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Kinetics of the dispersion transition and nonergodicity of a system consisting
of a disordered porous medium and a nonwetting liquid
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An approach has been proposed for the description of the dispersion transition of a nonwetting liquid in
confinement. This approach describes intrusion and extrusion processes for the ground state of a disordered
porous medium, which is characterized by the formation of a fractal percolation cluster. The observed transition
of the system of liquid nanoclusters in confinement to a metastable state in a narrow range of degrees of filling and
temperatures has been explained by the appearance of a potential barrier owing to fluctuations of the collective
“multiparticle interaction” of liquid nanoclusters in neighboring pores of different sizes on the shell of the fractal
percolation cluster of filled pores. The energy of the metastable state forms a potential relief in the space of the
porous medium with many maxima and minima. The volume of the dispersed liquid in the metastable state has
been calculated within the analytical percolation theory for the ground state with the infinite percolation cluster.
The extrusion-time distribution function of pores has been calculated. It has been found that the volume of the
nonwetting liquid remaining in the porous medium decreases with time according to a power law. Relaxation in
the system under study is a multistep process involving discontinuous equilibrium and overcoming of many local
maxima of the potential relief. The formation of the metastable state of the trapped nonwetting liquid has been
attributed to the nonergodicity of the disordered porous medium. The model reproduces the observed dependence
of the volume of the dispersed liquid both on the degree of filling and on the temperature.
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I. INTRODUCTION

The intrusion of a liquid into a porous medium is
accompanied by the dispersion of the liquid, and a system of
clusters in connected pores is formed in the porous medium.
If the liquid is nonwetting, intrusion requires excess pressure,
which can be estimated as the Laplace pressure. When the
pressure vanishes, the nonwetting liquid should flow out of the
porous medium. However, it is known [1–12] that, for many
porous media and liquids such as water, aqueous solutions
of salts and organic materials, and liquid metals, a part of a
liquid or the entire liquid after complete filling can remain
in the porous medium after the reduction of pressure. This
means that the nonwetting liquid passing to the dispersed state
becomes “wetting.” The stable dispersed state was observed
when studying the hysteresis of the intrusion (extrusion) of the
liquid into (from) disordered porous media such as modified
silicagels PEP100 C8(C18), KSK-G, Libersorb 23, and Fluca
60C8 [1–12]. Studies of the transition of the liquid to the
dispersed state have not yet been reported, but it was shown
in [13,14] that the volume of the liquid remaining in the
porous medium can be from 1% to 100% and this volume
remains unchanged in the observation time from several hours
to several months for various systems [13,14]. The entrapment
of the nonwetting liquid was observed for disordered porous
media with various porosities, wide and narrow pore size
distributions, and various surface energies of the liquid and
interfaces between the liquid and the frame of the porous
medium. It was also found that the volume of the trapped
liquid depends on the size of granules [15] and the observation
time [16]. It was revealed in [17] that the dispersion of the
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liquid in the porous medium after removal of the pressure
critically depends on the initial degree of filling and the
temperature. Consequently, the dispersion of the liquid is
a threshold phenomenon and can be described taking into
account correlation effects at the “interaction” between the
liquid clusters in neighboring connected pores. For this reason,
the entrapment of the liquid can not be explained under the
assumptions on intrusion (extrusion) into (from) individual
“noninteracting” pores.

The authors of [15,18] assumed that entrapment occurs
because the disordered porous medium includes configurations
of pores consisting, e.g., of a large pore surrounded by smaller
pores connected to the large pore. Then, after the first filling
of the porous medium and the subsequent reduction of excess
pressure to the Laplace pressure, small pores become empty
and the liquid from the large pore can not be extruded
because possible paths for its extrusion are broken. The authors
of [15] attributed the observed entrapment of the liquid at
fragmentation and the reduction of the sizes of granules of the
porous medium to the existence of such configurations. The
correlation effects of the interaction between liquid clusters
in neighboring pores were considered in [16,19–21]. The
authors of [16] introduced the Hamiltonian of the lattice gas,
which contains two sets of the occupation numbers to describe
the intrusion-extrusion hysteresis and entrapment after the
complete filling. One set describes occupation of a site of the
lattice by either a pore or a frame. The other set corresponds to
an empty or liquid-filled pore. This Hamiltonian with various
relations between its parameters allows the calculation of
intrusion-extrusion dependencies in a variant similar to diluted
magnets or in the variant of the mean field, taking into account a
random distribution of pores in neighboring sites of the lattice.
The authors of [16,20,21] believe that the intrusion of liquid
and its extrusion can be described as the diffusion transport of
vapor for which it is unnecessary to take into account transport
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paths through a certain system of filled pores. In the performed
Monte Carlo studies of entrapment with the Glauber-Kawasaki
algorithm, it was also assumed that the liquid flows from a filled
pore to a neighboring empty pore. In these approximations,
extrusion at the reduction of the pressure is represented as the
decay of a nonequilibrium state and the volume of the trapped
liquid is determined by the ratio of the observation time to the
characteristic transport time. The dependence of the volume
of the trapped liquid on the observation time was determined
in [16] for the mercury-Vycor system. The performed calcula-
tions qualitatively describe the observed increase in the volume
of mercury trapped in pores for Controlled Pore Glass (CPG)
and Vycor glasses with reduction of the experiment time.
However, it is noteworthy that the assumption of transport
through gas diffusion contradicts the observed liquid extrusion
time after the removal of excess pressure in the experiments
with water and the L23 porous medium [22]. For the system
studied in [22], this extrusion time is ∼0.1 s. In the case of mer-
cury, the time of diffusion transport of vapor is several orders
of magnitude longer than that for water because the density of
saturated vapor is much lower than the density of water.

In [1,2], entrapment after complete filling was considered in
the framework of statistical theory of fluctuations [23]. It was
assumed that the liquid remains in pores where the spontaneous
extrusion condition is not satisfied. This condition for the
extrusion fluctuation probability is determined by the com-
petition between the energy of the frame-liquid surface and
the energy spent on the formation of the liquid-gas surface
in the formed menisci in throats connecting the drained pore
with the surrounding filled pores. The spontaneous extrusion
condition makes it possible to calculate the volume of the
nonwetting liquid remaining in the porous medium. The
inclusion of these correlation effects and transport of the liquid
through filled pores of the infinite cluster makes it possible
to calculate and explain [19] thermal effects and temperature
dependencies of the intrusion-extrusion pressure. It is assumed
in [19] that all pores of the porous medium have the same
radius. For this reason, the dispersion transition and critical
character of entrapment after arbitrary intrusion can not be
described within this approach because the pressure varies
at arbitrary filling and pores with different radii are filled.
Thus, the mechanism of the entrapment of the nonwetting
liquid in the disordered nanoporous medium remains unclear.
This study is devoted to theoretical research of the kinetics of
dispersion transition.

Our approach is as follows. We consider granules of the
porous medium with the size L � R̄ (R̄ is the average size of
pores) with a known pore size distribution that are immersed in
a nonwetting liquid. The porosity ϕ of the porous medium ex-
ceeds the percolation threshold so that the system of connected
pores is formed in the granules. The state of the porous medium
is described by the N -particle distribution function, depending
on the coordinates of the pores, their sizes, and filling factors
(0, 1) of the pores with the liquid (Sec. II). This approach
allows the description of extrusion entrapment for the ground
state of the disordered porous medium, which is characterized
by the formation of a fractal percolation cluster. Since pores in
the percolation cluster are connected to each other, paths for
the extrusion of the liquid from granules appear when pores
are filled. It is assumed that the medium can be described in

the model of randomly distributed polydisperse overlapping
spheres. In this section, the single-particle distribution function
and the correlation function of the mutual arrangement and
overlapping of neighboring pores with various sizes are
calculated in order to determine the condition of spontaneous
extrusion of the liquid. These functions make it possible to
determine an extrusion-induced change in the surface energy of
the interaction between the liquid and the frame of the porous
medium in a pore and the surface energy of the interaction
between the liquid cluster in a pore with the liquid clusters in
neighboring pores. The calculation of these energies is based
on the analytical percolation theory. The sizes of the pores
and the number of the liquid clusters in neighboring pores are
random variables in the problem. According to the condition
of extrusion through pores in the infinite cluster of filled pores,
the energy is calculated for filled pores in the bulk and on the
shell of the fractal percolation cluster with a random number
of filled neighboring pores. This method makes it possible
to calculate the distribution function of pores in the time of
extrusion, to reveal a power law of relaxation of the system,
and to calculate the volume of the trapped liquid (Sec. III).
The dependence of this volume on the initial degree of filling
obtained in this section allows the description of the critical
character of the dispersion transition and the dependence on
the degree of filling taking into account the independently
measured porosity ϕ, average size of the pores R̄, half-width
of the pore size distribution, and the surface tension coefficients
of the liquid at the liquid-gas and liquid-frame interfaces, as
well as the dependence of this volume on the observation time
and on the size of the granule of the porous medium. Within this
approach, the formation of the dispersed state of the liquid can
be considered as a process with discontinuous equilibrium that
is due to numerous activated transitions through barriers that
are spatially distributed in the porous medium and have various
heights for pores of various radii and various numbers of neigh-
bors of filled pores at various places on the rough shell of the
fractal percolation cluster of filled pores. Another established
reason for entrapment is the decomposition of the percolation
cluster with the formation of localized clusters of filled pores.
Paths for the extrusion of the liquid are absent in pores of such
clusters, and this case corresponds to the nonergodic behavior
of the system with the infinitely high barrier separating the
dispersed state of the liquid in these localized clusters. In view
of the revealed properties of entrapment and dispersion tran-
sition, the system consisting of the disordered porous medium
and nonwetting liquid is similar in properties to spin glass [24]
and other nonergodic systems [25–32]. In contrast to a similar
problem for spin glasses, the problem for this system with the
short-range interaction between liquid clusters in neighboring
pores can be solved under accepted assumptions owing to
the introduction of the ground state of the disordered porous
medium with the infinite percolation cluster of filled pores.

II. PHYSICAL PICTURE OF
THE DISPERSION TRANSITION

Let a porous body be formed by a solid frame inside which
pores form a spatial structure as polydisperse overlapping
spheres. This model of the porous medium is a generalization
of the model of randomly distributed spheres that is widely
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used to describe porous media [33]. The pores in the real
media do not have spherical symmetry and the surface tension
discussed in the paper depends on the surface shape of the
pores. Actually, the average value of surface tension σ , δσ

in nonspherical pore surface is used in the paper. Such an
approach makes it possible to use the model of a porous
medium in the form of randomly distributed spheres. Within
the framework of this model, analytical results and a qualitative
description of the observed phenomena could be obtained. In
the model of randomly distributed spheres, a unit pore is a
spherical void with cuts (throats). In this model, a “quantum”
of the change in the volume of the liquid in the medium at
intrusion (extrusion) is intrusion-extrusion for one pore. It is
suggested that the volume of throats is negligibly small as
compared to the volume of pores. When the liquid is intruded
into a pore and is extruded from it, menisci of the liquid
are formed in these throats. Let the half-width δR of the
pore size distribution satisfy the inequality δR/R̄ < 3, which
guarantees that the percolation threshold through connected
pores is independent of the radius of pores [34].

