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We consider the Bethe equations for the isotropic spin-1/2 Heisenberg quantum spin chain with periodic
boundary conditions. We formulate a conjecture for the number of solutions with pairwise distinct roots of these
equations, in terms of numbers of so-called singular (or exceptional) solutions. Using homotopy continuation
methods, we find all such solutions of the Bethe equations for chains of length up to 14. The numbers of
these solutions are in perfect agreement with the conjecture. We also discuss an indirect method of finding
solutions of the Bethe equations by solving the Baxter T-Q equation. We briefly comment on implications for
thermodynamical computations based on the string hypothesis.
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I. INTRODUCTION

The Heisenberg quantum spin chain is a one-dimensional
array of N quantum spin-1/2 spins with nearest-neighbor
isotropic interactions and periodic boundary conditions. The
Hamiltonian is given by

H = 1

4

N∑
n=1

(�σn · �σn+1 − 1) , �σN+1 ≡ �σ1, (1.1)

where �σ = (σx ,σ y ,σ z) are the usual 2 × 2 Pauli spin matri-
ces, and �σn denotes the spin operators at site n. The vector space
describing this system has dimension 2N , so the Hamiltonian
is a 2N × 2N matrix. The basic problem is to determine the
eigenvectors and eigenvalues of this matrix, which grows in
size exponentially with N .

The Heisenberg spin chain is of fundamental importance
in theoretical physics. It is a model of (anti)ferromagnetism,
which is realized experimentally (e.g., KCuF3 and Sr2CuO3)
[1]. It has many other applications and connections, in-
cluding conformal field theory [2,3], N = 4 supersymmet-
ric Yang-Mills theory, and string theory [4]. Moreover, it
is the prototype of so-called quantum integrable models:
one-dimensional many-body quantum systems that have
many conserved quantities, and that therefore admit exact
solutions [5–8].

An exact solution of the Heisenberg model was discovered
by Hans Bethe [9]. In particular, the eigenvalues of the
Hamiltonian Eq. (1.1) are given by

E = −1

2

M∑
k=1

1

λ2
k + 1

4

, (1.2)

*hao.50@osu.edu
†nepomechie@physics.miami.edu
‡sommese@nd.edu

where {λ1 , . . . ,λM} satisfy Bethe’s celebrated equations(
λk + i

2

)N M∏
j �=k
j=1

(λk − λj − i)

=
(

λk − i

2

)N M∏
j �=k
j=1

(λk − λj + i),

k = 1 ,2 , . . . ,M, M = 0 ,1 , . . . ,
N

2
. (1.3)

It is therefore customary to refer to the λk’s as “Bethe roots.”
The solutions of other quantum integrable models entail
generalizations of these equations.

For given values of N and M , the Bethe equations have
various sets of solutions. Roughly speaking, for each such
solution {λ1 , . . . ,λM}, there is a corresponding energy level
(1.2) and eigenvector (the construction of which will be
sketched in Sec. II) of the Hamiltonian. However, ever since
the time of Bethe’s remarkable discovery, the nagging question
of “completeness” has persisted: namely, whether the Bethe
equations have too many, too few, or just the right number of
solutions to account for all 2N eigenstates of the Hamiltonian.1

The existence of so-called singular (or exceptional) solutions
of the Bethe equations makes the completeness problem
particularly confusing.2 A related question is whether the set
of Bethe roots characterizing any given state must be pairwise
distinct, i.e., obey the “Pauli principle.” Although it is generally
believed that the answer to this question is “yes,” there is no
proof (to our knowledge) of this assertion [17].3

1Various completeness proofs have been proposed for the case
N → ∞ [7,9–11]. However, these proofs rely on the so-called
string hypothesis, which itself has not been proved; see also, e.g.,
Refs. [12–16].

2There has been considerable discussion in the literature about such
solutions; see, e.g., Refs. [17–25].

3The coordinate Bethe ansatz wavefunction, which is proportional
to the algebraic Bethe ansatz state, does vanish for coincident
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We formulate here a precise conjecture for the number of
solutions with pairwise distinct roots of the Bethe equations,
in terms of numbers of singular solutions. [See Eq. (2.12)
below.] Its meaning is that the Bethe equations generally have
“too many” solutions with pairwise distinct roots; but after
appropriate culling, there remain exactly the right number of
solutions to account for all 2N eigenstates of the Hamiltonian.

