rodrigues’ formula into the definition for ϕM
n (s); see

Eq. (29). The differentiation in Eq. (48) can easily be changed
to a differentiation of the Meijer G-function (stemming from
the weight function) using integration by parts, since all
boundary terms are zero. Then the differentiation can be
computed using Eq. (A8), while the final integration over t

can be performed using the identity (A5). This finally leads to

ϕM
n (s) = (−1)nGM, 1

1, M+1

( −n

νM, νM−1, . . . , ν1,0

∣∣∣∣ s). (49)

In addition to the fact that Eq. (49) is a more compact
expression than the representation (47), it is also immediate
that ϕM

n (s) is symmetric in all the indices νm, which is far from
obvious in Eq. (47).

Now we have explicit expressions for all components
contained in the formula for the (k,�)-point correlation
functions (31), which completes the derivation. In particular,
combining Eqs. (37), (44), and (49) the subkernel KM

11 (sa,sb)
is given by

KM
11 (sa,sb) =

N0−1∑
n=0

1

n!

M∏
m=1

1

νm!
1FM

( −n

1 + νM, . . . , 1 + ν1

∣∣∣∣ sa

)
×G

M, 1
1, M+1

( −n

νM, . . . , ν1,0

∣∣∣∣ sb

)
. (50)

It provides a direct generalization of the formula given in [23]
for square matrices to the case of rectangular matrices. If we
use the alternative formula (45) for pM

n (s) we obtain

KM
11 (sa,sb) =

N0−1∑
n=0

G
1, 0
1, M+1

(
n + 1

0, − νM, . . . , − ν1

∣∣∣∣ sa

)
×G

M, 1
1, M+1

( −n

νM, . . . , ν1,0

∣∣∣∣ sb

)
. (51)

The k-point correlation functions for the singular values are
immediately found from Eq. (33). Note that the kernel and
thereby all k-point correlation functions are symmetric in all
the indices νm. This symmetry reflects the invariance of the sin-
gular values of the product matrix, YM = XM · · ·X1, under re-
ordering of the matrices Xm which we prove in a more general
setting in [24]. The normalization of the spectral density (22)
is immediately clear from the orthogonality relation (30).

Finally, we would like to mention an alternative derivation
for the correlation functions (20) in terms of the kernel KM

11 .

Given the orthogonality relation (30) of the polynomials
pM

i (43) and the functions ϕM
j (47) we can generate these

by adding columns in the two determinants in the joint
probability density function (18) and then proceed with the
standard Dyson theorem. This is in complete analogy as
described in [23]. Alternatively, the kernel can be derived
by using biorthogonal functions and explicitly inverting the
bimoment matrix [36]. Furthermore, a construction using
multiple orthogonal polynomials exist [37,38], too.

IV. MOMENTS AND ASYMPTOTICS

In this section we take a closer look at the spectral density.
First we use the density to find an explicit expression for the
moments. Second we discuss the macroscopic large-N0 limit
of the density.

We know from the previous section that the density, or
one-point correlation function, is given as a sum over Meijer
G-functions,

RM
1 (s) =

N0−1∑
n=0

G
1, 0
1, M+1

(
n + 1

0, − νM, . . . , − ν1

∣∣∣∣ s)
×G

M, 1
1, M+1

( −n

νM, . . . , ν1,0

∣∣∣∣ s), (52)

which is normalized to the number of singular values,
N0. Figure 1 shows a comparison between the analytical
expression and numerical simulations for an example. The
expectation value for the singular values is defined in terms of
the density (52) as

E{f (s)} ≡ 1

N0

∫ ∞

0
ds RM

1 (s) f (s), (53)

where the factor 1/N0 is included since the density (52) is
normalized to the number of singular values.

We first look at the moments, E{s�}. Note that we do not
assume that � is an integer and that the half-integer values of �

are interesting, too, since the singular values, σa , of the product
matrix, YM , are given by the square roots of the eigenvalues
of the Wishart matrix; i.e. σa = √

sa . In order to calculate the
moments, we explicitly write the first Meijer G-function in
Eq. (52) as a polynomial [see Eqs. (43) and (45)] and rewrite
the moments as

N0E{s�} =
N0−1∑
n=0

n∑
k=0

(−1)k

(n − k)!