Pores can be filled only when they are connected to each
other through throats and with the surface of the porous
medium. This is the case if the porosity of the medium is
such that the system of pores in it is above the percolation
threshold ϕ > ϕc. For various models of the porous medium,
the percolation threshold is ϕc = 0.16 ÷ 0.3 [33,35,36] and is
characteristic of the porous medium. The connection of pores
with each other is a result of the appearance of an infinite
(geometric) cluster consisting of such pores at ϕ = ϕc. At a
given pressure, only pores whose radii are larger than a certain
value can be filled; therefore, the filling of the disordered
porous medium at ϕ > ϕc is the filling of the percolation
cluster consisting of interconnected pores with various radii.

The extrusion of the liquid from a pore becomes possible
under the following two conditions:

(1) Its extrusion should be energetically favorable. Negative
work should be spent on the extrusion of the liquid from a pore
owing to the change in the energy of the (porous medium-
liquid) interface and to the formation of menisci in throats of
neighboring pores.

(2) Since the liquid can flow only through a connected
system of filled pores, geometric paths for the outflow of the
liquid from a given pore should exist.
For this reason, the extrusion of the liquid from the pore in
this medium after the reduction of excess pressure can be
considered as a result of the depletion of the pore belonging to
the percolation cluster of connected pores with various sizes
filled with the liquid.

The entrapment of the liquid in this medium can be
explained by the geometric reason when the porous medium
contains clusters with a finite number of filled pores for which
paths for extrusion are absent and the energy reason when the
liquid in pores remains in the stable state at the vanishing of the
pressure because positive work is necessary for the extrusion
of the liquid. To estimate the critical degree of filling θcr and
the critical temperature Tcr at which the nonwetting liquid
can remain in the porous medium at excess pressure p = 0,
we assume that paths for the extrusion of the liquid from the
pores under consideration exist and use the statistical theory
of fluctuations. We consider the change in the state of the

(liquid-porous medium) system at the extrusion of the liquid
from the pore surrounded by empty and filled pores at partial
filling. These surrounding pores are connected to the pore
under consideration through throats in the mouths of which a
meniscus appears if one of two connected pores are not filled
with the liquid. According to [23], the probability w of the
change in the state of the system in unit time at the extrusion
of the liquid from the pore under consideration under the action
of fluctuations in the system is determined by the change in
the entropy of the system �S at the extrusion of the liquid
from the pore: w ∼ exp(�S). The proportionality coefficient
in this relation is determined by the extrusion dynamics of
the liquid. Consequently, the entrapment of the liquid in this
medium can be due, first, to the geometric reason, when the
porous medium contains clusters with a finite number of filled
pores for which paths for extrusion are absent and, second,
to the energy reason associated with the change in �S. We
consider the second reason. We suggest that the change in
the temperature of the system can be neglected in this process.
This corresponds to the experimentally observed small thermal
effect [8,37]. Then, the probability can be written in the
form

w = w0exp(−δA/kT ). (1)

Here, w0 is the preexponential factor taking into account the
extrusion dynamics of the liquid from the porous medium
and δA is the isothermal work that should be spent on the
extrusion of the liquid from the pore. This work serves as a
potential barrier for extrusion in the case under consideration.
The quantity δA should include the work pV done by the
system for an increase in its volume by the volume V of the
pore at the pressure p and the change in the surface energy �E

of the liquid in the pore. In the initial state, the surface energy
of the liquid in the pore Ei consists of the energy Eisl of the
[solid- (frame-) liquid] interface and the surface energy Eilg

of the liquid-gas interface summed in all mouths connecting
the pore under consideration with surrounding empty pores.
We assume that the state of the liquid in surrounding pores
remains unchanged at the extrusion of the liquid from the pore
under consideration. Consequently, the surface energy Ef in
the final state consists of the energy Ef sg of the solid-gas
interface and the energy Ef lg of the liquid-gas interface, which
appears in the mouths of the throats connecting the empty
pore under consideration with the surrounding filled pores.
We represent the work δA spent on an increase in the volume
of the system and on the change in the surface energy in the
form of the difference between the energy of the interface
in the pore near the surface of the frame and the difference
between the total surface energy of menisci in the mouths of
all throats connecting the pore with the neighboring pores in
the final and initial states after and before extrusion. In this
case,

δA = pV + �E, �E = �Es + �El,
(2)

�Es = Ef sg − Eisl, �El = Ef lg − Eilg.

Let the number of neighboring pores be z, including n filled
pores and z − n empty pores before extrusion, so that the
number of menisci in the mouths of throats is z − n. After
extrusion, the number of menisci becomes n, which is the
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number of neighboring filled pores. Then,

�Es = (σsg − σsl)(s − smz) = −δσ (s − smz),
(3)

�El = σsm[k − (z − k)] = σsm(2k − z).

Here, δσ = |σsg − σsl | is the change in the specific surface
energy of the solid (frame of the porous medium) at the
extrusion of the liquid (for the nonwetting liquid, σsg < σsl)
and s and sm (smz < s) are the surface areas of the pore
and meniscus in the mouth of the throat connecting two
neighboring pores, respectively.

According to Eqs. (2) and (3), the extrusion potential barrier
decreases with the pressure p. In the described experiment, the
fraction of the trapped liquid is determined after removal of
excess pressure, i.e., at p = 0. In this case, the potential barrier
δA(p = 0) is determined by the sum �Es + �El , where
�Es < 0 according to Eq. (3) and �El changes sign when
the number of neighboring filled pores is n = z/2. At n < z/2
and, correspondingly, according to Eq. (3), at �El < 0, the
extrusion potential barrier is negative and the nonwetting liquid
can not remain in the porous medium after removal of excess
pressure. If the number n of the neighboring filled pores is
larger than half of the number of neighbors n > z/2, the
extrusion potential barrier can be both positive and negative,
depending on the relation between �Es and �El . Thus, the
nonwetting liquid can remain in the porous medium at p = 0
if the extrusion-induced change �El in the energy of the liquid
in the mouths of the throats connecting the pore with neighbors
exceeds the change |�Es | in the energy of the boundary of the
frame in the pore.

At δA = 0, the spontaneous extrusion of the nonwetting
liquid should occur owing to thermal fluctuations in the system.
This condition can be used to estimate the critical degree of
filling θcr at which the nonwetting liquid can remain in the
porous medium at excess pressure p = 0.

The degree of filling θ in the mean-field approximation
defines the fraction of filled pores in a macroscopically small
volume of the porous medium. Hence, the critical degree
of filling in this approximation can be estimated as the
fraction (n/z) of filled pores neighboring for the pore under
consideration, i.e., θ ≈ n/z, and the condition δA(p = 0) ≈ 0
in view of Eq. (3) can be represented in the form

δσ

(
1 − zsm

s

)
= σ

zsm

s
(2θcr − 1). (4)

We introduce the cosine of the wetting angle |cosψ | = δσ/σ ,
and the parameter η = zsm

s
determining the geometric connec-

tivity of pores through the mouths of neighboring pores. To
estimate the number of the neighboring pores in the disordered
porous medium, we use the model of randomly distributed
overlapping spheres [33,38]. In this model, pores are repre-
sented in the form of randomly distributed overlapping spheres
with the same radius R. The area sm of the mouths of the throats
connecting two neighboring pores and the average number z

of the nearest neighbor pores in this model depend on the
porosity ϕ and are given by the formulas [33,38]

z = −8 ln(1 − ϕ), sm = 9π2

256
R2. (5)

Condition (4) for the critical degree of filling can be written in
the form

θcr = 1

2

[
1 + |cosψ |

(
1 − η

η

)]
. (6)

According to the data reported in [2,17,22], the porosity for
the system consisting of the L23 porous medium and water is
ϕ ≈ 0.5 and, according to Eqs. (5), the number of the nearest
neighbors is z = 6 and the area of the mouths of pores is sm =
13 nm2. For this system, |cosψ | ≈ 0.2 [19]. Then, according
to Eq. (6), the critical degree of filling at which the nonwetting
liquid can be trapped in the porous medium at zero excess
pressure is θcr = 0.7. This value is consistent with the value
θcr = 0.9 experimentally determined at T = 290 K [17].

According to Eqs. (2)–(4), the potential barrier at degrees
of filling smaller than θcr is negative [δA(p = 0) < 0] and
the characteristic time of extrusion τ ∼ w−1 is determined
by the hydrodynamic time τ0 ∼ w−1

0 of the motion of the
liquid in the porous medium. The quantity τ0 was determined
experimentally [22] and is τ ≈ 10−1 s for the systems studied
in [17]. According to Eqs. (2)–(4), the potential barrier at
degrees of filling larger than θcr is positive [δA(p = 0) > 0]
and increases with θ . In particular, δA ≈ 1 eV at θ = 1.1θcr. As
the temperature increases, σ decreases [39], whereas δσ and
|cosψ | increase [19,40]. For this reason, according to Eq. (6),
the critical degree of filling at a certain critical temperature Tcr

becomes larger than unity and the liquid should not remain in
the porous medium.

The estimates of θcr show that the entrapment of the
nonwetting liquid can be attributed to the formation of the
potential barrier as a result of fluctuations in the number
of menisci in the mouths of the throats connecting the
neighboring filled pores and the pore from which the liquid
flows at the degree of filling θ < θcr. At these degrees of filling
and extrusion observation time smaller than the fluctuation
decay time of the state of the system, a long-lived metastable
state of the nonwetting liquid appears in the form of the
ensemble of liquid nanoclusters in pores (dispersed liquid).

We now discuss a physical reason for the transition of
the nonwetting liquid to a metastable dispersed state at
confinement. The surface energy of the system of liquid
clusters in completely filled pores is not reduced to the sum of
the surface energies of all independent liquid clusters. Clusters
can contact with each other in neighboring pores connected
through throats. The mouths of these throats are free of the
liquid-gas surface if the pore is connected through throats
with neighboring filled pores. This means that the surface
energy of two clusters in neighboring pores is lower than the
surface energy of two independent clusters by the energy of
the liquid-gas surface in the mouth of the throat connecting
these filled pores. A decrease in the surface energy can be
considered as the negative energy of the interaction between
two liquid clusters, i.e., as the effective attraction between
interacting clusters. This is the physical meaning of the energy
�El introduced in Eqs. (2) and (3). It takes into account the
“multiparticle interaction” of the liquid cluster in the pore
with clusters existing in neighboring connected pores. The
interaction between liquid clusters can be responsible for
the situation where the total energy of “the multiparticle
attractive interaction” at the degree of filling θ > θcr becomes
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higher [see Eq. (4)] than the energy of the liquid-solid
interface. In this case, extrusion is energetically unfavorable
after removal of excess pressure. The probability of extrusion
w (1) can be smaller than the inverse observation time and the
system of clusters becomes “condensed.”