In order to check this conjecture, it is necessary to find all
solutions with pairwise distinct roots of the Bethe equations.
For certain energy levels, in particular for the ground state,
which has N/2 real Bethe roots, it is straightforward to
compute numerically the Bethe roots for large values of N

(∼103) (see, e.g., Ref. [2]), and to compute analytically the
energy in the N → ∞ limit [7]. However, finding all solutions
of the Bethe equations is unfortunately a difficult problem even
for modest values of N (∼10)—certainly much more difficult
than directly diagonalizing the Hamiltonian. For example, on
a desktop computer, the direct solution of Eq. (1.3) is not
feasible for N = 8 beyond M = 3.

We discuss two approaches for tackling this problem. Using
homotopy continuation methods, which heretofore had not
been applied to the Bethe equations, we find all solutions with
pairwise distinct roots up to N = 14,M = 7. We also discuss
an indirect method of finding solutions of the Bethe equations
by solving the Baxter T-Q equation.

Our results, summarized in Table II, are in precise agree-
ment with the conjecture. These results also suggest that the
naive prediction Eq. (2.8) for the number of solutions of the
Bethe equations is incorrect not only for small values of N , but
also for N → ∞, in contradiction with several computations
based on the string hypothesis.

The conjecture may also be of interest to mathematicians.
Indeed, the Bethe equations are evidently a system of polyno-
mial equations, and therefore belong to the realm of algebraic
geometry. These equations have a finite number of solutions;
i.e., the algebraic variety of the solutions has dimension 0. Nev-
ertheless, the number of such solutions should be calculable a
priori. (See also Refs. [12,16,26] and references therein.)

The outline of this paper is as follows. In Sec. II we
formulate our conjecture for the number of solutions with
pairwise distinct roots of the Bethe equations, in terms of
numbers of singular solutions. In Sec. III we briefly describe
the homotopy continuation method with references to some
surveys on the method, and how we use it to solve the Bethe
equations. In Sec. IV we discuss an indirect way of finding the
Bethe roots by solving instead the T-Q equation. Finally, we
present a summary and discussion of our results in Sec. V.

II. THE COMPLETENESS–PAULI-PRINCIPLE
CONJECTURE

For given values of N and M , let us denote by N (N,M)
the number of solutions of the Bethe Eqs. (1.3) with pairwise

rapidities. However, it is only the proportionality factor and not
the algebraic Bethe ansatz state itself that vanishes for coincident
rapidities. The corresponding coordinate Bethe ansatz wavefunction
can therefore be made nonzero by a simple renormalization (of the
sort required for physical singular states), the need for which cannot
be precluded.

distinct Bethe roots (i.e., λj �= λk for j �= k). We always
count solutions up to permutations of the Bethe roots: if
{λ1 , . . . ,λM} is a solution, then any permutation of these λk’s
is not counted as a separate solution.

We would like to formulate a conjecture for N (N,M). To
this end, it is necessary to review in a little more detail the
solution of the model. Instead of following Bethe’s original
approach (which is now referred to as the coordinate Bethe
ansatz), we find it easier to use the algebraic Bethe ansatz
approach [6–8]. The main point is that the state with all spins
up, which is called the “reference” state and which we denote
by |0〉, is an eigenstate of the Hamiltonian (with eigenvalue
0); and additional eigenstates, called “Bethe states,” can be
constructed by acting with certain creation operators B(λ) on
the reference state:

|λ1 , . . . ,λM〉 = B(λ1) · · · B(λM )|0〉 , (2.1)

where {λ1 , . . . ,λM} are (by assumption) pairwise distinct,
and are solutions of the Bethe equations. Since the creation
operators commute [B(λ) ,B(λ′)] = 0, any permutation of the
Bethe roots {λ1 , . . . ,λM} evidently does not affect the state
Eq. (2.1). The corresponding energy eigenvalue is given by
Eq. (1.2).

The Hamiltonian Eq. (1.1) commutes with the total spin �S,

[H ,�S] = 0, �S = 1

2

N∑
n=1

�σn. (2.2)

Hence, H , �S2, and Sz can all be simultaneously diagonalized,

H |E,s,m〉 = E|E,s,m〉,
�S2|E,s,m〉 = s(s + 1)|E,s,m〉, (2.3)

Sz|E,s,m〉 = m|E,s,m〉.
It can be further shown that the Bethe states Eq. (2.1) are
highest-weight states,

S+|λ1 , . . . ,λM〉 = 0, S± = Sx ± iSy, (2.4)

so the spin quantum numbers are given by

s = m = N

2
− M. (2.5)

Although the Bethe ansatz can give only highest-weight (m =
s) eigenstates of the Hamiltonian, the eigenstates with m < s

can easily be obtained by repeatedly acting with the spin-
lowering operator S− on the Bethe states.

