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We address the problem of a microscopic derivation of the Langevin equation for a weakly relativistic
Brownian particle. A noncovariant Hamiltonian model is adopted, in which the free motion of particles is
described relativistically while their interaction is treated classically, i.e., by means of action-to-a-distance
interaction potentials. Relativistic corrections to the classical Langevin equation emerge as nonlinear dissipation
terms and originate from the nonlinear dependence of the relativistic velocity on momentum. On the other hand,
similar nonlinear dissipation forces also appear as classical (nonrelativistic) corrections to the weak-coupling
approximation. It is shown that these classical corrections, which are usually ignored in phenomenological
models, may be of the same order of magnitude, if not larger than, relativistic ones. The interplay of relativistic
corrections and classical beyond-the-weak-coupling contributions determines the sign of the leading nonlinear
dissipation term in the Langevin equation and thus is qualitatively important.
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I. INTRODUCTION

Relativistic Brownian motion is the underpinning paradigm
in several modern fields, including transport and thermaliza-
tion processes in quark-gluon plasma, astrophysical fluids,
and graphene [1]. Despite a high motivation toward the
construction of a unifying approach, there is currently no
consensus on the form of Langevin and master equations
describing a relativistic Brownian particle. Several versions
were proposed in recent years [1], but their status and validity
range are often obscure. The difficulties are many and some
are fundamental to relativistic many-body dynamics [1,2]. In
the nonrelativistic theory, the standard equations of Brownian
motion can be derived microscopically, eliminating (fast)
degrees of freedom of the thermal bath with a projection
operator or some other technique [3]. This is much harder
to do in the relativistic domain because the Lorentz-invariant
dynamics of a system of particles also involves the degrees
of freedom of the field through which the particles interact.
For weakly relativistic systems to second order in v/c, the
elimination of field degrees of freedom is straightforward [4],
but comes at the expense of the emergence of additional
velocity-dependent forces, which are difficult to handle for
many-particle systems within the Hamiltonian formalism [5].

Another dissonance with the standard classical approach
comes from the limited validity of time-scale separation
methods in the relativistic domain. For a nonrelativistic
Brownian particle the mean-square momentum is linear
with mass 〈P 2〉 ∼ kBT M , which implies that at any given
temperature T the average thermal momentum of the heavy
Brownian particle is much larger (and the velocity is much
smaller) than that of particles of the bath with mass m � M .
This enables one to justify the weak-coupling approximation
to the lowest order in the small mass ratio parameter. In
contrast, for the ultrarelativistic particle with the thermal mo-
mentum much larger than Mc, the equipartition theorem [see
Eq. (14) below] takes the form that does not involve the mass
of the particle c〈|P |〉 = kBT . Clearly, conventional time-scale
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separation methods cannot be applied in this case since heavy
and light particles have comparable momenta. As will be
shown below, a similar situation may take place also for a
weakly relativistic Brownian particle when it is immersed in
an ultrarelativistic bath.

Despite these difficulties (and perhaps because of them),
many authors prefer to pursue an approach based on a
straightforward extension of the nonrelativistic Langevin
phenomenology [6–10]. In a simple version, one assumes
that the dissipative force on the particle is linear in the
particle’s velocity V and composes the Langevin equation for
the particle’s momentum P in the rest frame of the bath in the
form [6]

dP

dt
= −ζV (P ) + ξ (t), (1)

where ξ (t) is a stationary zero-centered delta-correlated
(white) noise

〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′). (2)

For the relativistic domain, Eq. (1) is nonlinear since velocity
is a nonlinear function of momentum

V (P ) = dE

dP
= c2P

E
= 1

�(P )

P

M
, (3)

where E is the energy of a free particle

E(P ) =
√

c2P 2 + M2c4 = Mc2�(P ) (4)

and

�(P ) =
√

1 +
(

P

Mc

)2

. (5)

Since Eq. (1) is not amenable to closed-form analytic solu-
tions, a fluctuation-dissipation relation between the friction
coefficient ζ and the strength of noise D in general cannot
be established. However, further progress can be achieved
under two additional assumptions. The first one is that the
random force ξ (t) is a Gaussian process, i.e., vectors of
observed values {ξ (t1), . . . ,ξ (tn)} have a multivariate normal
distribution. As known from the general theory [3], in this case
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the corresponding Fokker-Planck equation for the distribution
function f (P,t) has the form

∂

∂t
f (P,t) = ζ

∂

∂P
{V (P )f (P,t)} + D

∂2

∂P 2
f (P,t) (6)

for any function V (P ), linear or not. The second assumption
is that the stationary solution of this equation f (P ) =
C exp[− ζ

D
E(P )] must coincide with the Maxwell-Jüttner

distribution

ρMJ (P ) = Z−1e−βE(P ), (7)

where β = 1/kBT is the inverse temperature of the bath in
the bath’s reference frame and E(P ) is given by (4). This
immediately gives the fluctuation-dissipation relation

ζ = βD. (8)

While attractively simple, the above phenomenological
scheme suggests no clue about its range of validity. It also
appears to be unnecessarily restrictive in its demand of
the noise to be Gaussian. Within a nonrelativistic theory,
both phenomenological and microscopic, the assumption of
Gaussian noise is unnecessary to derive the fluctuation-
dissipation relation. It is therefore natural to ask if, and
under what conditions, the Langevin (1) and Fokker-Planck
(6) equations can be derived microscopically. As mentioned
above, severe difficulties of the relativistic theory of many-
body interacting systems generally make such a derivation
hardly possible. However, one may expect that some diffi-
culties can be avoided for systems with contact interactions,
i.e., when particles interact via pointlike binary collisions
[11,12]. In this case, interactions can be fully described by
conservations laws and one can avoid the infamous problem
of constructing a relativistic action-at-a-distance Hamiltonian
of many interacting particles.