The above estimates of the probability of extrusion w

were based on the assumptions that the disordered porous
medium is homogeneous and isotropic and that the local
geometric configuration consisting of the liquid cluster in
the completely filled pore and its nearest liquid clusters
in connected neighboring pores is identical throughout the
volume of the porous medium. However, there are several
reasons for which various spatially inhomogeneous geometric
configurations consisting of the liquid cluster in the pore
and its environment appear in the disordered porous medium.
Such an inhomogeneity can appear according to the model of
randomly distributed overlapping spheres at R = const [33,38]
in the case of spatially nonuniform porosity. According to
Eqs. (5), the number of the nearest neighbor pores and, as
a result, variation of the potential barrier and the probability
of extrusion of the liquid from the pore, are inhomogeneous
in this case. Another reason can be the dependence of the
connectivity parameter η of the pores [see Eq. (6)] on the
radius of the pore if the porous medium contains pores of
different sizes. In this case, for example, a larger pore can
be surrounded by smaller pores or by a smaller number of
neighboring pores. As a result, spatial variations appear in
geometric configurations of the pore and its environment. This
situation appears at various degrees of filling because larger
pores are filled at smaller degrees of filling requiring lower
pressures.

An additional reason for the variation of the local configura-
tion of the pore and its environment [36] when the porosity ϕ is
above the percolation threshold ϕc is that the fractal percolation
cluster of pores connected to each other and with the surface of
the porous medium appears in the porous medium, disordered
or with a lattice of pores. This fractal cluster with the size
l has a nonsmooth strongly rough shell [36] with the area
S ∼ l2.4 and volume V ∼ l2.4. Connection between pores in
the percolation cluster ensures its filling and the extrusion
of the liquid from it. For this reason, filling is accompanied by
the formation of a percolation cluster of filled pores inside this
percolation cluster of pores. The percolation cluster of filled
pores appears at the degree of filling θ > θc = ϕc. Because of
the fractality of the percolation cluster, filled pores on the shell
of this cluster at a given degree of filling can have different
numbers of neighboring filled (or empty) pores, and, according
to Eq. (3), different extrusion potential barriers. Thus, within
the percolation theory, variations of the local configurations
of the pore and its environment can be taken into account and
the extrusion of the liquid from the porous medium can be
adequately described. Variations of the local configurations of
the pore and its environment at the extrusion of the liquid from
the pore can lead to the decomposition of the infinite cluster
of filled pores and to the formation of clusters containing a
finite number of filled pores for which paths for extrusion are
absent. Consequently, to describe the dispersion transition, it is
necessary to calculate the change in the volume and energy of
the liquid in the disordered porous medium taking into account
a possible break of paths for the extrusion of the liquid, to

describe the porous medium filled with the nonwetting liquid,
and, using this description, to calculate the volume of the liquid
trapped in the porous body after removal of the pressure, which
is due to the above two reasons.

III. ENERGY AND FLUCTUATIONS IN THE EXTRUSION
BARRIER FOR THE NONWETTING LIQUID,

DISPERSED IN THE DISORDERED
NANOPOROUS MEDIUM

We consider a spatially disordered porous medium con-
sisting of N pores with various random radii Ri that has the
porosity ϕ and is filled to the degree of filling θ . Each pore
that has the radius Ri and is located at the point �ri can be
either filled or empty. We introduce the number ni that is
unity and zero if the pore with the radius Ri at the point
�ri is filled with the liquid and is empty, respectively. The
phase space of this system is the 5N -dimensional space of
the coordinates of the pores, their radii, and filling factors
ni of all N pores. Let F (�r1,R1,�r2,R2 . . . �rN ,RN,n1,n2 . . . nN )
be the N -particle distribution function of pores in
their coordinates �ri , radii Ri , and filling factors ni .
The function F (�r1,R1,�r2,R2 . . . �rN ,RN,01,02 . . . 0N ) is the
N -particle distribution function of empty pores and
F (�r1,R1,�r2,R2 . . . �rN ,RN,11,12 . . . 1N ) is the distribution
function of pores in the completely filled porous medium. At
θ < 1, various geometric configurations of filled and empty
pores can correspond to the state of the porous medium. Con-
sequently, for the porous medium filled to the degree of filling
θ , the multiparticle distribution function of empty and filled
pores Fθ (�r1,R1,�r2,R2 . . . �rN ,RN ) is degenerate and can be ob-
tained from F (�r1,R1,�r2,R2 . . . �rN ,RN,n1,n2 . . . nN ) by sum-
ming over these configurations Fθ (�r1,R1,�r2,R2 . . . �rN ,RN ) =∑Nθ

k=1 F (�r1,R1 . . . �rN ,RN {ni}kθ ). The distribution function
F (�r1,R1 . . . �rN ,RN {ni}kθ ) corresponds to {ni}kθ configurations
of empty and filled pores such that the total relative volume of
filled pores is θ , the index k = 1, . . . ,Nθ enumerates these con-
figurations, and Nθ is the maximum number of degenerate con-
figurations. In particular, in the case of nonoverlapping pores,
the multiparticle distribution function of empty and filled pores
Fθ (�r1,R1,�r2,R2 . . . �rN ,RN ) for the porous medium with the
degree of filling θ has the form Fθ (�r1,R1,�r2,R2 . . . �rN ,RN ) =∑

{ni }F (�r1,R1,�r2,R2 . . . �rN ,RN,{ni})δ(
∑N

i=1 niVi∑N
i=1 Vi

− θ ), where Vi

is the volume of the ith pore.
The total thermodynamic potential, which is the energy of

the porous medium filled to the degree of filling θ , can be
represented in the form

E =
∫ Nθ∑

k=1

ε
(�r1,R1,�r2,R2 . . . �rN ,RN {ni}kθ

)

×Fθ

(�r1,R1,�r2,R2 . . . �rN ,RN {ni}kθ
)
d�. (7)

We calculate the change δE in the energy of the system at the
extrusion of the liquid from a randomly chosen filled pore in
the porous medium. Let this pore have the radius R1 and be
at the point �r1. We assume that the state of the remaining
multiparticle system, except for the chosen pore, remains
unchanged in this process; this assumption corresponds to the
mean-field approximation in the description of the extrusion
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of the liquid from pores of the porous medium. In this case, the
multiparticle distribution function of empty and filled pores in
the porous medium can be represented in the form

Fθ (�r1,R1,�r2,R2 . . . �rN ,RN )

= f (�r1,R1)Fθ (�r2,R2 . . . �rN ,RN ). (8)

Here, f (�r1,R1) is the single-particle distribution function of
filled pores normalized to the total number of filled pores in
the porous medium filled to the degree of filling θ . In view of
Eqs. (7) and (8), the change �E in the energy in Eq. (2) can
be represented in the form

δE =
∫

δε(�r1,R1)f (�r1,R1)d�r1dR1. (9)

Here, δε(�r1,R1) is the change in the energy of the system at
the depletion of one pore

δε(�r1,R1)

=
∫

d�r2 . . . d�rN−1dR2 . . . dRN−1

× δε(�r1,R1,�r2,R2 . . . �rN ,RN ),

δε(�r1,R1 . . . �rN ,RN )

=
Nθ∑
k=1

δε
(�r1,R1,�r2,R2 . . . �rN ,RN {�n1 = 1,n2 . . . nN−1,}kθ

)

×Fθ

(�r2,R2 . . . �rN−1,RN−1{n2 . . . nN−1}kθ
)
. (10)

The quantity δε(�r1,R1 . . . �rN ,RN ) in Eqs. (10) is the sum of the
energy δε1(�r1,R1 . . . �rN ,RN ) of the (porous medium-liquid)
interface and the energy δεint(�r1,R1 . . . �rN ,RN ) necessary for
the formation of menisci in the throats of neighboring pores.
It is assumed that the chemical potential of the liquid remains
unchanged at its dispersion. This is valid for pores with
sizes R > 1 nm [13]. Including the work pV spent on an
increase in the volume of the system V , the expressions for
energies δε1(�r1,R1 . . . �rN ,RN ) and δεint(�r1,R1 . . . �rN ,RN ) can
be represented in the form

δε(�r1,R1 . . . �rN ,RN )

= pV (�r1,R1) − δσ [1 − η(�r1,R1 . . . �rN ,RN )]S(�r1,R1),

η = Sm(�r1,R1 . . . �rN ,RN )

S(�r1,R1)
,

δεint(�r1,R1 . . . �rN ,RN ) = σδSm(�r1,R1 . . . �rN ,RN ). (11)

Here, σ is the surface energy of the liquid; δσ = (σls − σsg)
is the difference between the surface energies of the solid-
liquid and solid-gas interfaces; V (�r1,R1) and S(�r1,R1) are the
volume and surface area of the depleted pore, respectively;
Sm(�r1,R1 . . . �rN ,RN ) and δSm(�r1,R1 . . . �rN ,RN ) are the area of
menisci in the pore and the change in the area of menisci at
the depletion of the pore, respectively; and p is the pressure of
the liquid in the pore. We accept that the area of menisci and
the change in the area of menisci at the depletion of the pore
are determined only by the nearest environment of the depleted
pore. Effects associated with the transport of the liquid to the
pores following the nearest environment of the depleted pore
without extrusion from the porous medium are neglected. In
this case, it follows from Eqs. (8)–(11) that δε(�r1,R1) can be

represented in the form

δε(�r1,R1) = pV (�r1,R1) − δσ (1 − 〈|η(�r1,R1)|〉)S(�r1,R1)

+ δεint,

〈η(�r1,R1)〉 = 〈Sm(�r1,R1 . . . �rN ,RN )〉
S(�r1,R1)

,

δεint(�r1,R1) = σ 〈δSm(�r1,R1 . . . �rN ,RN )〉
= σ 〈W (�r1,R1 . . . �rN ,RN )Sm(�r1,R1 . . . �rN ,RN )〉.

(12)

Here,

〈Sm(�r1,R1 . . . �rN ,RN )〉

=
∫

Fθ (�r1,R1 . . . �rN ,RN )
z∑

k=1

sm(�r1,R1,�rk,Rk)

× d�r2,dR2 . . . d�rN ,dRN

=
∫

d �x dR1Sm(�r1,R1,�x,R2)g2(�r1,R1,�x,R2), (13)

and W (�r1,R1 . . . �rN ,RN ) is the change in the number of
menisci at the extrusion of the liquid from the filled
pore. In Eq. (13), g2(�r1,R1,�x,R2) = g2(�r1,R1,�r1 − �r2,R2) =∫

d�r3dR3 . . . �rNdRNFθ (�r1R1 . . . �rNRN ) is the pair correlation
function of pores in the porous medium filled to the degree
of filling θ ; sm(�r1,R1,�r2,R2) is the area of the meniscus of
pores with the radii R1, R2 that are located at the points
�r1 and �r2, respectively; z is the number of pores in the
environment of the depleted pore; and integration is performed
over the distances |�x| < R1 + R2 corresponding to the first
coordination sphere. For the spatially isotropic medium,
g2(�r1,R1,�x,R2) = g2(R1,|�r2 − �r1|,R2).