It is now not difficult to determine, for a given value of N ,
the possible values of spin s (and hence the possible values
of M), and their multiplicities (which naively should be the
number of solutions of the Bethe equations with M Bethe
roots). Indeed, the Clebsch-Gordan theorem implies that the
N -fold tensor product of spin-1/2 representations decomposes
into a direct sum of (irreducible) spin-s representations,

1
2

⊗ · · · ⊗ 1
2︸ ︷︷ ︸

N

=
N
2⊕

s=0

nss, (2.6)
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where ns , the number of representations with spin-s, is
given by

ns =
(

N
N
2 − s

)
−

(
N

N
2 − s − 1

)
. (2.7)

Note from Eq. (2.6) that the values of s range from 0 to N/2;
hence, according to Eq. (2.5), the values of M also range from
0 to N/2, as already anticipated in Eq. (1.3).

It follows from Eqs. (2.5) and (2.7) that N (N,M), the
number of solutions of the Bethe equations with M pairwise
distinct roots, should naively be given by

N (N,M)
?=

(
N

M

)
−

(
N

M − 1

)
. (2.8)

However, this is not correct. The flaw in the argument can be
traced back to the incorrect assumption that every solution of
the Bethe equations with pairwise distinct roots produces, via
Eq. (2.1), an eigenstate of the Hamiltonian. Indeed, the Bethe
equations admit so-called singular (or exceptional) solutions,
one of whose roots is i/2 and another of which is −i/2; and
only a subset of those solutions produces eigenstates of the
Hamiltonian. Those singular solutions that produce eigenstates
of the Hamiltonian we call “physical,” and those singular
solutions that do not produce eigenstates of the Hamiltonian
we call “unphysical.”

Fortunately, there exists a simple criterion for determining
whether a given singular solution is physical or unphysical.
Consider a general singular solution of the Bethe equations,{

i

2
, − i

2
,λ3 , . . . ,λM

}
, (2.9)

where λ3 , . . . ,λM are pairwise distinct and are not equal to
±i/2. The Bethe Eqs. (1.3) imply that the last M − 2 roots
{λ3 , . . . ,λM} obey(

λk + i
2

λk − i
2

)N−1(
λk − 3i

2

λk + 3i
2

)
=

M∏
j �=k
j=3

λk − λj + i

λk − λj − i
,

k = 3 , · · · ,M. (2.10)

This singular solution is physical if {λ3 , . . . ,λM} also
obey [25] [

−
M∏

k=3

(
λk + i

2

λk − i
2

)]N

= 1. (2.11)

We are finally ready to formulate a precise conjecture
for N (N,M) in terms of numbers of singular solutions.
Let Ns(N,M) denote the number of solutions of the Bethe
Eqs. (1.3) that are singular [i.e., that have the form (2.9)]; and
let Nsp(N,M) denote the number of such singular solutions
that satisfy Eq. (2.11) and hence are physical. We conjecture
that

N (N,M) − Ns(N,M) + Nsp(N,M) =
(

N

M

)
−

(
N

M − 1

)
.

(2.12)

The physical meaning of this conjecture is that the Bethe
equations generally have “too many” solutions with pairwise
distinct roots; but after discarding the singular solutions

that do not satisfy Eq. (2.11), there remain exactly the
right number of solutions to account for all ( N

M ) − ( N

M − 1 )

highest-weight eigenstates (and therefore all 2N eigenstates)
of the Hamiltonian. Hence, Eq. (2.12) expresses the
completeness—after appropriate culling—of the solutions
of the Bethe equations with pairwise distinct roots. It is
therefore natural to call it the “completeness–Pauli-principle
conjecture.”4 Unfortunately, we do not have conjectures for
N ,Ns ,Nsp separately for general values of N and M , but
only for the combination N − Ns + Nsp.

We emphasize the two-way nature of this conjecture:
(i) for every highest-weight eigenstate of the Hamiltonian,

there is a solution of the Bethe equations with pairwise distinct
roots; and

(ii) for every solution of the Bethe equations with pairwise
distinct roots that (if it is singular) also satisfies Eq. (2.11),
there is a highest-weight eigenstate of the Hamiltonian.

To our knowledge, previous studies of completeness have
focused only on point (i), and therefore have not addressed the
many unphysical singular solutions of the Bethe equations.
A case in point is Ref. [23], which reports solutions of the
Bethe equations for N = 8 and N = 10, but the only singular
solutions that are included are the physical ones.

In order to check the conjecture, it is necessary to find all the
solutions with pairwise distinct roots of the Bethe equations.
It is to this task that we now turn.

