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Critical Casimir forces between homogeneous and chemically striped surfaces
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Recent experiments have measured the critical Casimir force acting on a colloid immersed in a binary
liquid mixture near its continuous demixing phase transition and exposed to a chemically structured substrate.
Motivated by these experiments, we study the critical behavior of a system, which belongs to the Ising universality
class, for the film geometry with one planar wall chemically striped, such that there is a laterally alternating
adsorption preference for the two species of the binary liquid mixture, which is implemented by surface fields.
For the opposite wall we employ alternatively a homogeneous adsorption preference or homogeneous Dirichlet
boundary conditions, which within a lattice model are realized by open boundary conditions. By means of
mean-field theory, Monte Carlo simulations, and finite-size scaling analysis we determine the critical Casimir
force acting on the two parallel walls and its corresponding universal scaling function. We show that in the limit
of stripe widths small compared with the film thickness, on the striped surface the system effectively realizes
Dirichlet boundary conditions, which generically do not hold for actual fluids. Moreover, the critical Casimir
force is found to be attractive or repulsive, depending on the width of the stripes of the chemically patterned
surface and on the boundary condition applied to the opposing surface.

DOI: 10.1103/PhysRevE.88.052110 PACS number(s): 05.70.Jk, 68.15.+e, 05.50.+q, 05.10.Ln

I. INTRODUCTION

As an intriguing consequence of their presence, fluctuations
of an embedding medium may manifest themselves in terms
of effective forces acting on its confining boundaries. The
critical Casimir force is such a fluctuation-induced force
which arises due to the emergence of long-ranged thermal
fluctuations if a fluid close to a second-order phase transition
is confined between surfaces. This phenomenon, first predicted
by Fisher and de Gennes [1] is the analog of the Casimir effect
in quantum electrodynamics [2]. Reference [3] provides a
recent review which illustrates analogies as well as differences
between these two effects and guides the reader towards further
reviews of the subject and the pertinent original literature.

The dependence of the critical Casimir force on the distance
between the confinements and on temperature is characterized
by a universal scaling function, which is determined by
the bulk and surface universality classes (UC) [4,5] of the
confined system. It is independent of microscopic details
of the system, and its form depends only on a few global
and general properties, such as the spatial dimension d, the
number of components of the order parameter, the shape of the
confinement, and the type of boundary conditions (BC) [6–8].

In recent years the critical Casimir effect has attracted
numerous experimental [9–19] and even more theoretical in-
vestigations. Critical Casimir forces can be inferred indirectly
by studying wetting films of fluids close to a critical end
point [20,21]. In this context, 4He wetting films close to
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the onset of superfluidity [9] and wetting films of classical
[10] and quantum [11] binary liquid mixtures have been
studied experimentally. Only recently direct measurements
of the critical Casimir force have been reported [12–17]
by monitoring individual colloidal particles immersed into
a binary liquid mixture close to its critical demixing point
and exposed to a planar wall. The critical Casimir effect has
also been studied via its influence on aggregation phenomena
[18,19].

Not only the strength of critical Casimir forces can be tuned
by small temperature changes but even their sign depends on
the BC of the confining boundaries. The two interfaces of a
4He film impose a symmetry-preserving Dirichlet BC [denoted
by (o)] on the superfluid order parameter at both sides of the
film, which causes attractive critical Casimir forces leading to
a thinning of the film near the λ transition [9,20,21]. However,
for classical binary liquid mixtures (or simple fluids), surfaces
preferentially adsorb one of the two species of the mixture (or
the gaseous or the liquid phase of a simple fluid, respectively).
This corresponds to symmetry-breaking BC [denoted as (+)
or (−) BC] acting on the order parameter which is, e.g.,
the concentration difference in a binary liquid. Within the
theoretical description (±) BC are realized by surface fields
and the (o) BC by their absence.