In the model of randomly distributed spheres, the pair
correlation function of pores with the radii R and R1 whose
centers are spaced by the distance �r has the form [41]

g2(R,R1,�r) = ϕ
1

R3
1

[R3+R3
1−3/4x2(R1−x/3)−3/4y2(R−y/3)],

. (14)

where x = R2−(|�r|−R1)2

2|�r| and y = R + R1 − x − |�r|. The inte-
gration of the pair distribution function given by Eq. (14) over
the volume nearest to the depleted pore yields the number
z(R,R1) of the nearest neighbor pores with the radius R1 to
the pore of the radius R:

z(R,R1) = 1

ϕVpore

∫ |R+R1|

|R−R1|
g2(R,R1,�r)d�r. (15)

Here, Vpore is the volume of one pore with the radius R1 and ϕ

is the porosity. Averaging Eq. (15) with the normalized pore
size distribution function f (R1), we obtain the average number
of the nearest neighbors of the depleted pore with the radius
R:

z(R) =
∫ ∞

0
dR1f (R1)z(R,R1). (16)

Expression (16) for the average number of the nearest
neighbors was analyzed in [41].

We assume that the extrusion of the liquid from the pore
occurs only when at least one of the pores neighboring to

052116-6



KINETICS OF THE DISPERSION TRANSITION AND . . . PHYSICAL REVIEW E 88, 052116 (2013)

the depleted pore belongs to the infinite cluster of filled
pores through which the liquid can be extruded from a
granule of the porous medium. In this case, the change in
the energy of the pore owing to the change in the number of
menisci σ 〈δSm(�r1,R1 . . . �rN ,RN )〉 = σ 〈W (�r1,R1 . . . �rN ,RN )
Sm(�r1,R1 . . . �rN ,RN )〉 is nonzero only for the states determined
by the distribution function Fθ (�r1,R1,�r2,R2 . . . �rN ,RN ) that
contain at least one realization of the infinite cluster of filled
pores. Only states with the infinite cluster of filled pores
should be retained. Many realizations of states of the system
containing the infinite cluster can exist, corresponding to
degeneracy of the state with the infinite cluster of filled pores.
For this reason, such a state can be characterized by the
probability P (θ ) that the pore belongs to the infinite cluster of
filled pores. In this case, the quantity W in Eq. (12) depends on
the probability P (θ ) that the pore belongs to the infinite cluster
and the number z of the nearest neighbors of the depleted pore
with the radius R:

W = W [z(R),P (θ )]η(R). (17)

The quantity W (z,θ1) is determined as the difference between
the average number of menisci before and after the depletion
of the pore per nearest neighbor. The product of W (z,θ1) by
the surface energy of the liquid in the menisci determines the
change in the energy of the pore at the extrusion of the liquid
from it. This quantity can be interpreted as the energy δεint of
the interaction between the liquid cluster in the pore with the
environment at the transition to an unstable state. It follows
from Eqs. (11)–(13) that

δε(R,θ1) = δε1(R) + δεint(R,θ1),

δε1(R) = pV − δσ [1 − η(R)]S,
(18)

η(R) = 〈Sm(R,R1)〉
S

,

δεint(R,θ1) = σ 〈WSm〉 ≈ σW (z,θ1)η(R).

The area of the menisci Sm in Eqs. (18) is determined by the
nearest environment of the chosen pore. Consequently,

η(R) = 1

4πR2

∫ ∞

0
z(R,R1)sm(R,R1)f (R1)dR1. (19)

Here, sm(R,R1) is the area of one meniscus in the throat of
the chosen pore with the radius R connected to the pore of
the radius R1. Thus, to calculate the energy δε(R,θ1), it is
necessary to calculate the change in the number of menisci at
the depletion of the pore W (z,θ1) and the connectivity factor
η(R).

To calculate W (z,θ1), we note that the extrusion of the
liquid from the completely filled medium first occurs through
the formation of individual empty pores and clusters of empty
pores at the reduction of the pressure and, at smaller θ values,
the formation of the fractal percolation cluster of filled pores
on the shell. At θ1 > θc, the function W (θ1 > θc) should be
defined as the average difference between the numbers of
menisci after and before the depletion of the pore:

W (z,θ1 > θc) =
z−1∑
n=0

(1 − θ1)n[P (θ1)]z−n z − 2n

z

z!

n!(z − n)!
.

(20)

Here, P (θ1) is the probability that the filled pore belongs to
the infinite cluster of filled pores. The first and second factors
correspond to the probability of the location of an empty pore
near the infinite cluster of filled pores under the condition
that this pore is surrounded by n empty and z − n filled pores
and, hence, contains n menisci. The third factor determines
the difference between the relative numbers of menisci after
(z − n) and before (n) the filling of the pore. The combinatory
factor presents the variants of the distribution of n menisci
over the neighbors nearest to the given pore and corresponds
to the degeneracy of the local geometric configuration state
of the given pore and the filled pores in the first coordination
sphere. Thus, each term in the sum in Eq. (20) describes the
change in the number of menisci at a given relation between
filled and empty pores. Summation in Eq. (20) includes all
possible variants of the mutual arrangement of the empty and
filled pores and makes it possible to take into account on
average variations of fluctuations in the configurations of the
pore and its environment consisting of filled and empty pores
in the space of the porous disordered medium.

The sum in Eq. (20) can be calculated analytically:

W (θ1) = [θ1 + P (θ1) − 1][P (θ1) − θ1 + 1]z−1 − (1 − θ1)z.

(21)

Figure 1 shows the dependence W (z,θ1) calculated by Eq. (21)
for various numbers of the nearest neighbors z. These
dependencies reflect the change in the energy of the collective
interaction between the filled pore and its environment and
the relation between the numbers of neighboring empty and
filled pores with the variation of the degree of filling. The
calculations were performed with the P (θ1) dependence from
[42]. Authors of [42] considered regular 3D lattices, whereas
in this paper a disordered medium is considered. At the same
time, all the analytical calculations further will perform for
an arbitrary function P (θ1). This function will enter into the
expressions in the integral form. Therefore, when calculating
the observed values, weak dependence should be expected on
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Degree of filling θ1
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FIG. 1. Change in the number of menisci at the extrusion of the
liquid from the filled pore W (z,θ1) versus the degree of filling θ1 at
the number of the nearest neighbors z = (solid line) 4, (dashed line)
6, and (dotted line) 8. The functions W (z,θ1) changes sign at the
points θ0(z).
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the concrete form of P (θ1). According to Eq. (21) (see Fig. 1),
the quantity W (z,θ1) at θ1 → 1 approaches 1, corresponding
to the change in the number of menisci at the extrusion of the
liquid from one pore in the completely filled porous medium
(Fig. 1). A decrease in the degree of filling leads to a decrease
in W (θ1) owing to the reduction of the number of neighboring
filled pores and to an increase in the number of menisci around
the filled pore at the extrusion of the liquid. A further decrease
in the degree of filling is accompanied by the reduction of the
number of menisci after the extrusion of the liquid from the
pore and to the change in the sign of W (z,θ1) at θ1 = θ0(z).
As will be shown in the following, this behavior indicates
that liquid nanoclusters in pores can become unstable and free
of the liquid. As can be seen in Fig. 1, the degree of filling
θ0(z) at which the function W (z,θ1) changes sign depends only
slightly on the number of the nearest neighbors z in the range
from z = 4 to 8 and, correspondingly, on the radius of the
pore (16). For this reason, approximation (17) can be used
in the following. At degrees of filling below the percolation
threshold θ1 < θc, the infinite cluster is absent. In this case,
W (z,θ1 � θc) = 0 and the liquid can be extruded only from
individual clusters connected to the boundary of the porous
medium. According to the known distribution function of
clusters in the number of pores [36], their number is small, so
that the volume of the extruded liquid remains macroscopically
unchanged. In this case, W (z,θ1 � θc) = 0.

To calculate the connectivity factor η(R), a model of the
porous medium is necessary. In this work, this factor was
calculated in the model of randomly distributed spheres [33]
with pores of various radii taking into account correlations
in the spatial distribution of the pores in the medium. In this
model,

sm(R,R1) = 1

V

∫ R+R1

|R−R1|

πR
(
R2

1 − (r − R)2
)

r

× g2(R,R1,r)4πr2dr,

V = 4π/3((R + R1)3 − |R − R1|3), (22)

where g2(R,R1,r) is given by Eq. (14).
The calculations by Eqs. (19) and (20) for the Gaussian

pore radius distribution function f (R) with the average radius
R̄ and small half-width δR

R̄
< 1 in this model give [41]

η = q(R0/R)−α, α ≈ 0.3 (23)

where the parameter q ∼ 1 depends on the porosity ϕ and R0

is the minimum radius of the pores in the porous medium,
which is determined by the radius distribution function and is
on the order of the average radius of the pores divided by the
average number of the nearest neighbors R0 ∼ R̄/z̄. It follows
from Eqs. (16), (19), and (23) that the change in the energy
of the liquid in the pore δε(θ,R,p) = δε1(R,p) + δεint(R,θ1)
at the extrusion of the liquid from the spherical pore with the
radius R in the partially filled porous medium has the form

δε(θ1,R,p) = p
4π

3
R3 − 4πR2δσ

[
1 −

(
R0

R

)α

q

]

+ 4πqR2−αRα
0 σ [(θ1 + P (θ1) − 1]

× [P (θ1) − θ1 + 1)z−1 − (1 − θ1)z]. (24)

−1

0

1

2

3

4

0  0.2  0.4  0.6  0.8 1  1.2  1.4  1.6

δ
ε

(θ
1=

1,
z=

6,
p/

p 0
,R

/− R
) 

(e
V

)

Relative radius of the pore R/−R

R*(θ1=1,p/p0=0.3)

FIG. 2. Change in the relative energy of the liquid in the pore
δε versus the relative radius of the pore R

R̄
, where R̄ is the average

radius of the pores, at the relative pressure p/p0 = (solid line) 1 and
(dashed line) 0.3, where p0 = 3σ

R̄
, for σ

δσ
= 4, θ1 = 1, and z = 6. The

dotted line is the normalized Gaussian distribution function of pores
with the relative half-width δR

R̄
= 0.1. The radius of the pore R∗ is

determined from the condition δε = 0.

According to Eq. (24), the change in the energy �E(θ,R,p) =
δε1(R,p) + δεint(R,θ1) in the partially filled porous body at the
extrusion of the liquid from the pore is determined by the the
parameters of the porous medium and liquid δσ , σ , z, and η

and depends on the pore radius R, the degree of filling θ1, the
pressure of the liquid in the pore p, and the temperature T , in
view of the temperature dependencies of the surface tension
coefficients δσ (T ) and σ (T ).