Following this line, Dunkel and Hänggi [12] discussed
the derivation of the relativistic Langevin equation for the
Rayleigh model, in which a Brownian particle interacts with
bath molecules via elastic instantaneous (and therefore binary)
collisions. As is well known, for the classical Rayleigh model
the noise is not Gaussian [13,14]. The derivation presented
in [12] emphasizes the non-Gaussian nature of the noise for the
relativistic domain. The authors employed a nonperturbative
approach that leads to a rather complicated expression for the
dissipating force Fdiss, which is amenable only to numerical
evaluation. This makes it difficult to verify the validity of the
phenomenological ansatz Fdiss = −ζV (P ) and the fluctuation-
dissipation relation (8).

In this paper we address the problem of a microscopic
derivation of the relativistic Langevin from different premises.
Namely, we consider a Hamiltonian model in which only the
free motion of particles is treated relativistically, while the
interaction is described classically, i.e., by means of action-at-
a-distance potentials. Such an approximation, which we refer
to as quasirelativistic, was recently discussed and tested in [15].
It produces, of course, noncovariant equations of motion, yet
may be acceptable for systems with very-low-density and/or
short-range interactions. Numerical simulation shows that
quasirelativistic many-particle system equilibrates toward the
Maxwell-Jüttner distribution [15], which is similar to a fully
relativistic molecular dynamics simulation [16]. Intuitively,

in the limit when the range of interaction goes to zero,
one can expect to get the same results as for relativistically
consistent models with contact interaction. The advantage
of the quasirelativistic approach is that it enables one to
apply well-developed perturbation techniques of Hamiltonian
theory of nonrelativistic Brownian motion [17,18]. These
methods are not easy to use within models with instantaneous
binary collisions [11,12] due to the presence of singular δ-like
forces.

We shall assume that the rest mass M of a Brownian particle
is much larger than the mass m of a bath particle so that the
mass ratio parameter λ is small,

λ =
√

m

M
� 1. (9)

Also, we shall restrict the discussion to temperature regimes for
which the characteristic thermal momentum of the Brownian
particle PT is much larger than that of a bath particle pT and
much smaller than Mc,

pT � PT � Mc. (10)

This will allow us to construct a perturbation technique
similar to that for the nonrelativistic theory. As will be
shown, the condition (10) is not too restrictive: While the
Brownian particle is assumed to be weakly relativistic,
particles of the bath may be weakly, moderately, or even
ultrarelativistic.

We shall show that under the above assumptions the
phenomenological Langevin equation (1) and the fluctuation-
dissipation relation (8) are not valid for any regime for which
nonlinearity of the function V (P ) is essential. The comparison
of phenomenological and microscopic predictions is easier if,
given the condition (10), one retains only the leading nonlinear
term in the expansion of V (P ),

V (P ) = 1

�(P )

P

M
≈

[
1 − 1

2

(
P

Mc

)2 ]
P

M
. (11)

With the approximation (11) and relation (8), the phenomeno-
logical Langevin equation (1) takes the form

d

dt
P (t) = −γ1P (t) − γ2P

3(t) + ξ (t), (12)

with damping coefficients

γ1 = βD

M
, γ2 = − βD

2M3c2
< 0. (13)

The microscopic theory developed below also leads to the
Langevin equation in the form (12), but with fluctuation-
dissipation relations different and more complicated than (13).
Note that the nonlinear term in Eq. (12) originates from
the first relativistic correction to the classical linear relation
V = P/M . On the other hand, from the microscopic theory of
nonrelativistic Brownian motion it is known that similar non-
linear dissipation terms also appear in the Langevin equation
beyond the weak-coupling limit. These contributions, which
are missing in phenomenological Langevin equations (1)
and (12), are of classical nature and originate from higher-
order terms in the expansion of the particle’s propagator in
powers of the mass ratio parameter λ. We shall show that
these classical nonlinear corrections are of the same order
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of magnitude or larger than the corresponding relativistic
contributions. A consistent theory, which takes into account
the interplay of both relativistic and classical contributions
for the nonlinear dissipative force Fdiss, does not support the
simple ansatz Fdiss ∼ V (P ) adopted in the phenomenological
theory.

One prediction of the presented theory is that the sign
of the nonlinear damping coefficient γ2 in Eq. (12) is not
predetermined and may depend on temperature and a detailed
form of the microscopic correlations. This is in contrast to the
second of the phenomenological relations (13), which predicts
that γ2 is negative. For γ2 < 0, one can show that the Langevin
equation (12), as well as the corresponding Fokker-Planck
equation, leads to an ill-behaved stationary distribution f (P )
diverging for large P . Thus, in the phenomenological theory,
the approximation (11) is insufficient and one needs to retain
nonlinear terms of higher orders in P/Mc. In contrast,
the presented microscopic theory predicts that for certain
temperature intervals γ2 may be positive and the Langevin
equation (12) has meaningful equilibrium properties. Other
implications are discussed in Sec. VIII.

II. SCALING RELATIONS

We consider a Brownian particle (below referred to for short
as the particle) that is not too far from the equilibrium in which
the momentum distribution is given by the Maxwell-Jüttner
distribution (7). A relativistic version of the equipartition
theorem for the particle in equilibrium in one dimension has
the form

〈V (P )P 〉 =
〈

1

�(P )

P 2

M

〉
= 1

β
, (14)

where �(P ) is given by (5) and the angular brackets mean
the average with the distribution (7). Unlike its classi-
cal counterpart (when � → 1), the relativistic equipartition
relation (14) does not allow one to find an exact expression
for the thermal momentum of the particle PT =

√
〈P 2〉. Yet

Eq. (14) is convenient to evaluate an approximate value of PT

as follows. Let us define the parameters

ε =
√

1

βmc2
, δ = λε =

√
1

βMc2
, (15)

characterizing the strength of relativistic effects for the bath
and the particle, respectively. Using approximations � ∼ 1 for
δ � 1 and �(P ) ∼ P/Mc for δ 	 1, from (14) one obtains√

M
β

= δMc for δ � 1 (16a)
PT ≈

⎧⎪⎨
⎪⎩ 1

cβ
= δ2Mc for δ 	 1. (16b)

The validity of this estimation can be verified by direct
evaluation of the mean-square momentum for the Maxwell-
Jüttner equilibrium