III. HOMOTOPY CONTINUATION

Homotopy continuation (often called continuation) is the
main numerical approach to find isolated roots of polynomial
systems without regard to the dimension of the ambient space,
restrictions on the systems, or the bounds on the size of the
domain in Euclidean space where the solutions are sought. In
this section we outline the method and its main features and
mention the main software packages.

Some surveys of this material are Refs. [27–30]. The
classic Ref. [31] is a good reference for many software
implementation details. The methods apply more generally
than systems of polynomials, but without many of the features
we need, e.g., guarantees for finding solutions and accurate
computation of singular solutions. The classic reference for
continuation methods in this general situation (putting the case
of polynomial systems in context) is Ref. [32].

Polynomial system solving has a long history of appli-
cations to widely diverse areas, e.g., kinematics, chemical

4We could generalize Eq. (2.12) to allow for violations of the Pauli
principle by adding an extra term:

N (N,M) − Ns(N,M) + Nsp(N,M) + Nstrange(N,M)

=
(

N

M

)
−

(
N

M − 1

)
,

whereNstrange(N,M) is the number of “strange” solutions of the Bethe
equations whose roots are not pairwise distinct but which nevertheless
produce, via Eq. (2.1), eigenstates of the Hamiltonian. However,
as far as we have checked, there is no need for such a term, i.e.,
Nstrange(N,M) = 0.
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reaction systems, game theory, mathematical biology, systems
of nonlinear differential equations, and physics. Applications
to theoretical kinematics go back to the 19th Century. It is
fair to say that the main application areas presented in Refs.
[28,31] lie in kinematics and robotics; for more details, see the
references in those books and the survey article [30]. Chemical
reactions systems are treated in Ref. [31]; for more details, see
the references there and in Refs. [28,33–35]. Game theory
applications and some references may be found in Ref. [28].
Polynomial systems arise naturally in the discretization of
systems of nonlinear differential equations; for more details,
see the early Refs. [36,37], some more recent Refs. [38,39], and
the references contained therein. For applications to a variety
of models from mathematical biology, see Refs. [40–42]. For
recent applications to physics, see, e.g., Refs. [43–53] and the
references contained therein.

The continuation method to find the solutions of a poly-
nomial system f starts with a polynomial system g (called
the start system) and a set Sg of nonsingular solutions of g,
which are called start points. The method proceeds to deform
the system g and Sg to the system f and a set of solutions Sf

of f . We make this precise below. The references listed above
detail many different possible choices of g for which homotopy
continuation is guaranteed to find a set of solutions of f , which
contain all isolated solutions of f . We use the total degree
homotopy (explained below), which is the first homotopy that
was shown to find all solutions of a polynomial system.

For Bethe’s Eqs. (1.3), we begin by introducing the
polynomials fk in the variables λ1, . . . ,λM , which we regard
as specifying a variable point in CM ,

fk(�λ) =
(

λk + i

2

)N M∏
j �=k
j=1

(λk − λj − i)

−
(

λk − i

2

)N M∏
j �=k
j=1

(λk − λj + i), (3.1)

where �λ = (λ1 ,λ2 , . . . ,λM )T . Notice that the degrees of the
polynomials fk are N + M − 2 after simplifying [since the
top degree terms of the left-hand side and right-hand side of
Eq. (1.3) are equal].

We then define the following homotopy function:

�H (�λ,t) = (1 − t) �f (�λ) + γ t �g(�λ), (3.2)

where �f = (f1, · · · ,fM )T , �g = (g1, · · · ,gM )T , gk =
λN+M−2

k − 1. Moreover, t ∈ [0,1] is a homotopy parameter,
and γ is a random complex number. When t = 1, we have
known solutions to �g(�λ) = 0, or equivalently, �H (�λ,1) = 0.
Specifically, the solutions of gk = 0 are

λk = ωjk , ω = e2πi/(N+M−2), jk = 0,1, · · · ,N + M − 3.

(3.3)

The solutions of �g(�λ) = 0 therefore yield values for each λk .
The known solutions are called start points, and the system
�H (�λ,1) = 0 is called the start system. Such a start system

with the degree dk of gk equal to the degree of fk for all
k and with the number of solutions of �H (�λ,1) = 0 equal to∏n

k=1 dk is called a total degree start system. (The number of

isolated solutions of a system of n polynomial equations fk

in n variables is always less than or equal to
∏n

i=k deg fk .)
Choosing a total degree start system and a random complex
number γ guarantees finding all the solutions. The use of
the random γ , which is called the γ trick, was introduced in
Ref. [54]. A good discussion of a more general version of this
trick is given in Ref. [28], Lemma 7.1.3].