M∏
m=0

1

(k + νm)!

×
∫ ∞

0
ds s�+kG

M, 1
1, M+1

( −n

νM, . . . , ν1,0

∣∣∣∣ s).

(54)

The integral over s can be performed using an identity for the
Meijer G-function (A4). After reordering the sums and apply-
ing Euler’s reflection formula for the gamma function we get

N0E{s�} =
N0−1∑
k=0

M∏
m=0

�[� + k + νm + 1]

(k + νm)!

×
N0−k−1∑

n=0

(−1)n

n! �[� − n + 1]
, (55)
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FIG. 1. The histograms (bin width is 0.05) show the distributions
of singular values (top) and squared singular values (bottom) for
50 000 realizations of the product matrix Y3 = X3X2X1 for M = 3,
with ν1 = 5, ν2 = 10, ν3 = 15, and N0 = 5. The solid curves are
the analytical predictions for the rescaled densities of singular
values, 2σρ3

1 (σ̂ 2), and of squared singular values, ρ3
1 (ŝ), respectively;

cf. Eq. (61).

where � may also take noninteger values. For integer values of
� some of the terms vanish due to the poles of the gamma
function. Note that the moments are divergent whenever
� � −νmin − 1 is an integer (νmin ≡ min{ν1, . . . ,νM}), but well
defined for all other values of �. The second sum in Eq. (55) can
be evaluated by a relation for the (generalized) binomial series,

N∑
n=0

(−1)n
(

z

n

)
= (−1)N

(
z − 1
N

)
, z ∈ C. (56)

We write the first sum in Eq. (55) in reverse order
(k → N0 − k − 1) and perform the second sum using the
identity (56), yielding

N0E{s�} =
N0−1∑
k=0

(−1)k

k!�[� − k]�

M∏
m=0

�[� + Nm − k]

�[Nm − k]
. (57)

Alternatively, the moments can be written as

N0E{s�} =
N0−1∑
k=0

(−1)1+k
∏N0−1

j=0 (j − � − k)

k!(N0 − 1 − k)!�

×
M∏

m=1

�[� + νm + k + 1]

�[νm + k + 1]
, (58)

which is useful when considering the limit of negative integer
�. Recall that Nm are the different matrix dimensions of the
original product (1) and νm = Nm − N0.

For � → 0 all terms in the sum are equal to one and we
recover the normalization. Simplifications also occur when �

is an integer; here most of the terms in the sum vanish, due to
the gamma function in the denominator. In particular, the first
positive moment and the first negative moment are given by

E{s} ≡ NM =
M∏

m=1

Nm and E{s−1} =
M∏

m=1

1

νm

. (59)

The second moment is slightly more complicated,

E{s2} = 1

2

M∏
m=1

Nm

[
M∏

m=0

(Nm + 1) −
M∏

m=0

(Nm − 1)

]
. (60)

When M = 1 these formulas reduce to the well-known results
for the Wishart-Laguerre ensemble (e.g. see [11]), while we get
the result [23] for square matrices by setting N0 = · · · = NM .
Note that any negative moment is divergent if νm = 0 for any
1 � m � M .

The first moment, NM , provides us with a natural scaling
of the spectral density,

ρM
1 (ŝ) ≡ NM

N0
RM

1 (ŝ NM ), (61)

such that the rescaled density has a finite first moment of unity
also in the large-N0 limit. In Eq. (61) and the following, we
use a hat “̂” to denote rescaled variables.

The expectation value with respect to the rescaled density
(61) is related to the definition (53) by a simple scaling of the
variable,

Ê{f (ŝ)} ≡
∫ ∞

0
dŝ ρM

1 (ŝ)f (ŝ) = E

{
f

(
ŝ

NM

)}
, (62)

for any observable f (ŝ). The rescaling ensures that we have a
well-defined probability density with compact support in the
large-N0 limit; in particular, the density ρ1

1 (ŝ) for a single
matrix M = 1 reduces to the celebrated Marčenko-Pastur
density for N0 → ∞.