〈P 2〉 = Z−1
∫

e−βE(P )P 2dP. (17)

Indeed, in one dimension from (17) one obtains exactly

PT =
√

〈P 2〉 =
⎧⎨
⎩

√
M
β

φ1(δ) (18a)

1
cβ

φ2(δ), (18b)

with dimensionless functions

φ1(δ) =
[
K2(1/δ2)

K1(1/δ2)

]1/2

, φ2(δ) = 1

δ
φ1(δ). (19)

Here Kn(x) are the modified Bessel functions of the second
kind. As can be checked, φ1(δ) ∼ 1 for δ � 1 and φ2(δ) ∼ 1 for
δ 	 1, so that the exact relations (18) lead to the estimations
(16). A similar consideration can be carried out to evaluate the
thermal momentum pT =

√
〈p2〉 of a bath particle

pT ≈
⎧⎨
⎩

√
m
β

= εmc for ε � 1 (20a)

1
cβ

= ε2mc for ε 	 1. (20b)

In order to design an appropriate perturbation technique,
we need to establish relations between PT and pT for different
temperature regimes. We shall use the following nomenclature.

Regime A is defined by relation

ε � 1, (21)

or kBT � mc2. Since the other relevant parameter is also small
δ = λε � 1, in this regime relativistic effects are weak for both
the bath and the particle. As follows from (16) and (20), the
thermal momentum of a bath particle is λ times smaller that
of the particle

pT = λPT . (22)

Regime B is defined by the condition

ε ∼ 1, (23)

or kBT ∼ mc2. The other relevant parameter δ is small
δ = λε ∼ λ � 1. This regime corresponds to the moderately
relativistic bath and weakly relativistic particle. The relation
between pT and PT is still given by (22). It is therefore
convenient for both regimes A and B to introduce the particle’s
scaled momentum

P∗ = λP, (24)

which on average is expected to be of the same order of
magnitude as the thermal momentum of a bath particle.

Regime C corresponds to a subdomain of the ultrarelativistic
bath defined by the relation

1 � ε � λ−1, (25)

or mc2 � kBT � Mc2. The right-hand side of the inequality
(25) ensures that δ � 1, so that the particle is still weakly
relativistic and its thermal momentum PT is given by the
classical expression (16a). In contrast, since ε 	 1, the thermal
momentum of a bath particle is given by the ultrarelativistic
expression (20b). Here pT is still smaller than PT , but now
with the scaling factor δ,

pT = δPT . (26)
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For this regime we define the scaled momentum of the particle
as

P∗ = δP (27)

with the expectation that on average P∗ is of the same order of
magnitude as momenta of bath particles.

Regime D is defined by the relation

ε ∼ λ−1, (28)

or kBT ∼ Mc2. In this case ε 	 1 and δ ∼ 1, which cor-
responds to the ultrarelativistic bath and the moderately
relativistic particle. Thermal momenta pT and PT are the same
as for regime C, related as pT = δPT and, since δ ∼ 1, are of
the same order of magnitude.

Regime E is defined by

ε 	 λ−1. (29)

Since ε,δ 	 1, for this regime both the particle and bath are
ultrarelativistic. Thermal momenta of the particle and of the
bath are given by ultrarelativistic expressions (16b) and (20b),
respectively, and as for regime D are of the same order of
magnitude.

In the next section we use the above scaling relations
to formulate quasirelativistic dynamic equations in a form
that explicitly involves a small parameter relevant to a given
temperature regime. We shall restrict ourselves to regimes
A, B, and C only, for which PT 	 pT . Regimes D and E,
for which PT ∼ pT , cannot be treated with the conventional
perturbation techniques and will not be discussed further.

III. QUASIRELATIVISTIC HAMILTONIAN

Let (X,P ) and {xi,pi} be the sets of coordinates and
momenta of the particle and particles of the thermal bath,
respectively. The motion will be assumed to occur in one
spatial dimension, but this assumption is not essential and
is adopted merely to simplify notation. The quasirelativistic
Hamiltonian [15] of the combine system of the particle and
the bath is

H = E(P ) + H0, (30)

where E(P ) is the energy of the free particle given by (4) and
H0 is the Hamiltonian of the bath interacting with the particle
fixed at the position X,

H0 =
∑

i

e(pi) + U (X). (31)

In this expression e(pi) is the energy of ith free particle of the
bath

e(pi) =
√

c2p2
i + m2c4 (32)

and the potential U (X) = U (X,xi) describes the interaction of
the particle with the bath, as well as bath particles with each
other. The interaction is understood classically as action at
a distance; no Darwin-like momentum-dependent corrections
[4,5] are included in the potential U . Thus the only difference
between our quasirelativistic Hamiltonian and that of the
nonrelativistic theory is a nonquadratic dependence of free
particle energy terms E(P ) and e(pi) on momenta. Bath
particles will be assumed to have the same rest mass m,

which is much smaller than that of the particle M , so that
λ = √

m/M � 1.
The Liouville operator corresponding to the Hamiltonian

(30) splits naturally in two parts

L = L0 + Lpart. (33)

The Liouville operator L0 governs the dynamics of the bath
with Hamiltonian H0,

L0 =
∑

i

vi

∂

∂xi

+ fi

∂

∂pi

. (34)

Here fi = −∂H0/∂xi is the force on a bath particle and a bath
particle velocity as a function of momentum is

vi = ∂H0

∂pi

= 1

γ (pi)

pi

m
(35)

with

γ (p) =
√

1 +
(

p

mc

)2

. (36)

The operator Lpart involves derivatives with respect to the
coordinate and momentum of the particle

Lpart = V (P )
∂

∂X
+ F

∂

∂P
. (37)

Here F = −∂H/∂X is the force on the particle and

V (P ) = ∂H

∂P
= 1

�(P )

P

M
, (38)

with �(P ) given by (5), is the particle’s velocity.
The only difference between the quasirelativistic Liouville

operator L and its nonrelativistic counterpart is the pres-
ence in the above formula of dimensionless factors �−1(P )
and γ −1(p), which makes velocities nonlinear functions of
momenta.