However, as previously explained, we are interested in
solutions (λ1, · · · ,λM ) up to permuting the coordinates, and
with no two λ’s equal. Hence, we may restrict jk in Eq. (3.3)
to run over all M-tuples of integers

0 � j1 < j2 < j3 < · · · < jM � N + M − 3. (3.4)

To see this, note that the equations H1, . . . ,HM of the
homotopy �H (�λ,t) are permuted by the symmetric group on the
variables λ1, . . . ,λM . Indeed, under a permutation σ taking λj

to λk , Hj is taken to Hk . This has strong consequences for
the homotopy [55]: we explain the consequence we need. The
paths in λ,t space over the interval (0,1], are permuted by
the action of the symmetric group. A start point has pairwise
disjoint entries if and only if the orbit in the set of start points
under the symmetric group consists of exactly M! points. Since
there is one path for each of the start points, we see that the
number of paths a given path over (0,1] is taken to under
the symmetric group is M! if and only if the start point has
pairwise disjoint entries. The orbit of a root of �H (�λ,0) = 0,
which is a limit of a path p, equals the set of limits as t → 0 of
the paths in the orbit of the path p under the symmetric group
action. From this we see that a root of �H (�λ,0) = 0 can have
pairwise disjoint entries only if it is the limit of some path
with a start point having pairwise disjoint entries. Note that
this does not preclude a path with start point having pairwise
disjoint coordinates ending at a root of �H (�λ,0) = 0 without
pairwise disjoint coordinates. Note also that the number of
start points is only ( N + M − 2

M ) since it equals the number of
M-tuples of integers Eq. (3.4).

At t = 0, we evidently recover the Bethe equations. The
problem of finding the solutions of the Bethe equations now
reduces to tracking solutions of �H (�λ,t) = 0 from t = 1 where
we know solutions to t = 0. The numerical method used in path
tracking from t = 1 to t = 0 arises from solving the Davidenko
differential equation:

d �H (�λ(t),t)
dt

= ∂ �H (�λ(t),t)

∂�λ
d�λ(t)

dt
+ ∂ �H (�λ(t),t)

∂t
= 0. (3.5)

In particular, path tracking reduces to solving initial value
problems numerically with the start points being the initial
conditions. Since we also have an equation that vanishes along
the path, namely �H (�λ,t) = 0, predictor and corrector methods,
e.g., rkf45 as a predictor with the Newton-Rapfson’s method
as a corrector, are used to solve these initial value problems.

Continuation methods parallelize naturally, by sending
different paths to different processors to track. Predictor and
corrector methods combined with adaptive stepsize and adap-
tive precision algorithms [56,57] provide reliability without
giving up efficiency. The major concerns for implementing a
numerical path-tracking algorithm are to decide the number of
digits used to provide reliable computation, which predictor
or corrector method to employ, and the stepsize �t ; see

052113-4



COMPLETENESS OF SOLUTIONS OF BETHE’S EQUATIONS PHYSICAL REVIEW E 88, 052113 (2013)

TABLE I. Solutions with distinct roots of the Bethe equations for N = 8, M = 4. Singular solutions that are unphysical are labeled by ∗,
and singular solutions that are physical are labeled by ∗∗.