Figures 2 and 3 show the dependence δε(θ1,R,p) on the
radius of the pore at various pressures p and degrees of filling
θ1. The possibility of the extrusion of the liquid from the
pore or the entrapment of the liquid in the pore with an
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FIG. 3. Change in the energy of the liquid in the pore δε for
σ

δσ
= 4 and the degree of filling θ1 = (dashed line) 1 and (solid line)

0.6 versus the relative radius of the pore R

R̄
, where R̄ is the average

radius of the pores at the pressure p = 0 and z = 6. The dotted line
is the normalized Gaussian pore size distribution function with the
relative half-width δR

R̄
= 0.1. The equality δε = 0 occurs for θ = 0.6

at R∗/R = 0.52 and for θ = 1 at R∗/R = 1.82.
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increase in its radius is determined by competition between
the energetic favorability of extrusion owing to the change
in the surface energy of the pore {term −δσ [1 − η(R)]S in
Eqs. (16) and (24)}, the energetic unfavorability of extrusion
because of the presence of the pressure of the liquid [term pV

in Eqs. (16) and (24)], and the change in the energy owing
to the change in the number of menisci at the extrusion [term
σWηS in Eqs. (16) and (24)]. Competition between these
components of the energy results in the change of the sign
of δε at

R∗(z,θ1) = q
1
α R0

(
1 + σ

δσ
W (z,θ1)

) 1
α

. (25)

It follows from Eqs. (19), (24), and (25) (see Fig. 3) that
the energetic favorability of the entrapment of the liquid
from the pore is determined by the sign of the function
W (z,θ1): if W (z,θ1) < 0, the extrusion of the liquid from the
pore of any size is energetically favorable. At W (z,θ1) > 0,
the entrapment of the liquid in the pore with the radius
R0 < R < R∗(z,θ1) becomes energetically favorable, whereas
extrusion is energetically favorable for pores with the radius
R > R∗(z,θ1). Thus, there is an energy barrier that should
be overcome for the extrusion of the liquid from the pore
[Figs. 2 (dashed line) and 3]. The height and existence of such
a barrier depend on the radius of the pore and the degree of
filling θ1 (Figs. 2 and 3). According to Fig. 2 and Eqs. (16)
and (23), the change in the energy of the system per pore at the
extrusion of the liquid from it at the pressure of the liquid
p/p0 = 1 is positive δε(θ,R → ∞,p) ∼ pR3 > 0 because
the work pV spent on an increase in the volume of the system
V dominates. As a result, the extrusion of the liquid from
pores of any radius becomes energetically unfavorable. As
the pressure decreases, the extrusion or entrapment of the
liquid is determined by the competition between the change
in the surface energy of the pore and the change in the
energy because of the change in the number of menisci at
extrusion. For this reason, the extrusion of the liquid from
pores with the radius R0 < R < R∗(z,θ1,p) is unfavorable,
δε(θ1,p) > 0 [Fig. 2 (dashed line)], whereas the extrusion
of the liquid from pores with the radius R > R∗(z,θ1,p) is
favorable, δε(θ1,p) < 0 [Fig. 2 (solid line)]. In the case of
zero pressure in the liquid p = 0 (Fig. 3) and dependence η(R)
given by Eq. (23), the change in the energy at the extrusion
of the liquid from the pore is positive (i.e., entrapment is
energetically favorable) at R0 < R < R∗(z,θ1). In this case,
the dependence of the energy δε(θ1,p) in Fig. 3 (dashed
line) corresponds to complete entrapment because all of
the pores in the porous medium satisfy this condition. At
R > R∗(z,θ1) and negative δε(θ1,p) value, the extrusion of
the liquid from the pore is energetically favorable. The solid
line in Fig. 3 corresponds to complete extrusion because
all of the pores in the porous medium satisfy the condition
R > R∗(z,θ1).

The energy barrier is maximal (Fig. 3) at the radius of
the pore R = Rmax(z,θ1) < R∗(z,θ1). It follows from Eq. (24)
that the highest barrier at p = 0 is δε[z,θ1,R = Rmax(z,θ1)] =
δεmax(z,θ1) and the corresponding Rmax(z,θ1) value at various
degrees of filling can be calculated from Eq. (24). The result
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FIG. 4. Barrier height δεmax(z,θ1) eV versus the degree of filling
θ1 at various numbers of the nearest neighbors z at room temperature
for σ = 72 mJ/m2, δσ = 22 mJ/m2, R̄ = 3.6 nm, δR = 0.4 nm, and
ϕ = 0.5.

has the form

δεmax(z,θ1) = 4πR2
0δσ

(
1 − α

2

) 2
α
−1

q
2
α

[
1 + σ

δσ
W (z,θ1)

] 2
α

,

Rmax(z,θ1) =
(

1 − α

2

) 2−α
2α

q
1
α

[
1 + σ

δσ
W (z,θ1)

] 1
α

=
(

1 − α

2

) 2−α
2α

R∗(z,θ1). (26)

At R0 ∼ 0.5 nm, δσ ∼ 25 mN/m, σ
δσ

= 3, and z = 6, esti-
mates give 4πR2

0δσ ∼ 0.01 eV and δεmax(z,θ1 = 1) ∼ 2.3 eV.
Figure 4 shows the dependence of the barrier height

δεmax(z,θ1) on the degree of filling θ1 at various numbers of
the nearest neighbors. It can be seen in the figure that the
barrier height that should be overcome for the extrusion of
the liquid from the pore depends only slightly on the number
of the nearest neighbors, decreases with θ1, and is ∼2.3 eV
at complete filling θ1 = 1 and decreases to 0.01 eV with a
decrease in the degree of filling θ1 to θ1 ≈ 0.35.

According to Eqs. (25) and (26), R∗(z,θ1) and δεmax(z,θ1)
depend on the temperature due to the temperature depen-
dencies of the surface tension coefficients σ (T ) and δσ (T ).
Figure 5 shows the dependencies of the energy change given
by Eq. (24) on the radius of the pore at various temperatures.
It can be seen in Fig. 5 that the change in the temperature
from 279 to 293 K qualitatively changes the the behavior
of the system. At 279 K, all of the pores in the porous
medium are in the region δε(R) > 0 [Fig. 5 (solid line)] and,
consequently, the extrusion of the liquid is unfavorable from
all pores of the porous medium. At T = 293 K, δε(R) < 0
for all pores in the porous medium. In this case, the quantity
δε(R) at R0 < R < R∗(T = 293 K) is smaller than δε(R) at
R0 < R < R∗(T = 279 K).

IV. DYNAMICS OF THE DISPERSION TRANSITION:
THE VOLUME OF THE DISPERSED LIQUID

We now discuss the dynamics of the formation of the
dispersed state of the liquid in the nanoporous medium.
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dots and dashed-dotted line are the calculations by approximate
formula (40) for the temperatures T = (closely spaced dots) 279
and (dashed-dotted line) 293 K. The line of widely spaced dots is
the pore radius distribution function f (R) with δR/R̄ = 0.1. The
temperature dependence σ (T ) for water was taken from [43] and the
temperature dependence δσ (T ) was taken from [19].

According to Eq. (1), the extrusion barrier determines the
time of the extrusion of the liquid from the pore in the
porous medium. In the isothermal case under consideration,
the isothermal work δA that should be spent on the extrusion
of the liquid from the pore is equal to the change in the energy
of the pore δε(θ,R,p,z). The time of the extrusion of the
liquid from the pore of the radius R can be represented in the
form

w−1 ∼ τ1(R) = τ0exp[δε(R,θ1,p,z)/T ]. (27)

Here, τ0 is the preexponential factor taking into account the
extrusion dynamics of the liquid from the porous medium.
The time τ0 can be estimated as follows. Let the liquid flow
from the pore of the radius R through a channel of filled pores
with the same radius. In this case τ0 = 4πR3

Q(R) and using the
known expression for the liquid flow rate in the channel with
the radius R: Q(R) = π

8η0

�p

L
R4 [23] (L is the characteristic

size of the granule of the porous body), we get at the following
expressions for the times τ0 and τ1(R):

τ0 = 4η0L

3R(pg − p)
, τ1(R) = τ0 exp[δε(R,θ1,p,z)/T ].

(28)

Here, pg is the pressure at which the porous medium is filled
with the liquid and η0 is the viscosity coefficient. We consider
the case p = 0 corresponding to the extrusion of the liquid
from the porous medium at the complete removal of the
pressure. For the parameters p = 0, L ∼ 1 μm, R̄ ∼ 3 nm, and
pg ∼ 100 atm, we obtain τ0 ∼ 10−8 s for water. According to
Eqs. (28), the time of the extrusion of the liquid from the pore

of the radius R is given by the expression

τ1(R) = 4ηL

3Rpg

exp[δε(R,θ1,p = 0,z)/T ]. (29)

It follows from Eqs. (24) and (29) that the time of the extrusion
of the liquid from the pore in the case under consideration is
determined by the sign of δε(θ1,R,p = 0,z) and, according to
Eq. (24) [see Fig. 6(a)], strongly depends on the radius of the
pore. As can be seen in Fig. 6(a), the quantity δε(R,θ1 = 1,

p = 0,z = 6,T = 279 K) for pores with the radius R > 1.1R̄

in the porous medium is negative, indicating the extrusion of
the liquid from such pores in the time τ1 ∼ τ0. In this case,
the characteristic time of the extrusion of the liquid from the
pore for L = 1 μm, η0 = 0.01 g/(cm s) [43] is estimated as
τ1 ∼ 10−8 s. At R < 1.1R̄, the barrier height δε(R < 1.1R̄,

θ1 = 1,p = 0,z = 6,T = 279 K) is positive; as a result, the
time of extrusion from pores of this size is exponentially
large τ1 � τ0. For the barrier height δε(R < 1.1R̄,θ1 =
1,p = 0,z = 6) ∼ 2 eV and temperature T = 279 K,
the time of the extrusion from pores with the radius R <

1.1R̄ is estimated as τ1 > 105 s, which corresponds to the
entrapment of the liquid in these pores at the observation time
∼103 s. The characteristic time of extrusion is τ1 ∼ 102 s
for pores with the radius 1.1R̄ < R < 1.12R̄ and is τ1 ∼
τ0 ∼ 10−8 s for pores with the radius 1.12R̄ < R < 1.13R̄.
Therefore, the liquid is extruded from pores with different
sizes in different times and the number of pores involved in
extrusion depends on the observation time. In particular, this
should be manifested in the dependence of the amount of
the liquid trapped in the porous medium on the observation
time.

In order to analyze the entrapment of the liquid in the
porous medium, we find the time dependence of the amount
of the trapped liquid. The time of the extrusion of the liquid
is determined by the time τ (R1,R2 . . . RN,�r1 . . . �rN ) of the
extrusion of the liquid from all filled pores with the radii
R1,R2 . . . RN located in the porous medium at the points
�r1 . . . �rN , respectively, where N is the number of the pores
in the porous medium. In the disordered porous medium
with randomly distributed pores with various sizes, the time
τ (R1,R2 . . . RN,�r1 . . . �rN ) is a random function of the radii of
filled pores and their spatial configurations.

The distribution function of the times of the extrusion of the
liquid from pores F (t) determines the fraction of pores dN(t)
from which the liquid is extruded in the time dt : dN(t) =
F (t)dt . For the nonrandom time of the extrusion of the liquid
τ , this function is F (t) = δ(t − τ ), where δ(t) is the Dirac delta
function. In the case of the random time of the extrusion of
the liquid τ (R1,R2 . . . RN,�r1 . . . �rN ), the distribution function
is obtained by averaging over all configurations of pores with
the radii R1,R2 . . . RN located in the porous medium at the
points �r1 . . . �rN , respectively:

F (t) =
∫

dR1d�r1 . . . dRNd�rNδ

× [t − τ (R1,R2 . . . RN,�r1 . . . �rN )]

×Fθ (�r1,R1,�r2,R2 . . . �rN ,RN ). (30)
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FIG. 6. Change in the energy (a) of the pore δε versus the relative radius of the pore R

R̄
at the degrees of filling θ1 = (solid line) 0.85

and (dashed line) 1 and the corresponding (b), (d) distribution functions F (t) and (c), (e) the number N1(t) of pores in which the liquid is
trapped versus the relative time t/τ for z = 6 and for (dotted line) the Gaussian functions f (R) with R̄ = 3 nm, the half-width δR

R̄
= 0.1, and

T = 279 K for σ = 75 mJ/m2, δσ = 22 mJ/m2, L = 1 μm, and pg = 100 atm.