The next step is to write the Liouville operator L in terms
of the scaled momentum of the particle P∗, which would put L

into a form that explicitly involves a relevant small parameter.
In regimes A and B (ε � 1), since δ = λε � 1, the particle

is weakly relativistic and

PT =
√

M/β = δMc � Mc (39)

[see Eq. (16a)]. Then one can use the approximation

1

�(P )
≈ 1 − 1

2

(
P

Mc

)2

, (40)

which also can be written as

1

�(P )
≈ 1 − δ2

2

(
P∗
pT

)2

. (41)

As discussed in the previous section, for these regimes the
scaled momentum of the particle P∗ and the bath’s thermal
momentum are defined as

P∗ = λP, pT =
√

m

β
= εmc. (42)

With the approximation (41), the particle’s velocity reads

V = 1

�(P )

P

M
≈ λ

{
1 − δ2

2

(
P∗
pT

)2 }
P∗
m

(43)
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and the operator Lpart [Eq. (37)] takes the form

Lpart = λL1 + λδ2L2, (44)

with the classical part

L1 = P∗
m

∂

∂X
+ F

∂

∂P∗
(45)

and the relativistic correction

L2 = − 1

2mp2
T

P 3
∗

∂

∂X
. (46)

Thus, for regimes A and B the Liouville operator L for the
total system (33) can be written as

L = L0 + λL1 + λδ2L2, (47)

with L0, L1, and L2 defined by (34), (45) and (46), respectively.
In regime C (1 � ε � λ−1), since δ = λε � 1, the particle

is still weakly relativistic PT � Mc and the approximation
(40) for �−1 is meaningful. One can check that the expression
(41) retains its form, although now the scaled momentum of
the particle P∗ and the bath’s thermal momentum are defined
as

P∗ = δP, pT = 1

cβ
= ε2mc, (48)

as prescribed by Eqs. (26) and (27) in the previous section.
The particle velocity now has the form

V = 1

�

P

M
≈ δ

{
1 − δ2

2

(
P∗
pT

)2 }
P∗
pT

c (49)

and the operator Lpart [Eq. (37)] reads

Lpart = δL1 + δ3L2, (50)

where

L1 = c
P∗
pT

∂

∂X
+ F

∂

∂P∗
(51)

and

L2 = − c

2

(
P∗
pT

)3
∂

∂X
. (52)

Thus, for regime C the Liouville operator L for the whole
system (33) takes the form

L = L0 + δL1 + δ3L2, (53)

where L0, L1, and L2 are given by (34), (51), and (52),
respectively.

It is worthwhile to observe that the above relations can be
obtained from the corresponding expressions for regimes A

and B by making the replacements

λ → δ, m → pT

c
. (54)

In Eqs. (47) and (53), the dependence of the Liouville
operator L on small parameters is explicit, which makes
these expressions convenient for developing a perturbation
technique, as discussed in the following sections.

IV. PRE-LANGEVIN EQUATION

In this section we apply the Mazur-Oppenheim projection
operator technique [17] to modify the exact equation of motion
for the scaled momentum of the particle P∗ into a form
convenient for the subsequent derivation of the Langevin
equation with a perturbation method.

In regimes A and B,
P∗ = λP and the equation of motion is

d

dt
P∗(t) = λF (t) = λeLtF, (55)

where L is given by (47) and F = F (t = 0). The propagator
eLt can be decomposed as

eLt = eQLt +
∫ t

0
eL(t−τ )PLeQLτ dτ, (56)

where Q = 1 − P and P is an arbitrary operator. This follows
from the operator identity

e(A+B)t = eAt +
∫ t

0
eA(t−τ )Be(A+B)τ dτ, (57)

with A = L and B = −PL. Inserting (56) into (55) yields

d

dt
P∗(t) = λF †(t) + λ

∫ t

0
eL(t−τ )PLF †(τ )dτ, (58)

where the projected force is

F †(t) = eQLtF. (59)

We shall assume that the initial distribution for bath degrees
of freedom is

ρ0 = Z−1e−βH0 . (60)

Hereafter the angular brackets will denote the average with the
distribution ρ0. We define the operator P to be the projection
operator (P2 = P) that averages over the initial degrees of
freedom of the bath

P(· · · ) =
∫

ρ0(· · · )
∏

i

dxidpi = 〈· · · 〉. (61)

The major benefit of this choice for P is the orthogonality
relation

PL0 = 0, (62)

which makes in the equation of motion (58) a crucial reduction

d

dt
P∗(t) = λF †(t) + λ2

∫ t

0
eL(t−τ )P(L1 + δ2L2)F †(τ )dτ.

(63)

Now the integral term in this equation does not involve
derivatives with respect to the bath degrees of freedom (except
for in the propagator eLt ).

The next step is to take into account the explicit expressions
for L1 and L2 given by (45) and (46) and also the relation

P ∂

∂X
(· · · ) =

〈
∂

∂X
(· · · )

〉
= −β〈F · · · 〉, (64)
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which can be proved by integration by parts. This puts Eq. (63)
into the “pre-Langevin” form

d

dt
P∗(t) = λF †(t) + λ2

∫ t

0
dτ eL(t−τ )

×
{
− 1

p2
T

P∗ + ∂

∂P∗
+ δ2 1

2p4
T

P 3
∗

}
〈FF †(t)〉.

(65)

Recall that for the given regimes pT = √
m/β. Since PQ = 0

and 〈F 〉 = 0, the projected force F †(t) is zero centered
〈F †(t)〉 = PeQLT F = 0.

In regime C, the scaled momentum is P∗ = δP and the
equation of motion is

d

dt
P∗(t) = δF (t) = δeLtF, (66)

where L is now given by (53). Then the same procedure as the
one described above for regimes A and B puts the equation of
motion into the form

d

dt
P∗(t) = δF †(t) + δ2

∫ t

0
dτ eL(t−τ )

×
{
− 1

p2
T

P∗ + ∂

∂P∗
+ δ2 1

2p4
T

P 3
∗

}
〈FF †(t)〉.