An algebraic way to obtain the macroscopic behavior of
the spectral density (61) for arbitrary M was provided in [14],
using the resolvent also known as the Stieltjes transform,
GM (ẑ), defined as

GM (ẑ) ≡
∫ ∞

0
dŝ lim

N0→∞
ρM

1 (ŝ)

ẑ − ŝ
, (63)

with ẑ outside the limiting support of ρM
1 . It was shown

that in the large-N0 limit the resolvent satisfies a polynomial
equation [14],

ẑ GM (ẑ)
M∏

m=1

ẑ GM (ẑ) + ν̂m

ν̂m + 1
= ẑ[ẑ GM (ẑ) − 1], (64)

where ẑ lies outside the support of the singular values and
ν̂m denotes the rescaled differences in matrix dimensions; i.e.
ν̂m ≡ νm/N0 for m = 1, . . . ,M . In general, one needs to solve
an (M + 1)st order equation in order to find the resolvent,
GM (ẑ). It is clear that such an equation can generically only

052118-7



GERNOT AKEMANN, JESPER R. IPSEN, AND MARIO KIEBURG PHYSICAL REVIEW E 88, 052118 (2013)

0 0.5 1 1.5 2 2.5
0

0.5

1

D
en

si
ty

,
2σ

ρ
3 1
(σ

2
)

0 0.5 1 1.5 2 2.5
0

0.5

1

Singular value, σ

D
en

si
ty

,
2σ

ρ
3 1
(σ

2
)

FIG. 2. The solid lines show the M = 3 rescaled spectral densities
for the singular values for N0 = 5 (top) and N0 = 10 (bottom)
both with ν̂1 = 1, ν̂2 = 2, ν̂3 = 3. The dashed curves indicate the
corresponding macroscopic limit [14].

be solved analytically for M � 3 (see also the discussions
in [37,39]).

The correct resolvent is chosen by its asymptotic behav-
ior, ẑGM (ẑ) → 1 for ẑ → ∞. When an expression for the
resolvent is known, then the spectral density can be directly
obtained from the resolvent using

ρ
M,∞
1 (ŝ) ≡ lim

N0→∞
ρM

1 (ŝ) = 1

π
lim

ε→0+
Im GM (ŝ − ıε). (65)

In Fig. 2 we compare this macroscopic limit with the rescaled
density (52) at finite Nm.

For the case M = 1 one can readily derive the well-known
Marčenko-Pastur law. Another particular case in which the
spectral density ρ

M,∞
1 can be directly calculated is M = 2

with ν̂1 and ν̂2 arbitrary. This case plays an important role
when studying cross correlation matrices of two different sets
of time series as it appears in forecasting models [10,40],
where time-lagged correlation matrices are nonsymmetric.
Our random matrix model then corresponds to the case
of two time series which are uncorrelated. Despite the
independence of the distribution of the matrix elements,
correlations among the singular values of the cross correlation
matrix follow. The solution of Eq. (64) yields the level
density

ρ
M,∞
1 (ŝ) =

√
3(ν̂1 + 1)(ν̂2 + 1)ŝ + ν̂2

1 − ν̂1ν̂2 + ν̂2
2

3πŝ

× Im[A−1/3(f (ŝ)) + A1/3(f (ŝ))], (66)

with

f

[
z

(ν̂1 + 1)(ν̂2 + 1)

]
= 3

[
3z + ν̂2

1 − ν̂1ν̂2 + ν̂2
2

]3[
3(3 + ν̂1 + ν̂2)z + ν̂3

1 − (ν̂1 + ν̂2)3/3 + ν̂3
2

]2 (67)

and

A(z) =
√

27

4z
− 1 −

√
27

4z
. (68)

Indeed, the special case ν̂1 = ν̂2 = 0 agrees with the result
derived in [23,26,37] because f (ŝ)|ν̂1=ν̂2=0 = ŝ.