The emergence of long-ranged thermal fluctuations close to
a second-order phase transition leads to a mesoscopic extent of
the adsorption layer close to surfaces with (±) BC. Depending
on whether the adsorption preferences of the confining surfaces
of the fluid are the same (±,±) or different (+,−), critical
Casimir forces acting on them are either attractive (±,±)
or repulsive (+,−) [10,12,13,16]. The critical Casimir force
between walls with (±) BC is the combined effect of the
change of the fluctuation spectrum due to the confinement and
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the interference of the adsorption layers, which are present
even within mean-field theory. The shapes of the adsorption
layers themselves are strongly influenced by non-Gaussian
fluctuations, i.e., they differ from mean-field predictions. In
this sense, the effective forces acting on surfaces which confine
a (near-) critical fluid provide a classical analog of the Casimir
effect both in the case of symmetry-breaking and in the case
of symmetry-preserving BC.

Early theoretical investigations of the critical Casimir
force used, to a large extent, field-theoretical methods (see,
e.g., Ref. [22] for a list of references). Only recently have
Monte Carlo (MC) simulations allowed for their quantitatively
reliable computation. Early numerical simulations for the
critical Casimir force have been employed in Ref. [23] for the
film geometry with laterally homogeneous BC. More recently,
the critical Casimir force has been determined by numerical
simulations for the XY UC [24–30], which describes the
critical properties of the superfluid phase transition in 4He,
as well as the Ising UC [22,24,26,27,31–36] which describes,
inter alia, the experimentally relevant demixing transition in a
binary liquid mixture.

Since Casimir forces may affect or empower future devices
on the micro- and nanoscales, their modifications due to the
presence of nano- or microstructures on the substrates has
been a topic of intense research during the past decade. Recent
theoretical and experimental studies of QED Casimir forces
(see, e.g., Ref. [37] and references therein) as well as critical
Casimir forces [38] for topologically structured substrates
exhibit remarkable deviations from the corresponding ones for
planar walls as well as the occurrence of lateral forces. How-
ever, only chemically patterned substrates allow for interesting
combinations of attractive and repulsive critical Casimir forces
so that, among the various realizations of the critical Casimir
effect, the force in the presence of a chemically patterned
substrate has recently attracted particular interest [15,39].

Experiments with binary liquid mixtures as solvents have
been used to study critical Casimir forces acting on dissolved
colloids close to a chemically structured substrate [14–16],
which creates a laterally varying adsorption preference for
both components of the solvent. Such kind of systems have
been investigated theoretically for the film geometry within
mean-field theory [40], within Gaussian approximation [41],
and with MC simulations in a three-dimensional film geometry
in the presence of a single chemical step [22]. The critical
Casimir force in the presence of a patterned substrate has
also been studied in the case of a sphere near a planar
wall within the Derjaguin approximation [42,43]. If the
lateral chemical patterns do not consist of stripes with sharp
chemical steps between areas of strong but opposite adsorption
preferences, one faces spatial regions characterized by surface
fields of medium strength. This case has been studied so
far only for laterally homogeneous BC in the presence of
variable boundary fields. This case already gives rise to
interesting crossover phenomena, which have been studied
within mean-field theory [44], by exact calculations in two
spatial dimensions [45,46], and with MC simulations [33,34].

Motivated by the aforementioned experimental results, and
based on previous investigations by two of the authors [22],
here we present a MC study of a three-dimensional lattice
model in the film geometry, representing the Ising UC in
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FIG. 1. (Color online) Film geometry confined by a laterally
homogeneous upper surface and by a lower surface with alternating
stripes of equal width. At both surfaces the spins are fixed. We choose
S+ = S− so that the period P = S+ + S− = 2S+.

the presence of a chemically striped substrate. Moreover, we
compare the universal scaling functions of the critical Casimir
forces obtained from these MC results with the corresponding
mean-field results, which we obtain by generalizing a previous
study [40] and which are valid in d = 4 spatial dimensions. We
employ periodic boundary conditions in the lateral directions
and different BC for the two surfaces confining the slab. To
this end, we consider a film of thickness L confined along
the normal z direction on one side by a surface at which the
order parameter of the fluid exhibits a laterally homogeneous
BC which corresponds either to strong adsorption (+) or to the
so-called ordinary surface transition (o) [4,5]. The other side of
the film is confined by a surface which is periodically patterned
by stripes leading to strong, alternating adsorption preferences
corresponding to (+) or (−) BC, respectively, varying along
the lateral x direction.