Number Bethe roots {λk}
1 ±0.5250121022236669 ±0.1294729463749287
2 0.5570702385744416 0.1470126111961413 −0.3520414248852914 ± 0.5005581696433306I
3* ±0.5I −0.2930497652740115 ± 0.5002695484553508I
4* ±0.5I 0.09053461122303935 0.4866819617430914
5* ±0.5I −0.04929340793103601 + 1.631134975618312I −0.2430919428911911 − 0.06188079036780695I
6* ±0.5I 0.6439488581706157 − 0.1197616885579488I 0.05986712277687283 + 1.57171694471433I
7* ±0.5I 0.04929340793103601 + 1.631134975618312I 0.2430919428911911 − 0.06188079036780695I
8** ±0.5I ±0.5638252623934961
9 0.2205600072920844 −0.6691229228815117 0.2242814577947136 ± 1.002247276506607I
10* ±0.5I 0.1695810016454493 −0.522716443014433
11* ±0.5I −0.05986712277687283 + 1.57171694471433I −0.6439488581706157 − 0.1197616885579488I
12* ±0.5I 1.653144833689466I −0.050307293346599I
13* ±0.5I 0.522716443014433 −0.1695810016454493
14* ±0.5I 0.050307293346599I −1.653144833689466I
15* ±0.5I − 0.4866819617430914 −0.09053461122303935
16* ±0.5I 0.04929340793103601 − 1.631134975618312I 0.2430919428911911 + 0.06188079036780695I
17* ±0.5I 0.2930497652740115 ± 0.5002695484553508I
18** ±0.5I ±0.1424690678305666
19** ±0.5I ±1.556126503577051I
20* ±0.5I 3.517084291308099I 1.508105736964082I
21 0.2443331937711654 −0.08378710739142802 −0.08027304318986867 ± 1.005588273959932I
22* ±0.5I 0.05986712277687283 − 1.57171694471433I 0.6439488581706157 + 0.1197616885579488I
23 0.1211861779691729 −0.5716111771864383 0.2252124996086327 ± 0.5000288621635332I
24 ±0.4632647275890309 ± 0.5022938535699026I
25 −0.1470126111961413 −0.5570702385744416 0.3520414248852914 ± 0.5005581696433306I
26* ±0.5I −0.05986712277687283 − 1.57171694471433I −0.6439488581706157 + 0.1197616885579488I
27 0.08378710739142802 −0.2443331937711654 0.08027304318986867 ± 1.005588273959932I
28* ±0.5I − 0.2430919428911911 + 0.06188079036780695I −0.04929340793103601 − 1.631134975618312I
29 ±1.025705081230743I ±0.0413091275245562
30* ±0.5I −1.508105736964082I −3.517084291308099I
31 0.5716111771864383 −0.1211861779691729 −0.2252124996086327 ± 0.5000288621635332I
32 −0.2205600072920844 0.6691229228815117 −0.2242814577947136 ± 1.002247276506607I

Refs. [28,57] for more details regarding the construction and
implementation of a path tracking algorithm.

We mention that for polynomial systems, there are special
path-tracking algorithms [58–60], often called endgames, to
compute singular solutions. When the endpoint of a solution
path is singular, there are several approaches that give highly
accurate estimates of the endpoint. These methods use the
fact that the homotopy continuation path �λ(t) approaching a
solution of �H (�λ,t) = 0 as t → 0 lies on an complex analytic
curve, which may be locally uniformized near (�λ,0), by an
analytic disk. Many of these endgames are implemented in
several sophisticated numerical packages such as Bertini [29],
PHCpack [61], and HOMPACK [62]. Their binaries are all
available as freeware from their respective research groups.
We note also HOM4PS-2.0 [63], the leading homotopy
continuation software using polyhedral methods: this
software is not useful for us in this article because it does not
allow the user to specify a homotopy and a set of start points.

We employed Bertini [29] with adaptive precision tracking
[56,57]: due to the high degree of Bethe’s equations, a precision
of 2000 bits (roughly 600 digits) is needed to solve the system.
We ran Bertini on a 64-bit Linux cluster with 13 dual Xeon
5410 nodes (each with 8 GB RAM and 8 cores) and 9 dual

Xeon E5520 nodes (each with 12 GB RAM and 8 cores). One
node acted as manager with up to 22 computing nodes (giving
a total of 176 cores).

The results for N = 2 , . . . ,12 are presented in a set of
supplemental tables [64], an example of which is Table I.
To give some perspective in computational effort, the case
of (N,M) = (14,7) took 4413.5 seconds of computation
while the case of (N,M) = (12,6) took 168.8 seconds of
computation.

IV. SOLVING THE T-Q EQUATION

There is also a powerful indirect way of determining the
Bethe roots based on the Baxter T-Q equation. By virtue of the
model’s integrability, one can construct the so-called transfer
matrix t(λ), a 2N × 2N matrix that is a function of an arbitrary
parameter λ, which commutes with itself for different values of
this parameter as well as with the Hamiltonian Eq. (1.1) [5–8]:

[t(λ) ,t(λ′)] = 0, [t(λ) ,H ] = 0. (4.1)

Furthermore, it can be shown that the eigenvalues of the trans-
fer matrix, which we denote here by T (λ), are polynomials in
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λ of degree N ,

T (λ) =
N∑

j=0

Tjλ
j , (4.2)

where the coefficients Tj are independent of λ. Moreover,
the transfer matrix eigenvalues satisfy the celebrated T-Q
equation [5–8]

T (λ) Q(λ) =
(

λ + i

2

)N

Q(λ − i) +
(

λ − i

2

)N

Q(λ + i),

(4.3)

where Q(λ) is a polynomial in λ of degree M , whose zeros
are the sought-after solutions of the Bethe Eqs. (1.3),

Q(λ) =
M∏

m=1

(λ − λm) =
M∑

j=0

Qjλ
j , QM = 1, (4.4)

where the coefficients Qj are independent of λ. Indeed,
dividing both sides of Eq. (4.3) by Q(λ), it appears that the
right-hand side has poles at the zeros of Q(λ), in contradiction
with the fact the left-hand side is a polynomial in λ and must
therefore be regular. The only way out of this paradox is for
the poles to cancel, the condition for which is precisely the
Bethe Eqs. (1.3).