It is also desirable to know where the end points of support
of the macroscopic spectrum are located. These edges can
be found from the algebraic formula for the resolvent (64)
using a simple trick. We assume that the resolvent behaves as
|GM (ẑ)| ∼ |ẑ − ŝ±|α± , with α± < 1 and α± 	= 0 in the vicinity
of the edges, ŝ±. This edge behavior of the resolvent is known
to hold in certain cases; e.g. M = 1 yields α± = 1/2 < 1
(except when the inner edge is zero, ŝ− = 0, then α− =
−1/2 < 1). Due to known universality results for random
matrices, it is expected that α± < 1 and α± 	= 0 in general.
With this particular edge behavior, it is clear that |dGM/dẑ| →
∞ for ẑ → ŝ±, or equivalently dẑ/dGM → 0 for ẑ → ŝ±.
Differentiating both sides of Eq. (64) with respect to GM and
evaluating them at dẑ/dGM = 0 yields an equation for the
extrema of ẑ,

ẑ0 =
⎡⎣1 +

M∑
j=1

ẑ0G
M (ẑ0)

ẑ0GM (ẑ0) + ν̂j

⎤⎦ M∏
m=1

ẑ0G
M (ẑ0) + ν̂m

ν̂m + 1
. (69)

Two of these extrema are the inner edge, ẑ0 = ŝ−, and the outer
edge, ẑ0 = ŝ+. The edges, ŝ±, also satisfy Eq. (64). Combining
both equations, we get an expression for the edges,

ŝ± = û0

1 + û0

M∏
m=1

ν̂m − û0

ν̂m + 1
, (70)

in terms of û0 ≡ −ẑ0G
M (ẑ0), which is given by

M∑
m=1

û0(û0 + 1)

ν̂m − û0
= 1. (71)

This equation is equivalent to a polynomial equation of
(M + 1)st order, as is the case for the resolvent; see Eq. (64).
However, in certain cases Eq. (71) simplifies. In particular,
Eq. (71) reduces to an Mth order equation if ν̂i = ν̂j for i 	= j ,
if ν̂i → 0 or if ν̂i → ∞. The latter means that Ni 
 N0,
meaning that the matrix dimension Ni decouples from the
macroscopic theory.

In general, the set of equations (70) and (71) yields (M + 1)
solutions, of which two correspond to the inner edge and the
outer edge of the spectral density. In the special case where
ν̂ ≡ ν̂1 = · · · = ν̂M , there are only two solutions (see Fig. 3),

ŝ±(ν̂) = M + 1 + 2ν̂ ±
√

(M + 1)2 + 4Mν̂

2(ν̂ + 1)

×
[
M + 1 + 2Mν̂ ±

√
(M + 1)2 + 4Mν̂

2M + 2Mν̂

]M

.

(72)
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ŝ(û) =
û
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M

m=1

ν̂m − û
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FIG. 3. Illustration of the optimization problem given by Eq. (76).
Extrema within the intervals (−1,0) and (ν̂min,∞) must be disregarded
due to the cuts in the complex (−v̂)-plane and complex û-plane,
respectively. This leaves only two valid extrema which correspond to
the inner edge and the outer edge, respectively. Note that the solutions
for the inner edge and the outer edge are separated by the pole at −1.

Note that for M = 1 this result reduces to the known values for
the edges of the Marčenko-Pastur density (e.g. see [11]), while
the limit ŝ±(ν̂ → 0) reproduces the result for the product of
square matrices; see [23,26,37]. It is easy to numerically verify
that the result holds in general.

Looking at Eqs. (70) and (71), an obvious question is
as follows: Which solutions correspond to the edges of the
spectrum? In order to answer this question, we derive the
same equations through a different route. The rescaled spectral
density (61) serves as the starting point, and the locations of
the edges are determined using a saddle point approximation
for large N0. This also illustrates the point that the finite Nm

expression discussed in this paper is equivalent to the result
presented in [14] in the macroscopic limit.

In the large-N0 limit we may approximate the sum over
n [see Eq. (52)] by an integral. Moreover, we write the
Meijer G-functions as contour integrals (A3) and approximate
the gamma functions using Stirling’s formula. The rescaled
density (61) becomes

ρM
1 (ŝ) ≈ NM

N0

∫ 1

0
dn̂

N0

2πı

∫
L1

dv̂ e−N0S(−v̂,n̂)

× N0

2πı

∫
L2

dû eN0S(û,n̂), (73)

where the action, S, is given by

S(û,n̂) = û lnNMŝ +
M∑

m=1

(ν̂m − û)[ln N0(ν̂m − û) − 1]