Here, Fθ (�r1,R1,�r2,R2 . . . �rN ,RN ) is the multiparticle distribu-
tion function of empty and filled pores in the porous medium
with the degree of filling θ [see Eq. (8)]. Below, it is suggested
that Fθ (�r1,R1,�r2,R2 . . . �rN ,RN ) is normalized to unity:∫

Fθ (�r1,R1,�r2,R2 . . . �rN ,RN )dR1 . . . dRNdr1 . . . drN = 1.

(31)

According to Eq. (30), the function F (t) is also normalized to
unity,

∫ ∞
0 dτ F (τ ) = 1, and the integral of F (t),

∫ t

0
dτ F (τ ) = N (t), (32)

is the fraction of pores N (t) from which the liquid is extruded
in the time interval from zero to t .
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In the framework of the above mean-field approach, we as-
sume that the distribution function Fθ (�r1,R1,�r2,R2 . . . �rN ,RN )
is the product of the single-particle distribution functions of
filled pores, and the time τ (R1,R2 . . . RN,�r1 . . . �rN ) is the sum
of the times τ1(Ri,�ri) of extrusion from the pore of the radius
R1 located at the point �r1:

Fθ (�r1,R1,�r2,R2 . . . �rN ,RN ) =
N∏
i

f (�ri,Ri),

(33)

τ (R1,R2 . . . RN,�r1 . . . �rN ) =
N∑

i=1

τ(Ri,�ri).

Here, f (�r1,R1) is the normalized single-particle distribution
function of filled pores in the porous medium with the degree of
filling θ . For the homogeneous medium at p = 0, the quantity
τ (R1,R2 . . . RN,�r1 . . . �rN ) is independent of the coordinates of
the pores �r1 . . . �rN and is determined by the sum of the times
given by Eq. (29):

τ (R1,R2 . . . RN ) =
N∑

i=1

τ1(Ri)

=
N∑

i=1

4ηL

3Ripg

exp[δε(Ri,θ1,p = 0,z)/T ].

(34)

The approximation specified by Eqs. (33) and (34) implies
that the extrusion channel is single for all pores and the
configurations of the pore and its environment are independent
for each pore. They correspond to an upper estimate for the
time of extrusion τ (R1,R2 . . . RN,�r1 . . . �rN ).

Since the pores with various radii exist in the porous
medium with the probability determined by the pore size
distribution function, it follows from Eq. (29) that the barrier
height δε(R,θ1,p = 0,z), preexponential factor τ0 = 4ηL

3Rpg
, and

the time of extrusion τ (R) are random functions.
Using Eqs. (33), we calculate the distribution function F (t)

over the times of extrusion of the liquid from the porous
medium. Using the representation of the δ(t) function in the
form of the Fourier integral, we write F (t) given by Eq. (30)
with τ (R1,R2 . . . RN ) from Eq. (34) in the form

F (t) =
∫ ∞

−∞
dk eikt e−ik

∑N
i=1 τ1(Ri )

N∏
i=1

f1(Ri)dR1 . . . dRN

=
∫ ∞

−∞
dk eikt

N∏
i=1

∫
dRif1(Ri)e

−ikτ1(Ri )

=
∫ ∞

−∞
dk eiktZN (k),

Z(k) =
∫

dRf1(R)e−ikτ1(R). (35)

Here, f1(R1) = ∫
d�r f (�r,R) is the normalized size distri-

bution function of filled pores in the porous medium with
the degree of filling θ . Integral (35) is zero for all values
k �= 0 because the integrand in Eq. (35) is a rapidly oscillating
function at τ1(R) � τ0 for all k values except for k → 0.
Hence, it follows from Eqs. (35) and (29) that the region

where kτ1(R) � 1 is significant in the integral determining
the function Z(k). In this case, the function ZN (k) can be
represented in the form

ZN (k) =
∫

dRf1(R)[1 − ikτ1(R)]N

≈
∫

dRf1(R)[1 − ikNτ1(R)]

≈
∫

dRf1(R)e−ikNτ1(R). (36)

Relation (36) is obtained with the normalization condition for
the function f1(R1):

∫
dRf1(R) = 1.

In view of Eqs. (35) and (36), the distribution function F (t)
for the time of the extrusion of the liquid from the porous
medium has the form

F (t) =
∫ ∞

0
δ(t − τN (R))f1(R)dR,

τN (R) = Nτ1(R) = τ exp[�E(R,θ1,p,z)/T ], (37)

τ = Nτ0.

Here, τ0(R) is determined by Eq. (28), δ(t) is the Dirac delta
function, and f1(R) is the normalized pore size distribution
function. The quantity τ = Nτ0 has the meaning of the time of
the hydrodynamic barrierless extrusion of the liquid from all N
pores of the porous medium. For p = 0, L ∼ 1 μm, R̄ ∼ 3 nm,
and pg ∼ 100 atm, the hydrodynamic time of the extrusion of
the liquid from all N ∼ ( L

R̄
)3 pores of the porous medium is

estimated τ ∼ 0.2 s. This estimate correlates with the time of
extrusion τ ≈ 10−1 s in the experiments on intrusion-extrusion
dynamics at almost zero excess pressure [22]. Calculating
integral (37), we obtain the distribution function F (t) in the
form

F (t) = f (R(t))
dR(t)

dt
. (38)

Here, R(t) is the solution of the equation

τ (R(t)) = t. (39)

Equation (39) for τ (R) that is determined by Eqs. (24) and (37)
can not be solved analytically. For this reason, we consider the
case p = 0 and assume that

δε(R,θ1,p = 0,z) ≈ δεmax(z,θ1)

R∗(z,θ1)
[R∗(z,θ1) − R]. (40)

Here, δεmax(z,θ1) and R∗(z,θ1) are given by Eqs. (26) and
(25), respectively. Approximation (40) correctly determines
the quantity R∗(z,θ1) and provides the qualitatively correct
sign and height of the barrier δε(R,θ1,p = 0,z) < 0 at R >

R∗(z,θ1) and δε(R,θ1,p = 0,z) > 0 at Rmax < R < R∗(z,θ1)
(Fig. 5). At R < Rmax, the behavior of δε(R,θ1,p = 0,z)
specified by Eq. (40) differs from the behavior of δε(R,θ1,p =
0,z) given by exact expression (24). However, it can be seen
in Fig. 5 that the number of pores with the radius R < Rmax

is much smaller than the number of pores with the radius
R > Rmax; consequently, Eq. (40) can be used for a qualitative
description throughout the entire range of the radii of pores.
According to Fig. 5 (closely spaced dots and dashed-dotted
line), approximate expression (40) ensures the qualitatively
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correct description of the behavior of δε(θ1,R,z) at p = 0 for
the pore size distribution presented in the figure.

Using Eq. (40), we can obtain the following analytical
expression for the distribution function F (t) for the time of
the extrusion of the liquid from pores:

F (t) =
T R∗(z,θ1)WL(r)f

(
R∗(z,θ1)WL(r)T

δεmax(z,θ1)

)
δεmax(z,θ1)t[1 + WL(r)]

,

(41)

r = δεmax(z,θ1)

T

τ̄0

t

R̄

R∗(z,θ1)
exp

(
δεmax(z,θ1)

T

)
.

Here, WL(r) is the Lambert function [44]; T is the tem-
perature; τ̄0 = N

4ηL

3R̄pg
, δεmax(z,θ1) and R∗(z,θ1) are speci-

fied by Eqs. (26), (28), and (27), respectively; and N is
the number of pores in the porous medium. In the limit
r → 0, WL(r) ≈ r; therefore, it follows from Eq. (41) that

F (t)∼Nτ0 exp( δεmax
T

)
t2 R̄f (R = R0) at t > Nτ0 exp( δεmax

T
). Since

WL(r) ≈ ln(r) in the limit r → ∞, the behavior of F (t)
at t → 0 is determined by the variation rate of the pore
distribution function f (R) at R → ∞. In particular, in the
case of the Gaussian distribution function f (R), the function
Nτ0 exp( δεmax

T
)F (t) approaches zero at t → 0. Thus, the

distribution function F (t) has a maximum at times t ∼ Nτ0.
The behavior of the distribution function F (t) at z = 6 is shown
in Figs. 6(b) and 6(d) at various degrees of filling θ1 = 0.85,1,
respectively, for σ/δσ = 4 and the Gaussian function f (R)
with the half-width δR

R̄
= 0.1. The energy δεmax(z,θ1)R∗(z,θ1)

was calculated by Eqs. (26)–(28) for T = 279 K. In the cases
under consideration, δεmax(z,θ1) and R∗(z,θ1) are estimated
as δεmax ∼ 0.1 eV and R∗ ∼ 0.9R̄ at z = 6,θ1 = 0.85 and as
δεmax ∼ 3 eV and R∗ ∼ 1.1R̄ at z = 6, θ1 = 1.

According to the definition of the distribution function F (t)
for the time of extrusion and Eq. (37), the fraction of pores
N1(t) from which the liquid is not extruded in the time interval
from zero to t is given by the expression

N1(t) = 1 −
∫ t

0
dτ F (τ ). (42)

It follows from Eqs. (41) and (42) that the fraction N1(t) at
t > τ exp( δεmax

T
) decreases with increasing time t :

N1(t) ∼ τ exp
(

δεmax
T

)
t

R̄f (R = R0),
(43)

t > τ exp

(
δεmax

T

)
.

It can be seen in Figs. 6(b) and 6(d) that the distribution
function F (t) for the time of extrusion at θ1 = 0.85 decreases
at times t/τ ∼ 1 and this function F (t) at θ1 = 1 decreases
at much longer times t/τ ∼ 103. According to Figs. 6(c) and
6(e), the fraction N1(t) of pores from which the liquid is not
extruded at θ1 = 0.85 decreases at times t/τ ∼ 100, whereas
N1(t) at θ1 = 1 decreases at much longer times t/τ ∼ 106.
Therefore, at θ1 = 0.85 and T = 279 K, the nonwetting liquid
is extruded from the porous medium with granules of the size
L = 1 μm and pores of the size R̄ = 3 nm at σ = 75 mN/m
and δσ = 22 mN/m in the time t ∼ 10 s, whereas the time of
the extrusion of the liquid from the same porous medium at

θ1 = 1 is t � 105 s, which corresponds to the experimentally
observed entrapment of the liquid.

Thus, there is the critical degree of filling θcr at which
the nonwetting liquid can be trapped in the porous medium
for the time of the experiment tex < τ exp( δεmax

T
) at excess

pressure p = 0. The equation for the determination of θcr can
be obtained from Eq. (43). First, we note that Eq. (43) con-
tains factors having various physical meanings. In particular,

N1(t) ∼ τ exp( δεmax
T

)
t

R̄f (R = R0) and R̄f (R = R0) determine
the minimum number of pores from which extrusion is
possible, whereas τ exp( δεmax

T
) determines the time of extrusion

from such pores. The liquid remains in the porous medium
for the time t < τ exp( δεmax

T
), if exp( δεmax

T
)R̄f (R = R0) =

exp( δεeff
T

)�1,δεeff = δεmax + T ln[R̄f (R = R0)] and is com-
pletely extruded in the time t ∼ τ exp( δεmax

T
) if exp( δεeff

T
) � 1.