Here we focus on stripes of equal width S+ = S− = P/2
corresponding to half of the period P along the x direction,
so that the important geometrical parameter is given by
κ ≡ S+/L, which relates the width of the stripes to the film
thickness (see Figs. 1 and 2). Within the lattice model this
system is realized by either fixing the Ising spins in the upper
surface to +1 or imposing an open boundary by not fixing
them, whereas the lower surface consists of alternating stripes
of equal width, where the spins are fixed to +1 and −1. The
chemical steps separating the stripes are taken to be sharp.

Our results show that, in the limit of stripe widths small
compared to the film thickness, the lower surface effectively
realizes Dirichlet BC. Such BC can also be obtained in the
presence of a surface characterized by a locally random
adsorption preference, such that, on average, there is no
preferential adsorption for one of the two species [47]. Thus
the system reduces for κ → 0 to (+,o) or (o,o) BC, and, in
order to be able to compare with this limiting case, here we
also consider a film in which both surfaces have a laterally
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FIG. 2. (Color online) Film geometry confined by an upper
surface with open BC and by a lower surface with alternating stripes
of equal width with fixed spins.
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FIG. 3. (Color online) Film geometry confined by a laterally
homogeneous upper surface with fixed spins and by a lower surface
with open BC.

homogeneous BC from the outset (see Figs. 3 and 4). This
may provide a novel possibility of studying also symmetry-
preserving BC for simple fluids and binary liquid mixtures
which are difficult to establish experimentally otherwise [16].

In order to extract universal quantities from MC simula-
tions, it is important to take corrections to scaling into account
in order to be able to extrapolate data for systems of finite size
L to the thermodynamic limit L → ∞. In particular, in the
standard three-dimensional Ising model, scaling corrections
are proportional to L−ω, with ω = 0.832(6) [48]. The presence
of nonperiodic boundary conditions, such as in the direction
normal to the film, gives rise to additional scaling corrections,
the leading one being proportional to L−1, which is numeri-
cally difficult to disentangle from the previous one. Following
Refs. [22,28,29,31,33], in order to avoid the simultaneous
presence of these competing corrections, we have studied a
so-called improved model [49], for which the leading scaling
corrections ∝L−ω are suppressed for all observables so that
the correction ∝L−1 becomes the leading one.

This paper is organized such that in Sec. II the finite-size
scaling behavior, as expected for the system under study, is
established. In Sec. III we introduce the lattice model studied
here. In Secs. IV and V we present our MC results for the
critical Casimir force at T = Tc and for the universal scaling
function of the critical Casimir force at T �= Tc, respectively.
The corresponding results obtained within mean-field theory
(d = 4) are presented in Sec. VI and compared with the actual
behavior in d = 3 in Sec. VII. We summarize our main findings
in Sec. VIII. In Appendix A we provide certain important
technical details of the MC simulations. In Appendix B we
report details of the determination of the bulk free-energy
density which is needed in order to compute the critical
Casimir force.

II. FINITE-SIZE SCALING AND CRITICAL
CASIMIR FORCE

In this section we recall the finite-size scaling (FSS)
behavior of a system in the film geometry L × Ld−1

‖ in d
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FIG. 4. Film geometry confined by a lower and an upper surface
both with open BC.

spatial dimensions, which in the thermodynamic limit exhibits
a second-order phase transition at the temperature T = Tc.
Here, we restrict ourselves to the BC described above; a
broader discussion of finite-size scaling for nonperiodic BC
can be found in Ref. [22]. In the following, for the sake of
brevity, we do not analyze separately the FSS behavior of the
BC illustrated in Figs. 3 and 4, where there are no stripes. These
two cases can be obtained by taking the limit κ = S+/L → 0
in the BC of Figs. 1 and 2, respectively.