+ (n̂ + û)[ln N0(n̂ + û) − 1] − û (ln N0û − 1)

(74)

with n̂ = n/N0, û = u/N0 and ν̂m = νm/N0. It is important
to note that the integrand in the definition of the Meijer G-
function (A3) contains poles which lie on the real axis. The
contours L1 and L2 encircle the poles of the original Meijer G-
functions in accordance to definition (A3). In the large-N0 limit
these poles condense into cuts, such that the complex û-plane

has a cut on the interval (ν̂min,∞) and the complex (−v̂)-plane
has a cut on the interval (−1,0). The contours L1 and L2

encircle these cuts in the v̂-plane and the û-plane, respectively.
Both contour integrals can be evaluated by a saddle point
approximation. Furthermore, variation with respect to n̂ yields
û = −v̂ at the saddle point, and due to the symmetry between
the two saddle point equations we can restrict our attention to
one of them. The saddle point equation for û yields

ŝ = û0

n̂ + û0

M∏
m=1

ν̂m − û0

ν̂m + 1
, 0 � n̂ � 1. (75)

Equation (75) gives the saddle points, û0, for any given ŝ. In
order to find the saddle points for the edges of the spectrum,
we have to find the values of n̂ and û0 which give the extremal
values of ŝ.

Optimizing with respect to n̂, we see that n̂ has no optimal
value within the interval (0,1); hence, n̂ must lie on the
boundary due to the Laplace approximation (saddle point
approximation on a real support). The only nontrivial result
comes from n̂ = 1. Inserting this condition into the saddle
point equation (75) we reproduce formula (70). The condition
for û0 is given by differentiating the left hand side of the saddle
point equation (75) and setting this result equal to zero,

d

dû0

[
û0

1 + û0

M∏
m=1

ν̂m − û0

ν̂m + 1

]
= 0. (76)

This condition is identical to formula (71). Hence, the saddle
point method reproduces the result obtained from the algebraic
equation (64) for the resolvent.

The saddle points, which satisfy Eq. (76), are the extrema
of the function within the square brackets. This function has a
pole at −1 and goes to +∞ for û0 → −∞ such that there is
exactly one minimum to the left of the pole; see Fig. 3. On the
right of the pole the function oscillates such that it has zeros at
0,ν̂1, . . . ,ν̂M . Since the rational function on the right hand side
of Eq. (75) is continuous, it has extrema between neighboring
zeros [see Fig. 3], yielding M additional extrema. It follows
that the optimization problem (76) has M + 1 solutions for û0,
which are all real: One solution û+

0 < −1 which gives the outer
edge of the spectrum ŝ+, one solution 0 � û−

0 � ν̂min which
gives the inner edge of the spectrum ŝ−, and M − 1 solutions
û0 � νmin which must be disregarded due to the cut in the
complex û plane mentioned above. It is clear that Eq. (76)
cannot have more than M + 1 solutions implying that we have
found all solutions. With this result we know how to choose
the correct solution of Eq. (71), which was what we wanted to
establish.

Before ending the discussion about the edges of the spectral
density, it is worth noting that Eq. (71) is an (M + 1)st order
equation, and the general case, for this reason, cannot be solved
analytically. However, it is possible to set up some analytical
bounds for the edges. The starting point are the conditions
0 � û−

0 � ν̂min and −∞ < û+
0 < −1 for the saddle points. We

will analyze step by step first the bounds on the inner edge,
ŝ−, and then on the outer edge, ŝ+.
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Let us consider the inner edge, ŝ−. Since 0 � ν̂min � ν̂m,
m = 1, . . . ,M , we can readily estimate

min

{
ν̂m

ν̂m + 1
,
ν̂max − û0

ν̂max + 1

}
� ν̂m − û0

ν̂m + 1
� ν̂min − û0

ν̂min + 1
(77)

for any û0 � 0. Note that these bounds hold since the ra-
tional function, (ν̂m − û0)/(ν̂m + 1), is strictly monotonously
increasing in ν̂m for û0 � 0. We plug Eq. (77) into Eq. (70)
and extremize the lower and upper bound, which yields

0 � ŝ−(ν̂min) � ŝ− � min

{
M∏

m=1

ν̂m

ν̂m + 1
,ŝ−(ν̂max)

}
<1, (78)

where we made use of the result (72) for the case when all
ν̂ are equal to ν̂min or to ν̂max. The bounds (78) are not at all
optimal. However, they immediately reflect the fact that the
inner edge vanishes if and only if ν̂min vanishes.