(67)

This equation is similar to Eq. (65) for regimes A and B

except that λ is now replaced by δ and the thermal momentum
of a bath particle is pT = 1/cβ instead of pT = √

m/β for
regimes A and B.

The only approximation made so far is the truncated
expansion (40) of �−1(P ) for a weakly relativistic particle.
Otherwise, the equations of motion (65) and (67) are exact.
Compared to the corresponding nonrelativistic equations, they
contain an additional nonlinear term cubic in P∗. In order
to make further progress and to put these equations into the
Langevin form one needs to expand F †(t) in powers of a
relevant small parameter. As can be observed from (65) and
(67), higher-order terms of this expansion must be taken into
account in order to consistently retain the leading nonlinear
relativistic correction.

V. LANGEVIN EQUATION: REGIMES A AND B

Let us find the perturbation expansion of the projected force
F †(t) for regimes A and B, when the Liouville operator L is
given by (47), L = L0 + λL1 + λδ2L2. Since PL0 = 0 and
QL0 = L0, we can write

F †(t) = eQLtF = e(L0+λQL1+λδ2QL2)tF. (68)

Next, as follows from the operator identity (57), the part of the
propagator involving L2 gives a contribution of order λδ2,

F †(t) = e(L0+λQL1)tF + O(λδ2). (69)

In what follows we shall retain in the expansion of F †(t) only
terms up to second order in λ,

F †(t) ≈ F0(t) + λF1(t) + λ2F2(t). (70)

The term O(λδ2) in (69) does not contribute to this approxima-
tion because λδ2 = λ3ε2 is of order λ3 for regime B (ε ∼ 1)

or less for regime A (ε � 1). Applying the identity (57) to
the operator exp[(L0 + λQL1)t] in a recurrent manner, one
obtains

F0(t) = eL0tF, (71)

F1(t) =
∫ t

0
dτ eL0(t−τ )QL1F0(τ ), (72)

F2(t) =
∫ t

0
dτ eL0(t−τ )QL1F1(τ ). (73)

The term F0(t) is the pressure force, i.e., the force exerted
by the bath on the fixed particle. Terms F1(t) and F2(t)
have no direct physical meaning and depend on the particle
momentum. This dependence is to be explicitly extracted.

To the lowest order, one substitutes F †(t) ≈ F0(t) into
the pre-Langevin equation of motion (65) and retains terms
up to order λ2. The relativistic nonlinear term cubic in P∗
is of order λ2δ2 = λ4ε2 � λ4 and does not show up in this
approximation. As a result, one obtains the linear generalized
Langevin equation

d

dt
P∗(t) = λF0(t) − λ2

p2
T

∫ t

0
dτ P∗(τ )C0(t − τ ), (74)

with the memory kernel

C0(t) = 〈FF0(t)〉. (75)

As discussed in the Introduction, the quasirelativistic descrip-
tion is expected to be asymptotically valid only in the limit of
instantaneous point interactions. Therefore, the above equation
must be taken in the Markovian limit

d

dt
P∗(t) = λF0(t) − λ2α0P∗(t), (76)

with

α0 = 1

p2
T

∫ ∞

0
C0(t)dt = β

m

∫ ∞

0
〈FF0(t)〉dt. (77)

The equation for the true momentum P = λ−1P∗ reads

d

dt
P (t) = F0(t) − γ0P (t), (78)

with

γ0 = βD0

M
, D0 =

∫ ∞

0
〈FF0(t)〉dt. (79)

Thus, for regimes A and B in the lowest order in λ one
obtains the Langevin equation of the same form as for the non-
relativistic domain with the standard fluctuation-dissipation
relation. Although the fluctuating force F0(t) is governed
by the relativistic Liouville operator L0 for the bath, this
only modifies the values of the damping coefficient γ0 and
the effective strength of the noise D0. Otherwise, relaxation
properties of the particle remain indistinguishable from that
for the nonrelativistic domain.

In order to take into account nontrivial relativistic effects,
we must retain in the expansion for F †(t) the higher-order
terms. Let us adopt the λ2-order approximation (70) and evalu-
ate the correlation 〈F †(t)F 〉 in the pre-Langevin equation (65),
extracting explicitly the dependence on P∗. After some algebra
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the result can be presented in the form

〈FF †(t)〉 = 〈FF0(t)〉 + λ2〈FF2(t)〉

= C0(t) + λ2

[ (
P∗
m

)2

C1(t) + 1

m
C2(t)

]
. (80)

Here C0(t) is the correlation function of the pressure force
(75), while functions C1(t) and C2(t) are expressed in terms
of more complicated correlations

C1(t)=
∫ t

0
dt1

∫ t1

0
dt2〈〈G0G2(t,t1,t2)〉〉,

(81)

C2(t)=
∫ t

0
dt1

∫ t1

0
dt2〈〈G0G0(t−t1)G1(t,t2)〉〉.

Here we use the notation

G0(t) = F0(t),

G1(t,t1) = S(t − t1)F0(t1), (82)

G2(t,t1,t2) = S(t − t1)S(t1 − t2)F0(t2),

with the operator S(t) = eL0t ∂
∂X

and G0 = G0(0). The double
angular brackets stand for cumulants 〈〈A1A2〉〉 = 〈A1A2〉 −
〈A1〉〈A2〉 and 〈〈A1A2A3〉〉 = 〈A1A2A3〉 − 〈A1〉〈A2〉〈A3〉 −
〈A1〉〈〈A2A3〉〉 − 〈A2〉〈〈A1A3〉〉 − 〈A3〉〈〈A1A2〉〉.