Interestingly, it is possible to solve the T-Q Eq. (4.3)
numerically for both T (λ) and Q(λ); and then, by finding
the zeros of Q(λ), determine all the solutions of the Bethe
equations.5 The basic idea is to substitute Eqs. (4.2) and (4.4)
into the T-Q Eq. (4.3) and then equate coefficients with equal
powers of λ. In other words, Eqs. (4.2) and (4.4) imply that

T (λ) Q(λ) −
[(

λ + i

2

)N

Q(λ − i) +
(

λ − i

2

)N

Q(λ + i)

]

=
N+M∑
j=0

cjλ
j , (4.5)

where the coefficients cj are independent of λ; and the T-Q
equation implies that

cj = 0, j = 0 ,1 , . . . ,N + M. (4.6)

Note that cM+1 , . . . ,cM+N are independent of T0 and are
linear in T1 , . . . ,TN . Therefore, Eqs. (4.6) with j = M +
1 , . . . ,M + N can be solved uniquely for T1 , . . . ,TN in
terms of Q0 , . . . ,QM−1. Substituting this solution into the
remaining coefficients c0 , . . . ,cM , we arrive at a system of
M + 1 nonlinear equations,

cj = 0 , j = 0 ,1 , . . . ,M, (4.7)

for the M + 1 unknowns Q0 , . . . ,QM−1 ,T0.6 This system
of equations is somewhat simpler than the corresponding M

5This very nice approach does not seem to be widely known. To
our knowledge, it was first published by Baxter [15], and it has
recently been rediscovered in the context of Richardson-Gaudin
models [65,66].

6Since c0 , . . . ,cM are linear in T0, it is also possible to eliminate
T0 in terms of Q0 , . . . ,QM−1, and thereby arrive at a system of M

nonlinear equations for M unknowns.

Bethe Eqs. (1.3). Indeed, the above procedure can easily be
implemented on a desktop computer, which can perform the
case N = 9 in a few minutes but cannot manage higher values
of N . The results agree with the corresponding results (up
to N = 9) obtained in Sec. III. We have not attempted to
implement this procedure on better hardware.

A variation of the above procedure is to first determine
the eigenvalues T (λ) by explicitly diagonalizing the transfer
matrix t(λ) 7 and then solving the T-Q Eq. (4.3) for Q(λ).8 This
approach has the advantage that solving the T-Q equation for
only Q is a linear (albeit, overdetermined) problem; however, it
has the disadvantage of requiring the diagonalization of a large
matrix. This procedure can also be easily implemented on a
desktop computer, which can again perform the case N = 9 in
a few minutes but cannot manage higher values of N . Unlike
the former approach where one solves the T-Q equation for
both T and Q, the only singular solutions that this method can
generate are the physical ones. Hence, this method can check
only point (i) of the two points listed below Eq. (2.12).

V. SUMMARY AND DISCUSSION

Our results are summarized in Table II. For each set of
values (N,M), we report a set of four integers:

(N ,Ns ,Nsp ;N − Ns + Nsp) ,

whereN is the number of solutions with pairwise distinct roots
of the Bethe equations; Ns is the number of singular solutions;
and Nsp is the number of singular solutions that are physical
(see Sec. II for further details). These quantities can easily
be read off from Table I and the supplemental tables [64] as
follows: N is the number of solutions listed in a given table;
Ns is the number of those solutions labeled with either a single
∗ or double ∗∗ star; and Nsp is the number of those solutions
labeled with a double star.

Remarkably, the quantities N − Ns + Nsp in all the entries

of Table II coincide with ( N

M ) − ( N

M − 1 ), in perfect agreement
with the conjecture Eq. (2.12). Although this conjecture was
motivated from consideration of a physical model Eq. (1.1), it
can be viewed solely as a statement about the solutions of the
polynomial Eqs. (1.3) and (2.11), which begs for a proof.

It is easy to see that the number of solutions for M = 1 is
N − 1,

N (N,1) = N − 1 . (5.1)

Moreover, for M = 2, we observe

N (N,2) = 1
2 [N2 + 3N + 1 + (−1)N ]. (5.2)

It would be interesting to formulate conjectures (not to mention
proofs) for N (N,M) for M � 3.