For the outer edge we have to employ the condition
û0 < −1, which yields the estimates

ν̂min − û0

ν̂min + 1
� ν̂m − û0

ν̂m + 1
� ν̂max − û0

ν̂max + 1
. (79)

Hereby we used the fact that the rational function, (ν̂m −
û0)/(ν̂m + 1), is monotonously decreasing in ν̂m in the con-
sidered regime. Employing the result (72) we find the bounds

1 < ŝ+(ν̂max) � ŝ+ � ŝ+(ν̂min) � (M + 1)M+1

MM
< ∞. (80)

Again the bounds can certainly be improved but they give a
good picture of the relation between the case of degenerate ν̂

[cf. Eq. (72)] and the general case, ν̂j 	= ν̂i for j 	= i.

V. MUTUAL INFORMATION FOR
PROGRESSIVE SCATTERING

We now turn to a brief discussion of the mutual information,
which is an important quantity in wireless telecommunication.
We look at a MIMO communication channel with multifold
scattering as mentioned in Sec. I. The communication link is
described by a channel matrix given by a product of complex
(β = 2) matrices from the Wishart ensemble as in Eq. (1). The
mutual information is defined as

I(γ,s) = log2 det

[
1N0 + γ

YMY †
M

NM

]

=
N0∑
a=1

log2

(
1 + γ

sa

NM

)
, (81)

where γ is the constant signal-to-noise ratio at the transmitter
and sa are the singular values distributed according to the
density (52). The mutual information measures an upper bound
for the spectral efficiency in bits per time per bandwidth
(bit/s/Hz).

In order to evaluate the expectation value of the mutual
information, the so-called ergodic mutual information, we
rewrite the logarithm as a Meijer G-function, see Eq. (A10).
We use the expression (47) for the functions ϕM

n (s), while we
write pM

n (s) in polynomial form (43). The integration over the
product of two Meijer G-functions can be performed using
Eq. (A6), which finally yields

Ê{I(γ,ŝ)} = 1

ln 2

N0−1∑
n=0

n∑
k,�=0

(−1)k+�

(n − k)!(n − �)!

n!

k!�!

(n + ν1)!

(� + ν1)!

M∏
m=1

1

(k + νm)!

×G
M+2, 1
2, M+2

(
0, 1

k + 1 + νM, . . . , k + � + 1 + ν1, 0, 0

∣∣∣∣ γ −1

)
. (82)

For square matrices, i.e. νi = 0 for all i = 1 . . . M , this triple sum was derived in [23]. Although it is not obvious from this
formulation, the mutual information is also independent of the ordering of νm. This is reflected after simplifying the expression (82)
with help of a combination of the Eqs. (40), (48), (A5), and (A8) to

Ê{I(γ,ŝ)} = 1

ln 2

N0−1∑
n=0

n∑
k=0

(−1)k

(n − k)!k!

M∏
m=1

1

(k + νm)!
G

M+2, 2
3, M+3

(
k − n + 1, 0, 1

k + 1 + νM, . . . , k + 1 + ν1, 0, 0, k + 1

∣∣∣∣ γ −1

)
. (83)

Hence, the channel matrix does not depend on the ordering of
the scattering objects as long as the signal passes through all
scatterers.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have studied the correlations of the singular
values of the product of M rectangular complex matrices from
independent Wishart ensembles. This generalizes the classical
result for the so-called Wishart-Laguerre unitary ensemble (or
chiral unitary ensemble) at M = 1 and is a direct extension of
a recent result for the product of square matrices [23]. We have

seen that the problem of determining the statistical properties
of the product of rectangular matrices can be equivalently
formulated as a problem with the product of quadratic matrices
and a modified, also called “induced,” measure, see [24] for
a general derivation. The expense of this reformulation of the
problem is the introduction of additional determinants in the
partition function.