Note that the result (80) for 〈F †(t)F 〉 does not involve
a contribution of the first order in λ. One can show that
this contribution λ〈FF1(t)〉 is proportional to the correlation
〈FG1(t,t1)〉, which vanishes for the homogeneous bath. Note
also that expressions (80) and (81) are the same as the
corresponding results for the nonrelativistic theory [19],
except that the bath dynamics propagator L0 now is of the
quasirelativistic form (34). Let us stress that functions Ci(t)
do not depend on P∗, so the expression (80) presents the
explicit dependence of the kernel 〈FF †(t)〉 on P∗ to order λ2.
Substitution of (80) into the pre-Langevin equation (65) and
retaining terms up to order λ4 (neglecting terms of order λ4δ2)
produces the generalized (non-Markovian) nonlinear Langevin
equation

d

dt
P∗(t) = λF †(t) − λ2

∫ t

0
dτM1(τ )P∗(t − τ )

−λ4
∫ t

0
dτM2(τ )P 3

∗ (t − τ ), (83)

with the memory kernels

M1(t) = 1

p2
T

C0(t) − 2λ2

m2
C1(t) + λ2

mp2
T

C2(t),

(84)

M2(t) = 1

m2p2
T

C1(t) − ε2

2p4
T

C0(t),

where correlations Ci(t) are given by (75) and (81).
As discussed above, there is no reason to believe that

the quasirelativistic approach is satisfactory for any systems
but with short-range binary collisions. In such cases memory
effects are negligible and one can apply the Markovian ansatz

Mi(t) → δ(t)αi, αi =
∫ ∞

0
Mi(t)dt. (85)

This puts the above generalized Langevin equation into the
local form

d

dt
P∗(t) = λF †(t) − λ2α1P∗(t) − λ4α2P

3
∗ (t), (86)

with the damping coefficients

α1 = 1

p2
T

D0 − 2λ2

m2
D1 + λ2

mp2
T

D2, (87)

α2 = 1

m2p2
T

D1 − ε2

2p4
T

D0, (88)

where pT = √
m/β and

Di =
∫ ∞

0
Ci(t)dt, i = 0,1,2. (89)

Compared to the λ2-order Langevin equation (76), two
new features appear in Eq. (86) of order λ4. First, as one
can see from (87), there are λ2-order corrections to the linear
damping coefficient α0 = p−2

T D0. These corrections do not
involve the relativistic parameter ε and therefore are purely
classical. Second, and more interesting, a nonlinear dissipation
term emerges with the damping coefficient α2 given by (88).
The first term on the right-hand side of Eq. (88) is classical
and the second one is relativistic.

Note that the nonlinear classical and relativistic contri-
butions in Eq. (86) are of order λ4 and λ4ε2, respectively.
Therefore, this equation is perturbatively consistent in general
only for regime B when ε ∼ 1. For regime A (ε � 1) the
λ2-order approximation (70) for F †(t) may be insufficient. For
instance, if ε ∼ λ then relativistic nonlinear corrections are of
order λ6. This would require the expansion of F †(t) up to order
λ4 and dealing with more complicated correlation functions.

Recall that Eq. (86) is for the scaled momentum P∗ = λP .
The Langevin equation for the particle’s true momentum P

reads

d

dt
P (t) = F †(t) − γ1P (t) − γ2P

3(t), (90)

with damping coefficients

γ1 = λ2α1 = β

M
D0 − 2

M2
D1 + β

M2
D2,

(91)
γ2 = λ6α2 = β

M3
D1 − β

2M3c2
D0.

Comparing these results with phenomenological fluctuation-
dissipation relations (13), one observes that the latter are
recovered if D0 is identified as the total noise strength D,
while D1 and D2 both vanish or negligible,

D0 → D, D1 → 0, D2 → 0. (92)

Needless to say, neither of these conditions is satisfied in
general.

A qualitatively new feature is the presence of the new
term involving D1 = ∫ ∞

0 C1(t)dt in the expression for the
nonlinear damping coefficient γ2. As a result, the sign of
γ2 is not necessarily negative, as in the phenomenological
theory, but depends on relative values of D0 and D1 and
therefore on temperature. For a classical model it was found

052115-7



A. V. PLYUKHIN PHYSICAL REVIEW E 88, 052115 (2013)

that D1/D0 = mβ/6 [19]. Using this as a rough estimation,
one would get from (91) or (88) the expression

γ2 = D0

2

(
β

m

)2 (
1

3
− ε2

)
, (93)

which is positive for regime A, ε � 1, and also for a
subdomain ε < 1/

√
3 of regime B.

VI. LANGEVIN EQUATION: REGIME C

One can show that the Langevin equation and fluctuation-
dissipation relations derived in the previous section retain their
forms for regime C also. The relevant small parameter now
is δ = λε, the Liouville operator is given by (53), L = L0 +
δL1 + δ3L2, and the pre-Langevin equation has the form (67)
with pT = 1/cβ. Otherwise the derivation is similar to that for
regimes A and B.

Substitution of the lowest-order approximation for the
projected force F †(t) ≈ F0(t) into the pre-Langevin equation
of motion (67) yields, in the Markovian limit, the linear
Langevin equation and the fluctuation-dissipation relation,
both in standard forms (78) and (79). As for regimes A and
B, no relativistic effects show up in this lowest approximation
except for the modified value of the damping parameter γ0.

The higher-order approximation corresponds to the
expansion

F †(t) ≈ F0(t) + δF1(t) + δ2F2(t), (94)

with Fi(t) still given by expressions (71)–(73), but now with
the operator L1 defined by (51). As we already noted, the
results for regime C can be obtained from those for regimes A

and B by making the substitutions in (54), λ → δ and m →
pT /c. In particular, for the correlation 〈FF †(t)〉, instead of
(80) one obtains

〈FF †(t)〉=C0(t) + δ2

[ (
cP∗
pT

)2

C1(t) + c

pT

C2(t)

]
, (95)

with the same functions Ci(t). Substitution of this into the pre-
Langevin equation (67) and taking the Markovian limit leads
to the nonlinear Langevin equation for the scaled momentum

d

dt
P∗(t) = λF †(t) − δ2α1P∗(t) − δ4α2P

3
∗ (t), (96)

with

α1 = 1

p2
T

D0 − 2

(
cδ

pT

)2

D1 + cδ2

p3
T

D2, (97)

α2 = c2

p4
T

D1 − 1

2p4
T

D0, (98)

and pT = 1/cβ. Then, as is easy to check, the equation for
the true momentum P = λ−1P∗ has the same form (90) as for
regime B with the same fluctuation-dissipation relations (91).