7In practice, one first computes the eigenvectors of the numerical
matrix t(λ0) (where λ0 is some generic numerical value), and then
one acts with t(λ) on these eigenvectors to obtain the corresponding
eigenvalues T (λ) as polynomials in λ.

8This approach for determining Bethe roots has been used many
times in the past, e.g., Refs. [14,67,68].
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TABLE II. The values (N ,Ns ,Nsp ;N − Ns + Nsp) for given values of N and M , where N is the number of solutions with pairwise
distinct roots of the Bethe equations; Ns is the number of singular solutions; and Nsp is the number of singular solutions that are physical.

�
��N
M

1 2 3 4 5 6 7

2 (1,0,0; 1)
3 (2,0,0; 2)
4 (3,0,0; 3) (2, 1, 1; 2)
5 (4,0,0; 4) (6, 1, 0; 5)
6 (5,0,0; 5) (9, 1, 1; 9) (9, 5, 1; 5)
7 (6,0,0; 6) (15, 1, 0; 14) (20, 6, 0; 14)
8 (7,0,0; 7) (20, 1, 1; 20) (34, 7, 1; 28) (32, 21, 3; 14)
9 (8,0,0; 8) (28, 1, 0; 27) (54, 8, 2; 48) (69, 27, 0; 42)
10 (9,0,0; 9) (35, 1, 1; 35) (83, 9, 1; 75) (122, 36, 4; 90) (122, 84, 4; 42)
11 (10,0,0; 10) (45, 1, 0; 44) (120, 10, 0; 110) (209, 44, 0; 165) (252, 120, 0; 132)
12 (11,0,0; 11) (54, 1, 1; 54) (163, 10, 1; 154) (325, 55, 5; 275) (456, 163, 4; 297) (452, 330, 10; 132)
13 (12, 0, 0; 12) (66, 1, 0; 65) (220, 12, 0; 208) (494, 65, 0; 429) (792, 220, 0; 572) (919, 490, 0, 429)
14 (13, 0, 0; 13) (77, 1, 1; 77) (285, 13, 1; 273) (709, 78, 6; 637) (1281, 286, 6; 1001) (1701, 715, 15; 1001) (1701, 1287, 15; 429)

Several remarks about the singular solutions are in order:
(i) Inspection of Table I and the supplemental tables [64]

shows that many (but not all) of the unphysical singular
solutions (i.e., those solutions labeled by a single star ∗) are
not self-conjugate. This does not violate any theorems, since
only solutions corresponding to eigenstates of the Hamiltonian
are required to be invariant under complex conjugation [69].
Such solutions definitely do not obey the string hypothesis,
since string configurations are (by definition) self-conjugate.

(ii) For odd values of N , it appears from Table II that most
singular solutions are unphysical; i.e.,Nsp(N,M) = 0 for most
values of M if N is odd. An exception is the case N = 9,M =
3, for which Nsp(9,3) = 2; and this repeats with a periodicity
of 6: Nsp(15,3) = 2, etc. We expect that similar exceptions
occur for higher values of M .

(iii) It appears from Table II that, among the singular
solutions, relatively few are physical (i.e., generally Ns 
Nsp), with Nsp ∼ M .

(iv) For M ∼ N/2 and most values of N , it appears from
Table II that the number of unphysical singular solutions
Ns − Nsp is comparable to the number of highest-weight
states of the Hamiltonian. This suggests that the naive formula
Eq. (2.8) for the number of solutions of the Bethe equations is
incorrect not only for small values of N , but also for N →
∞. This, in turn, suggests that the computations claiming
to prove this naive formula for N → ∞ [7,9–11] are also
incorrect. These computations nevertheless manage to obtain
the correct number of highest-weight states, perhaps because
the assumption of the string hypothesis (which all of these

computations make) effectively projects out sufficiently many
of these unphysical singular solutions (many of which, as noted
above, do not obey the string hypothesis) in the thermodynamic
limit. It would be interesting to understand this point better,
given that the criterion for selecting the physical singular
solutions is not that they obey the string hypothesis, but instead
Eq. (2.11).

We have seen that, using appropriate computer resources,
numerical homotopy methods are effective for solving the
Bethe equations directly. It would be interesting to also imple-
ment the indirect approach based on the T-Q equation using
similar computer resources and compare the effectiveness of
these approaches.

As noted in the Introduction, the model that we have
studied here is the prototype of an entire zoo of quantum
integrable models, which have generalizations of the Bethe
equations. We expect that the methods used here can also
be used to study completeness in some of these other
models.
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