Here, the quantity δεeff has the meaning of the effective
entrapment barrier. Consequently, the critical degree of filling
θcr is determined from the condition of the disappearance of the
effective entrapment barrier δεeff(z,θc) ∼ T . It follows from
Eq. (24) that the equation for the determination of θcr has the
form

W (z,θcr) = δσ

σ

[(
T

�E0
(1 + μ)

) α
2

− 1

]
, (44)

where �E0 = 4πR2
0δσ (1 − α

2 )
2
α
−1q

2
α and μ =

− ln[R̄f (R0)]. The parameter μ is determined by the
pore size distribution. Estimates show that μ � 1 for narrow
Gaussian pore size distributions with δR/R < 0.3.

According to Eq. (44), the quantity θcr depends on the pore
size distribution and temperature because of the temperature
dependence of the surface tension coefficients σ (T ), δσ (T ),
and the temperature dependence of the second factor in
Eq. (44). Figure 7 shows the temperature dependence of θcr cal-
culated from Eq. (44). The surface tension coefficient σ (T ) and
its temperature dependence were taken from [39,43]. At T =
293 K, the surface tension coefficient of water is 72 mJ/m2

[39,43]. The quantity δσ and its temperature dependence were

 0.86
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FIG. 7. Temperature dependence of θcr calculated by Eq. (44)
at z = 6 with a surface tension coefficient of 72 mJ/m2 at T =
293 K [43], δσ = 22 mJ/m2at T = 293 K, for the Gaussian function
f (R) with the half-width δR

R̄
= 0.1 and R0 = 1 nm.
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determined from the temperature dependence of the pressure
of extrusion using the method described in [19]. At T = 293 K,
δσ = 22 mJ/m2. The calculations were performed for the
Gaussian function f (R) with the half-width δR

R̄
= 0.1 at

R0 ∼ 1 nm. As can be seen in Fig. 7, the critical degree of
filling is θcr ∼ 0.87 at T = 279 K and increases to θcr = 0.99
at T = 300 K.

Thus, it follows from Eq. (43) that, when the degree of
filling is θ > θcr and the observation time is shorter than
the fluctuation decay time of the state of the system, i.e.,
tex < τ exp( δεmax

T
), the state of the nonwetting liquid in the

disordered nanoporous medium is a metastable state with the
characteristic decay time determined by the degree of filling θ1

and the temperature of the medium. In particular, at complete
filling θ1 = 1 and T = 279 K, the lifetime of the metastable
state is t � 105 s (dispersed liquid), whereas the lifetime of
the metastable state at θ1 = 0.86 and T = 279 K is t ∼ 10 s.

The fraction of the volume V of the nonwetting liquid in
the porous medium in the long-lived (the lifetime longer than
the time of the experiment) metastable state can be calculated
by analogy with Eqs. (37)–(42):

V (t) = θ1 −
∫ t

0
dτ Fv(τ ), (45)

Fv(t) = 4π

3

∫ ∞

0
δ(t − τN (R))R3f (R)dR. (46)

Here, the pore size distribution function f (R) is normalized to
the degree of filling θ1 of the porous medium:∫ ∞

0
dR R3f (R) = θ1 (47)

and τN (R) is determined by Eq. (37). It follows from Eqs. (46)
and (47) that

V (t) = θ1 −
∫ ∞

0
�(t − τN (R))R3f (R)dR, (48)

where �(x) is the Heaviside step function.
Using the property �(−x) = 1 − �(x) of the Heaviside

step function and normalization condition (48), we obtain the
fraction of the volume of the liquid in the form

V (t) =
∫ ∞

0
�(τN (R) − t)R3f (R)dR. (49)

According to Eq. (49), the fraction of the volume of the
trapped liquid V (t) is determined by the contribution from the
pores for which the time of extrusion exceeds the observation
time tex. Therefore, entrapment occurs in the pores for which
tex < τN (R). It follows from Eqs. (24) and (29) and Fig. 4
that the condition τN (R) > tex for the observation times
τ exp( δεmax

T
) > tex > τ ∼ 0.1 s under the reliable condition

tex < 106 s is equivalent to the condition of the positiveness of
the argument of the exponential in τ1(R) in Eqs. (28).

Thus, �(τ (R) − t) ≈ �(δε(R,θ1,p,z)) in this case and the
volume �V of the trapped liquid is obtained from Eq. (49) as

�V (θ1) =
∫ ∞

0
w(R)R3f (R)dR, (50)

where

w(R) = �(δε(R,θ1,p,z)). (51)

The quantity w(R) has the physical meaning of the probability
of the entrapment of the liquid in the pore [2]. It follows from
Eq. (50) that, if δε(R,θ1,p,z) > 0, the probability is w = 1
and the liquid nanocluster in the pore is stable, whereas if
δε(R,θ1,p,z) < 0, w = 0 and the liquid is extruded from the
pore. At the degree of filling θ > θc, the liquid can be trapped
in the pores whose radius is smaller than the critical radius R∗
given by Eq. (25).

Expressions (50) and (51) make it possible to simplify
the calculations of the volume of the liquid remaining in the
porous medium. Since the pore size distribution is narrow,
we set W (z,θ1) ≈ W (z̄,θ ), where z̄ is the average number of
the nearest neighbors in the model of randomly distributed
spheres, which depends only on the porosity ϕ: z̄ = −8 ln(1 −
ϕ) [33]. In this case, from Eq. (25) we obtain

R∗(θ1,T ) = R0

(
1 + σ

δσ
W1(z̄,θ1)

) 1
α

. (52)

According to Eq. (52), R∗(θ1,T ) depends on the porosity ϕ

and temperature owing to the temperature dependencies of the
surface tension coefficients σ and δσ . The volume �V (θ1)
[Eq. (50)] of the liquid remaining in the porous medium
for “the energy reason” is determined by the integral of the
distribution function f (R):

�V (θ1) =
∫ R∗(θ1,T )

0
R3f (R)dR. (53)

We now calculate the volume of the liquid trapped owing to the
geometry of the space of pores. We assume that the pore size
distribution is narrow, i.e., �R/R < 1. The probability Wv(θ1)
that the pore belongs to the geometric cluster of filled pores that
is not connected to the infinite cluster of such pores per pore
at the degree of filling θ < 1 is determined by the product of
the probability θ1 − P (θ1) that the pore does not belong to the
infinite cluster of filled pores and the probability 1 − θ1 that
the surrounding pores are empty. This condition guarantees
the absence of paths for the extrusion of the liquid. If the
number of the nearest neighbors in the porous medium is z, this
probability is determined by the following expression taking
into account possible geometric configurations of clusters of
n filled pores:

Wv(θ1) =
z∑

n=1

[θ1 − P (θ1)]n(1 − θ1)z−n z!

zn!(z − n)!

= (1 − θ1)z − [1 − P (θ1)]z

z
. (54)

Sum (54) includes all possible configurations of the mutual
arrangement of filled and empty neighboring pores. According
to Eq. (54), in the limit θ1 → 0, P (θ1) → 0 and Wv(θ1) → 0.
This corresponds to the absence of clusters of filled pores in
which the liquid can be trapped at θ1 → 0. Since P (θ1) → θ1

at θ1 → 1, then Wv(θ1) → 0 at θ1 → 1. This corresponds
to extrusion from any pore in the infinite cluster. Thus, the
probability of the break of the infinite cluster as a function
of the degree of filling approaches zero at small (θ1 → 0)
and large (θ1 → 1) degrees of filling and is maximal near the
percolation threshold θ1 � θc. At θ1 � θc, the character of a
decrease in Wv(θ1) is determined by the difference between
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the total degree of filling θ1 and the fraction P (θ1) of the filled
pores belonging to the infinite cluster. The total volume of the
liquid trapped in the clusters formed owing to the break of the
infinite cluster of filled pores is determined by the fraction
of pores �N1(θ1) located in the clusters from which the
liquid is not extruded because of the absence of possible paths
for extrusion �N1 = ∫ θ1

0 dθ Wv(θ ). Consequently, �N1(θ1) is
independent of the temperature. Since the probability Wv(θ1) is
maximal at the degree of filling near the percolation threshold,
�N1(θ1) above the percolation threshold in θ1 tends to the
constant �N∞ = ∫ 1

0 dθ Wv(θ ), which is determined by the
dependence P (θ1) and by the number of the nearest neighbors
z. The character of the tendency of �N1(θ1) to �N∞(θ1)
is determined by the integral of the difference between the
total degree of filling θ1 and the number of filled pores
belonging to the infinite cluster P (θ1). The calculations show
that the quantity �N1(θ1) for known P (θ1) dependencies [42]
rapidly approaches the constant �N∞(θ1) and can be treated
as constant already at θ1 ∼ (1.1 ÷ 1.2)θc.

Finally, the total volume of the liquid trapped in the porous
body is given by the expression

�V (θ1,T ) =
∫ R∗(θ1,T )

0
R3f (R)dR

+
∫ ∞

0
�N1(θ1)f (R)R3dR. (55)

It can be seen from Eqs. (51), (54), and (55) that the volume of
the liquid trapped in the porous medium is determined by the
terms with different dependencies on the degree of filling and
temperature. In particular, according to Eq. (51), the relative
volume of the liquid trapped in the porous medium for “the
energy reason” [the first term in Eq. (55)] can vary from zero
to unity under the variation of the degree of filling, whereas
the second term in Eq. (55) depends on the temperature and
approaches a constant above the percolation threshold, i.e.,
when θ1 > θc and P (θ1) > 0.

V. DISCUSSION OF THE RESULTS

The calculations were performed with Eqs. (44), (52),
(54), and (55). Figures 8 and 9 show the dependencies of
the fraction of the nonwetting liquid trapped in the porous
body on the degree of filling calculated by Eq. (55) for the
temperatures T = 279 and 286 K, respectively. Figure 10
shows the temperature dependence of the fraction of the
nonwetting liquid trapped in the porous body at the degree
of filling θ1 = 1. The parameters of the porous medium and
liquid (ϕ, R̄, δR/R, δσ , σ ) used in the calculations were taken
to be equal to the experimentally found values in independent
experiments [17]. The surface tension coefficient of water and
its temperature dependence were taken from [39,43]. The sur-
face tension coefficient of water at T = 293 K is 72.9 mJ/m2

[39,43]. The quantity δσ and its temperature dependence were
determined from the temperature dependence of the extrusion
pressure using the method described in [40]. At T = 293 K,
δσ = 22 mJ/m2. It can be seen in the figure that the dispersion
is of critical character depending on the degree of filling with
the inclusion of the porosity ϕ, the average size of pores R̄,
the half-width of the pore size distribution, and the surface
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FIG. 8. Fraction θ2 of the volume of the liquid trapped in the
porous medium after the first intrusion versus the fraction of the
filled volume of pores in the first intrusion-extrusion cycle θ1 for a
temperature of 279 K.

tension coefficient of the liquid at the liquid-gas, liquid-frame,
and frame-gas interfaces.