VII. MOMENTS AND THERMALIZATION

Although the nonlinear Langevin equation (90) cannot be
integrated in an analytical form, the presented method is
convenient to describe relaxation processes perturbatively. As

the first example consider the relaxation of the first moment
〈P (t)〉 for, say, regime B. From (86) one gets

d

dt
〈P∗(t)〉 = −λ2α1〈P∗(t)〉 − λ4α2〈P 3

∗ (t)〉. (99)

Since the third moment 〈P 3
∗ (t)〉 enters this equation multiplied

by λ4, it is sufficient to describe its dynamics in the lowest
order in λ,

d

dt
〈P 3

∗ (t)〉 = −λ2α3〈P 3
∗ (t)〉 + λ2α4〈P∗(t)〉, (100)

where α3 = 3D0/p
2
T and α4 = 6D0. In the phenomenological

theory this equation is derived from the linear Langevin
equation under the assumption of the Gaussian random force
[20], but it also can be derived microscopically without this
assumption [see Eq. (110) below]. The closed system (99) and
(100) is perturbatively consistent and describes the relaxation
of 〈P (t)〉 with nonexponential corrections of order λ4.

In order to describe λ4-order dynamics of higher moments
〈P n

∗ (t)〉, n > 1, without the assumption of Gaussian noise one
needs the Langevin equations for powers P n

∗ (t). The derivation
of these equations, first discussed for the nonrelativistic
domain in [18] and recently in [21], is a straightforward
generalization of the method described above. The equa-
tions for 〈P n

∗ (t)〉 can be used, in particular, to prove the
particle’s thermalization towards the Maxwell-Jüttner distri-
bution ρMJ (P ) [Eq. (7)] for which the equilibrium moments
in one dimension are

〈P 2n〉eq =
∫ ∞

−∞
ρMJ (P )P 2ndP

= (2n − 1)!!

(
M

β

)n
K1+n(δ−2)

K1(δ−2)
, (101)

where Ki(x) is the modified Bessel function of the second
kind. To the leading order in δ2 this expression reads

〈P 2n〉eq ≈ (2n − 1)!!

(
M

β

)n [
1 +

(
n + n2

2

)
δ2

]
. (102)

In what follows we derive the equations for the moments
〈P n(t)〉 of a weakly relativistic particle (δ � 1) and show
explicitly that they converge to the equilibrium values (102).

We shall assume that the temperature corresponds to regime
B; the consideration for regimes A and C is similar. Starting
with the exact equation of motion for the powers of the scaled
momentum

d

dt
P n

∗ (t) = eLtLP n
∗ (103)

and using the operator identity (56) for the propagator eLt , one
gets

d

dt
P n

∗ (t) = λR(t) + λ

∫ t

0
eL(t−τ )PLR(τ ), (104)

with the zero-centered projected force

R(t) = λ−1eQLtLP n
∗ = neQLtFP n−1

∗ . (105)
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Proceeding with steps similar to those in Sec. IV, one obtains
the pre-Langevin equation

d

dt
P n

∗ (t) = λR(t) + λ2
∫ t

0
dτeL(t−τ )

×
{
− 1

p2
T

P∗ + ∂

∂P∗
+ δ2 1

2p4
T

P 3
∗

}
〈FR(t)〉.

(106)

To the lowest order in λ the nonlinear term in this equation
should be omitted and the projected force is

R(t) ≈ nF0(t)P n−1
∗ ≡ R0(t), (107)

where, recall, F0(t) = eL0tF . Substitution of this approxima-
tion into the above pre-Langevin equation and taking the
Markovian limit yields the Langevin equations for P n

∗
d

dt
P n

∗ (t) = λR0(t) + k1P
n−2
∗ (t) + k2P

n
∗ (t), (108)

with coefficients

k1 = λ2n(n − 1)D0, k2 = −λ2nD0p
−2
T , (109)

where D0 = ∫ ∞
0 〈FF0(τ )〉 and pT = √

m/β. As expected, no
relativistic corrections appear to the lowest perturbation order.
The moments are governed by the equation

d

dt
〈P n

∗ (t)〉 = k1〈P n−2
∗ (t)〉 + k2〈P n

∗ (t)〉 (110)

and relax in the long time limit to the equilibrium Maxwellian
values. In particular

〈P 2
∗ (t)〉 → p2

T , 〈P 4
∗ (t)〉 → 3p4

T . (111)

Consider now the expansion of the projected force to the
second order in λ,

R(t) ≈ R0(t) + λR1(t) + λ2R2(t), (112)

where R0(t) is given by (107) and

R1(t) =
∫ t

0
eL0(t−τ )QL1R0(τ ),

(113)

R2(t) =
∫ t

0
eL0(t−τ )QL1R1(τ ).

We need to evaluate the explicit dependence on P∗ of the
correlation

〈FR(t)〉 = 〈FR0(t)〉 + λ〈FR1(t)〉 + λ2〈FR2(t)〉 (114)

in the pre-Langevin equation (106). According to (107), the
first term is of the form

〈FR0(t)〉 = c0(t)P n−1
∗ . (115)

The explicit evaluation shows that the second term vanishes
identically 〈FR1(t)〉 = 0 due to symmetry and the third term
can be written as

〈FR2(t)〉 = c1(t)P n+1
∗ + c2(t)P n−1

∗
+ (n − 1)(n − 2)c3(t)P n−3

∗ . (116)

In these expressions c0(t) = n〈FF0(t)〉 and the other functions
ci(t) are expressed in terms of more complicated correlation

functions and do not depend on P∗. Remarkably, as shown
below, neither the explicit form of functions ci(t) nor their
possible relations are needed to prove the convergence of the
moments to the equilibrium values (101). [In the last term of
Eq. (116) we extracted explicitly the factors (n − 1)(n − 2) to
make it clear that this term vanishes for the first and second
moments.]