We have shown that the joint probability density func-
tion for the singular values can be expressed in terms of
Meijer G-functions. The approach we have used relies on
an integration formula for the Meijer G-function as well as
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on the Harish-Chandra-Itzykson-Zuber integration formula.
Due to the latter this method is limited to the complex case
(β = 2). Furthermore, it has been shown, using a two-matrix
model and the method of biorthogonal polynomials, that all
correlation functions can be expressed as a determinantal
point process containing Meijer G-functions. From the explicit
expressions we derived it follows that all correlation functions
are independent of the ordering of the matrix dimensions.

The level density (or one-point correlation function) was
discussed in detail. We used the spectral density to calculate
all moments and derived its macroscopic limit. In particular,
we analyzed the location of the end points of the spectrum
in the macroscopic limit for arbitrary M and derived some
narrow bounds for the location of these edges.

As an application we briefly discussed the ergodic mutual
information, and how the singular values of products of
random matrices are related to progressive scattering in MIMO
communication channels.

The results presented in this work concern matrices of
finite size, while previous results for the product of rectangular
random matrices were only derived in the macroscopic large-
N0 limit. The explicit expressions for all correlation functions
at finite size make it possible to also discuss microscopic
properties, such as the local correlations in the bulk and
at the edges. Due to known universality results for random
matrices it is expected that such an analysis should reproduce
the universal sine and Airy kernel in the bulk and at the soft
edge(s), respectively, after an appropriate unfolding. Close
to the origin the level statistics will crucially depend on
whether the difference of the individual matrix dimensions
to the smallest one, νm = Nm − N0, scales with N0. If it does,
this will lead to a soft edge. If not, it is expected that the
microscopic behavior at the origin will be sensitive to M and
νm. For a single matrix with M = 1 (the Wishart-Laguerre
ensemble), it is already known that this limit yields different
Bessel universality classes labeled by ν1.

Furthermore, the determinantal structure of the correlation
functions make it possible to study the distribution of individ-
ual singular values, which is an intriguing problem in its own
right.

It has been pointed out in [37] that for the product of two
square matrices, M = 2 and ν1 = 0, the biorthogonal poly-
nomials in question are special cases of multiple orthogonal
polynomials associated with the modified Bessel function of
the second kind. It is an intriguing task to see whether this
approach can be extended to the more general case with M � 2
and rectangular matrices. Progress in this direction has already
been made [38].
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APPENDIX: SPECIAL FUNCTIONS
AND SOME OF THEIR IDENTITIES

In this appendix we collect some definitions and identities
for the generalized hypergeometric function and for the Meijer
G-function which are used in this paper.

The generalized hypergeometric function is defined by a
power series in its region of convergence [41],

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z) ≡
∞∑

k=0

∏p

i=1(ai)k∏q

i=1(bi)k

zk

k!
, (A1)

where the Pochhammer symbol is defined by (a)0 = 1 and
(a)n ≡ (a + n − 1)(a)n−1 = a(a + 1) · · · (a + n − 1) for n �
1. It is clear that the hypergeometric series (A1) terminates
if any of the ai’s is a negative integer. In particular, if n is a
positive integer, then

p+1Fq

(−n,a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z) =
n∑

k=0

(−1)kn!

(n − k)!

∏p

i=1(ai)k∏q

i=1(bi)k

zk

k!
,

(A2)

which is a polynomial of degree n or less.
The Meijer G-function can be considered as a generaliza-

tion of the generalized hypergeometric function. It is usually
defined by a contour integral in the complex plane [41],

Gm, n
p, q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z)
≡ 1

2πı

∫
L

du zu

∏m
i=1 �[bi − u]

∏n
i=1 �[1 − ai + u]∏p

i=n+1 �[ai − u]
∏q

i=m+1 �[1 − bi + u]
.

(A3)

The contour runs from −ı∞ to +ı∞ and is chosen such that
it separates the poles stemming from �[bi − u] and the poles
stemming from �[1 − ai + u]. Furthermore, this contour can
be considered as an inverse Mellin transform. For an extensive
discussion of the integration path L and the requirements for
convergence, see [42].