Figure 11 shows the dependencies of the volume fraction
θ2 of the trapped liquid on the fraction of the filled volume
θ1 for two temperatures 293 and 323 K as calculated by the
integration of Eq. (54) with the subsequent multiplication of
the resulting relation by the average volume of filled pores.
As can be seen in Fig. 10, the quantity θ2(θ1 = 1,0) varies by
more than an order of magnitude from 0.05 to 0.90 with an
increase in the temperature in a narrow interval from 279 to
293 K.

The dependence of the volume of the trapped liquid
(mercury) on the size of granules of the porous medium
was experimentally revealed in [15], where it was found that
entrapment occurs in large granules of the porous medium and
decreases after the fragmentation of granules. According to
the theory developed above, this behavior can be explained
by a nonlinear dependence of the time of extrusion on the

0

 0.2

 0.4

 0.6

 0.8

1

0  0.2  0.4  0.6  0.8 1

F
ra

ct
io

n 
of

 th
e 

tr
ap

pe
d 

liq
ui

d 
θ 2

The degree of filling θ1

FIG. 9. Fraction θ2 of the volume of the liquid trapped in the
porous medium after the first intrusion versus the fraction of the
volume of filled pores in the first intrusion-extrusion cycle θ1 for a
temperature of 286 K.
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FIG. 10. Temperature dependence of the fraction θ2 of the volume
of the trapped liquid at the complete filling of the porous body (θ1 = 1)
in the first intrusion-extrusion cycle.

size of granules L. According to Eqs. (28) and (37), the
time of the extrusion of the liquid increases with the size of
granules. The character of the dependence of the amount of the
trapped liquid can be determined from Eqs. (29), (37), and (42).
Figure 12 shows the dependence of the fraction of the liquid
trapped in the porous body on the size of granules as calculated
with Eqs. (29), (37), and (42) for z = 6, the degree of filling
θ1 = 1, and the Gaussian function f (R) with the half-width
δR

R̄
= 0.1, σ = 402 mJ/m2, δσ = 100 mJ/m2, R̄ = 7 nm, and

pg = 1000 atm.
As can be seen in Fig. 12, as the size of the granule decreases

from 800 to 30 μm, the fraction of the trapped liquid decreases
in the observation time by 30%. The volume of the trapped
liquid for 30-μm granules is halved when the observation
time increases from 30 to 300 s. This is in agreement with
the experimental data reported in [15] and estimates obtained
in [20].

The entrapment of the nonwetting liquid can be attributed to
the formation of a potential barrier owing to fluctuations, which
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FIG. 11. Fraction of the volume of the trapped liquid versus the
fraction of the filled volume for two temperatures.
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FIG. 12. Fraction of the liquid trapped in the porous body θ1

versus the size of the granule as calculated by Eqs. (29), (30), and
(36) with the Gaussian function f (R) with the half-width δR
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= 0.1

for T = 300 K at σ = 402 mJ/m2, δσ = 100 mJ/m2, R̄ = 3 nm, and
pg = 1000 atm.

lead to the appearance of various spatially inhomogeneous
geometric configurations of the liquid cluster in the pore and
its environment in the disordered nanoporous medium. Such
inhomogeneity can appear according to the model of randomly
distributed overlapping spheres at R = const [33,38] in the
case of the spatial inhomogeneity of the porosity. According
to Eqs. (24) and (27), the number of the nearest neighbor
pores and, as a result, variations of the potential barrier
and the probability of extrusion of the liquid from the pore,
are inhomogeneous in this case. Another reason can be the
dependence of the connectivity parameter η of the pores [see
Eq. (23)] on the radius of the pore in the porous medium with
pores of various sizes. Then, for example, a large pore can
be surrounded by smaller pores or by a smaller number of
neighboring pores. As a result, spatial variations of geometric
configurations of the pore and its environment appear. An
additional reason for variations of the local configuration of
the pore and its environment consisting of filled and empty
pores is the formation of a percolation cluster of filled pores in
the process of filling. Thus, the entrapment of the nonwetting
liquid can be attributed to the formation of the potential barrier
because of fluctuations in the number of menisci in the mouths
of throats connecting neighboring filled and empty pores,
which are due to fluctuations in the sizes of pores in the porous
medium that are determined by the pore size distribution
function f (R) and by variation of the local configuration of
the pore and its environment consisting of filled and empty
pores on the shell of the percolation cluster.

It follows from Eq. (26) that fluctuations in the number
of the nearest neighbors are insignificant (Fig. 8). Owing to
fluctuations in the sizes of pores in the porous medium that
are determined by the pore size distribution function f (R), the
liquid is extruded from pores with different sizes in different
times and the number of pores involved in extrusion depends
on the observation time. In particular, this is manifested in the
power-law dependence of the amount of the liquid trapped in
the porous medium on the observation time. Similar effects
are well known in the kinetics of disordered systems [45].
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Because of variations of the local configuration of the pore
and its environment consisting of filled and empty pores on
the shell of the percolation cluster, the energy of the filling
and depletion of the pore and, consequently, the pressure of
the intrusion (extrusion) of the liquid into (from) the porous
medium depend on the degree of filling [19]. This makes it
possible to explain the experimentally observed decrease in the
intrusion pressure in the second intrusion-extrusion cycle [16].
Indeed, as was shown in [19], the intrusion pressure decreases
with an increase in the degree of filling; therefore, the intrusion
pressure in the second cycle decreases under the condition of
the partial entrapment of the liquid in the porous medium in
the first intrusion cycle.

Fluctuations in the local configurations of pores are re-
sponsible for the existence of the critical degree of filling θcr

at which the nonwetting liquid can be trapped in the porous
medium at zero excess pressure p = 0 for the observation
time tex < τ0 exp( δεmax

T
). It follows from Eq. (43) that, when

the degree of filling is above the critical value θ > θcr, and
the extrusion observation time is shorter than the fluctuation
decay time of the state of the system tex < τ0 exp( δεmax

T
), a

metastable state of the nonwetting liquid appears in the form
of an ensemble of liquid nanoclusters in pores, i.e., a dispersed
liquid. At times tex > τ0 exp( δεmax

T
), the metastable state decays

with the characteristic decay time determined by the degree
of filling θ1 and the temperature of the medium. In particular,
the lifetime of the metastable state at complete filling θ1 = 1
and temperature T = 279 K is t � 105 s (dispersed liquid),
whereas the lifetime of the metastable state at θ1 = 0.86 and
T = 279 K is t ∼ 10 s. The amount of the liquid trapped in the
porous medium at these times satisfies the law N (t) ∼ τN/t ,
which corresponds to the nonergodic behavior of the system
under consideration. Thus, all phenomena under study are due
to the structure of the disordered porous medium.

The time of extrusion from pores with the radius R < 1.1R̄

at the barrier height δε(R < 1.05R̄,θ1 = 1,p = 0,z = 6) ∼
2 eV for the temperature T = 279 K is estimated as τ1 > 105 s,
which corresponds to the entrapment of the liquid in these
pores. The characteristic time of extrusion is τ1 ∼ 102 s for
pores with the radius 1.12R̄ > R > 1.1R̄ and is τ1 ∼ τ0 ∼
10−8 s for pores with the radius 1.13R̄ > R > 1.12R̄. Ac-
cording to these estimates, the liquid is extruded from pores
with different sizes in different times and the number of
pores involved in extrusion depends on the observation time.
This is the case, e.g., if the polydisperse medium includes
configurations of pores where large pores are surrounded
by small pores. Thus, the system under consideration is
nonequilibrium and nonergodic, because the relaxation time
is so long that it can not reach the equilibrium state in the
observation time and the physical properties of the system
depend on the kinetics of the proceeding processes.

According to Eqs. (24), (27), and (37), the change in the
energy δε(θ,R,p = 0) of the liquid in the spherical pore of
the radius R given in Eqs. (27) in the partially filled porous
medium when the liquid is extruded from the pore can be
represented in the form

δε(θ1,R,p = 0) = 1

z

z−1∑
n=0

δεn,

where

δεn = −4πR2δσ

[
1 − q

(
R0

R

)α]
+ 4πqR2−αRα

0 σ (1 − θ1)n

× [P (θ1)]z−n z − 2n

z

z!

n!(z − n)!
. (56)

Here, the second term is positive at n < z/2 and is negative at
n > z/2. For this reason, the quantity δεn at a given degree of
filling θ1 can be both positive and negative, depending on the
number n. The negativeness of δεn means the energy favora-
bility of the extrusion of the liquid from pores in the state n in
the porous medium. The positiveness of δεn means the energy
unfavorability of the extrusion of the liquid from pores in this
state. Thus, it follows from Eq. (56) that there are local maxima
and minima of the energy necessary for the extrusion of the
liquid from the state with the number n. Consequently, the
system under consideration is characterized by the spectrum
of the relaxation times of various configurations of clusters
of empty and filled pores. The relaxation of the system is the
process of its successive transition through the local energy
maxima. The state with the number n is not single. According
to Eq. (56), the number of configurations corresponding to this
state is determined by the combinatorial factor in Eq. (56) and
is Nn = z!

n!(z−n)! . If the energies δεn and δεn′ corresponding
to different values n �= n′ are close or equal to each other,
configurations of pores appear with close energies extrusion
of the liquid from which it is energetically unfavorable. The

number of such configurations is M ∼ 2(
log2(

∑z/2
n=1

z!
n!(z−n)! )

z
)N ∼

2β(z)N , where β(z) ∼ 0.8 at 4 < z < 8. These configurations
constitute the metastable state of the nonwetting liquid in
the form of the ensemble of liquid nanoclusters in pores,
i.e., the dispersed liquid. At the times tex > τ0 exp( δεmax

T
), the

metastable state decays with the characteristic decay time
determined by the degree of filling θ1 and the temperature of
the medium. In the case considered in this work, at complete
filling θ1 ∼ 1, δεmax ∼ 2.3 eV; correspondingly, the decay time
of the metastable state at T ∼ 300 K is τ exp( δεmax

T
) ∼ 1049 s.

Systems that are nonergodic during a macroscopic but finite
time interval are quasinonergodic [26,46]. The relaxation time
for truly nonergodic systems near the transition point diverges
[47]. In the system under consideration, the relaxation time
of the states formed in the process of extrusion is infinite in
the case of the decomposition of the infinite cluster of filled
pores with the formation of a finite filled liquid cluster where
paths for extrusion are absent. The probability of this process
is given by Eq. (54). Since the metastable state of the liquid
in the porous medium at θ1 ∼ 1 decays in the time t ∼ 1049 s,
the quasinonergodic behavior of the system under study is
physically undistinguishable from the nonergodic behavior.

To summarize, the system under study undergoes the
dispersion transition and is nonequilibrium and nonergodic
because the relaxation time is so long that it can not reach the
equilibrium state in the observation time. The physical prop-
erties of this system depend on the kinetics of the proceeding
processes. The nonergodic behavior of the system is due to
the formation of the local energy minima corresponding to
various configurations of pores from which the liquid can not
be extruded.
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