Substitution of (114)–(116) into (106), applying the
Markovian limit and taking the average leads to the following
equation for the moments to order λ4:

d〈P n
∗ 〉

dt
= r1〈P n−2

∗ 〉 + r2〈P n
∗ 〉 + r3〈P n+2

∗ 〉 + r4〈P n−4
∗ 〉, (117)

with coefficients

r1 = λ2(n − 1)b0 + λ4(n − 1)b2 − λ4p−2
T (n − 1)(n − 2)b3,

r2 = −λ2p−2
T b0 + λ4(n + 1)b1 − λ4p−2

T b2,

r3 = λ2δ2(2pT )−4b0 − λ4p−2
T b1,

r4 = λ4(n − 3)(n − 2)(n − 1)b3, (118)

where bi = ∫ ∞
0 ci(t)dt . Compared to the λ2-order Eqs. (110)

and (117) shows that to order λ4, the moment 〈P n
∗ 〉 is coupled

in general not only with 〈P n−2
∗ 〉, but also with 〈P n+2

∗ 〉 and
〈P n−4

∗ 〉. Note that in Eqs. (118) the only relativistic correction
is the first term (∼δ2) in the expression for r3.

Let us focus on the equation for the second moment

d〈P 2
∗ (t)〉
dt

= r1 + r2〈P 2
∗ (t)〉 + r3〈P 4

∗ (t)〉, (119)

with

r1 = λ2b0 + λ4b2,

r2 = −λ2p−2
T b0 + 3λ4b1 − λ4p−2

T b2, (120)

r3 = λ2δ2(2pT )−4b0 − λ4p−2
T b1.

Using Laplace transformations

An(s) =
∫ ∞

0
e−st 〈P n

∗ (t)〉dt, (121)

the stationary value of the second moment can be written as

lim
t→∞〈P 2

∗ (t)〉 = lim
s→0

sA2(s)

= − 1

r2

[
r1 + r3 lim

s→0
sA4(s)

]
. (122)

The stationary value for the fourth moment lims→0 sA4(s)
appears here multiplied by r3 ∼ λ4. Then one should assign to
it the equilibrium value found above in the lowest perturbation
order [Eq. (111)]

〈P 4
∗ 〉eq = lim

s→0
sA4(s) = 3p4

T . (123)

Then, from (122) and (120) one obtains to order δ2

lim
t→∞〈P 2

∗ (t)〉 = p2
T

(
1 + 3

2δ2), (124)

which is consistent with the prediction (102) of the equilibrium
theory with the Maxwell-Jüttner distribution.

Thermalization of the moments of higher orders can be
considered in a similar way. In particular, one can show that
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for the fourth moment equation (117) leads to the asymptotic
result

lim
t→∞〈P 4

∗ (t)〉 = 3p4
T (1 + 4δ2), (125)

which is the correct δ2-order approximation for the equilibrium
value 〈P 4

∗ 〉eq given by Eq. (102).

VIII. CONCLUSION

In this paper we argue that the conventional Langevin
phenomenology, with a single fluctuation-dissipation relation,
cannot be extended to the relativistic domain. For a non-
relativistic Brownian particle the Langevin equation can be
recovered from microscopic dynamics in the weak-coupling
limit, i.e., in the leading order in λ. For a relativistic Brownian
particle such a procedure is inconsistent because nonlinear
relativistic corrections are of the same order of magnitude
(or even smaller, for regime A) as classical corrections to the
weak-coupling approximation. We believe that this conclusion
is to be valid in general, even though the presented theory
employs the quasirelativistic approximation.

The necessity to go beyond the weak-coupling limit leads
to more than one and more complicated fluctuation-dissipation
relations (91). One interesting consequence is that the damping
coefficient γ2 of the nonlinear dissipation term in the Langevin
equation (90) may change its sign with temperature. This may
lead to qualitatively different relaxation behavior for different
temperature intervals. For example, consider the ensemble of
Brownian particles for which the initial first moment 〈P (0)〉 is
zero, but the third moment 〈P 3(0)〉 is not. Then it can be shown
[22] that for t > 0 the average momentum of the the ensemble
is temporarily nonzero and its direction is determined by the
sign of the dissipation coefficient γ2.

In contrast to phenomenological models, the presented
approach does not assume that the fluctuating force in
the Langevin equation is a Gaussian process. Fluctuation-
dissipation relations involve cumulants of orders higher than
2, which in general do not vanish. With a non-Gaussian noise

many conventional methods of the phenomenological theory,
for instance, the evaluation of higher moments, cannot be
applied. Yet the perturbational approach developed in this
paper provides a systematic method to solve the equations
of stochastic dynamics analytically to any given order of
a relevant small parameter. As an example, we discussed
in Sec. VII the thermalization problem and showed that
the moments 〈P n(t)〉 relax towards the equilibrium values
prescribed by the Maxwell-Jüttner distribution, provided this
distribution holds for particles of the bath. Previously, the
validity of the Maxwell-Jüttner distribution was questioned in a
number of papers [11,23–25], but was supported by numerical
simulations [16].

The presented procedure can also be applied to derive the
Fokker-Planck equation for the distribution function f (P,t).
As is well known [13,14], beyond the weak-coupling limit this
equation in general contains derivatives with respect to P of
orders higher than 2 and therefore is not of the form (6) implied
in phenomenological models with Gaussian noise.

The quasirelativistic approach adopted in this paper treats
systems with finite-range interactions only approximately and
contains no parameter that would describe qualitatively the
validity of this approximation. This obliges one to restrict
the application to systems with collisionlike interactions,
which can be described in the Markovian limit. A systematic
incorporation of non-Markovian effects requires a much more
elaborate theory that would explicitly takes into account the
fields’ degrees of freedom.

As a final comment let us note that while the presented
theory provides explicit microscopic expressions for the
damping coefficients γ1 and γ2, it is not clear if there is a
general relation between the two quantities. Remarkably, such
a relation is not required to prove thermalization of the particle
towards the Maxwel-Jüttner equilibrium distribution.
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