It follows that the Mellin transform of a Meijer G-function
is given by [41]∫ ∞

0
ds su−1Gm, n

p, q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ sz)
= z−u

∏m
i=1 �[bi + u]

∏n
i=1 �[1 − ai − u]∏p

i=n+1 �[ai + u]
∏q

i=m+1 �[1 − bi − u]
, (A4)

which results from the definition of the Meijer G-function
(A3). In combination with the definition of the gamma function
we have another identity,

∫ ∞

0
dt e−t t b0−1Gm, n

p, q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ s

t

)
= G

m+1, n
p, q+1

(
a1, . . . , ap

b0, . . . , bq

∣∣∣∣ s). (A5)
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Both of these integral identities are used throughout this paper. Another integral identity, which is used in Sec. V, allows us to
integrate over the product of two Meijer G-functions [43],∫ ∞

0
ds Gm, n

p, q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ ηs

)
Gμ, ν

σ, τ

(
c1, . . . , cσ

d1, . . . , dτ

∣∣∣∣ωs

)
= 1

ω
G

m+ν, n+μ
p+τ , q+σ

(
a1, . . . , an, − d1, . . . , − dτ , an+1, . . . , ap

b1, . . . , bm, − c1, . . . , − cσ , bm+1, . . . , bq

∣∣∣∣ η

ω

)
.

(A6)

The full set of restrictions on the indices for this integration
formula can be found in [43].

In addition to the integral identities given above, we need
some other identities for the Meijer G-function. We employ
several times that it is possible to absorb powers of the
argument into the Meijer G-function by making a shift in
the arguments [41],

zρGm, n
p, q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ z)
= Gm, n

p, q

(
a1 + ρ, . . . , ap + ρ

b1 + ρ, . . . , bq + ρ

∣∣∣∣ z). (A7)

For computing the function ϕM
n (s) in Sec. III, we need the

differential identity [43]

zn dn

dzn
Gm, n

p, q

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ 1

z

)
= (−1)nGm, n+1

p+1, q+1

(
1 − n, a1, . . . , ap

b1, . . . , bq, 1

∣∣∣∣ 1

z

)
. (A8)

We also use that the generalized hypergeometric polynomial
is related to the Meijer G-function by

1Fq

( −n

b1, . . . , bq

∣∣∣∣ z)
= n!

q∏
i=1

�[bi] G
1, 0
1, M+1

(
n + 1

0, 1 − b1, . . . , 1 − bq

∣∣∣∣ z),

(A9)

in order to write the polynomial pM
n (s) as a Meijer G-function

in Sec. III.
As a last remark of this appendix, it should be mentioned

that the Meijer G-function contains a vast number of elemen-
tary and special functions as special cases (e.g. see [44]). We
mention that

G
1, 0
0, 1

(−
b

∣∣∣∣ z) = zbe−z

(A10)

and G
1, 2
2, 2

(
1, 1
1, 0

∣∣∣∣ z) = ln(1 + z),

which becomes useful in Secs. II and V, respectively.

[1] G. Akemann, J. Baik, and P. Di Francesco, The Oxford Handbook
of Random Matrix Theory (Oxford University Press, Oxford,
2011).

[2] A. Crisanti, G. Paladin, and A. Vulpiani, Products of Random
Matrices in Statistical Physics (Springer, Heidelberg, 1993).

[3] A. D. Jackson, B. Lautrup, P. Johansen, and M. Nielsen,
Phys. Rev. E 66, 066124 (2002).

[4] E. Gudowska-Nowak, R. A. Janik, J. Jurkiewicz, and M. A.
Nowak, Nucl. Phys. B 670, 479 (2003).

[5] J. C. Osborn, Phys. Rev. Lett. 93, 222001 (2004).
[6] G. Akemann, Int. J. Mod. Phys. A 22, 1077 (2007).
[7] A. M. Brzoska, F. Lenz, J. W. Negele, and M. Thies, Phys. Rev.

D 71, 034008 (2005).
[8] R. Narayanan and H. Neuberger, J. High Energy Phys. 12 (2007)

066.
[9] J. P. Blaizot and M. A. Nowak, Phys. Rev. Lett. 101, 102001

(2008).
[10] J.-P. Bouchaud, L. Laloux, M. A. Miceli, and M. Potters,

Eur. Phys. J. B 55, 201 (2007).
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