In the critical region and in the absence of an external bulk
field, the free-energy density F per kBT of the system (i.e., the
free energy divided by LLd−1

‖ kBT ) can be decomposed into a
singular contribution and a nonsingular background term,

F(t,L,L‖,S+) = F (s)(t,L,L‖,S+) + F (ns)(t,L,L‖,S+),

(1)

where t ≡ (T − Tc)/Tc is the reduced temperature. The
nonsingular background F (ns) can be further decomposed
into specific geometric contributions, corresponding to bulk,
surface, and line contributions, which are analytic functions
of t . The singular part of the free-energy density is instead a
nonanalytic function of at least one of its variables. According
to renormalization-group (RG) theory [50] and neglecting
corrections to scaling, in spatial dimension d the singular
part of the free-energy density obeys the following scaling
property:

F (s)(t,L,L‖,S+) = 1

Ld
f (τ,κ,ρ) , τ ≡ t(L/ξ+

0 )1/ν,

κ ≡ S+/L, ρ ≡ L/L‖, (2)

where ν is the critical exponent of the bulk correlation length
and ξ+

0 is its nonuniversal amplitude,

ξ (t → 0±) = ξ±
0 |t |−ν . (3)

The function f (τ,κ,ρ) is a universal scaling function, i.e., it
depends only on the bulk universality class and on the BC
applied at the two surfaces. As in Ref. [40], the scaling ansatz
in Eq. (2) generalizes the one for laterally homogeneous BC
by an additional dependence on the scaling variable κ . In
the following we neglect the dependence on the aspect ratio
ρ ≡ L/L‖ because here we are interested in the film geometry
with L‖ � L. In this limit and for the BC considered here, the
dependence on the aspect ratio is expected to be negligible.
Our MC data support this observation (see also the discussion
in Sec. IV below). The bulk free-energy density fbulk(t) is
defined as

fbulk(t) ≡ lim
L,L‖→∞

F(t,L,L‖,S+) (4)

and it is independent of the BC. Analogously to Eq. (1), fbulk(t)
can also be decomposed into a singular contribution and a
nonsingular background,

fbulk(t) = f
(s)
bulk(t) + f

(ns)
bulk(t), (5)

with f
(s)
bulk(t → 0) ∝ |t |dν = |t |2−α , where α is a standard bulk

critical exponent. The excess free energy f (s)
ex is defined as the

remainder of the free-energy density F (s) after subtraction of
the bulk contribution,

f (s)
ex (t,L,L‖,S+) ≡ F (s)(t,L,L‖,S+) − f

(s)
bulk(t). (6)
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PARISEN TOLDIN, TRÖNDLE, AND DIETRICH PHYSICAL REVIEW E 88, 052110 (2013)

According to Eq. (2) it exhibits the following scaling behavior:

f (s)
ex (t,L,L‖,S+) = 1

Ld

(τ = t(L/ξ+

0 )1/ν,κ = S+/L).

(7)

The critical Casimir force FC per area L
(d−1)
‖ and per kBT

is defined as

FC ≡ −∂
(
Lf (s)

ex

)
∂L

∣∣∣∣
t,L‖,S+

. (8)

Due to Eqs. (2)–(8), the critical Casimir force exhibits the
following scaling behavior:

FC(t,L,L‖,S+) = 1

Ld
θ (τ = t(L/ξ+

0 )1/ν,κ = S+/L), (9)

where θ (τ,κ) is a universal scaling function. At the critical
point one has τ = 0, so that at criticality the force is given by

FC(t = 0,L,L‖,S+) = 1

Ld

 (κ) , (10)

with


(κ) ≡ θ (0,κ). (11)

In the limit of very narrow stripes, i.e., κ → 0, the
character of a striped surface effectively approaches the one
for a homogeneous one with (o) BC. Dirichlet BC are also
obtained with an inhomogeneous surface characterized by a
locally random adsorption preference, such that on average the
fraction of the surface which prefers one component is equal to
the fraction which prefers the other one [47]. Thus, the scaling
functions of the critical Casimir force approach the ones for
the critical Casimir force acting on two homogeneous surfaces
with (+,o) or (o,o) BC, respectively, i.e.,

θ+/o(τ,κ)
κ→0−−→

{
θ(+,o)(τ ), (+) vs stripes for L � S+,

θ(o,o)(τ ), (o) vs stripes for L � S+,

(12)

where the subscript +/o indicates the corresponding type of
BC at the homogeneous surface.

On the other hand, for very broad stripes, i.e., κ → ∞,
the limiting behavior for the case of a homogeneous (+) wall
opposite to a striped surface (Fig. 1) is given by the average
of the two homogeneous cases for (+,+) and (+,−) BC,
respectively. In this case, i.e., for κ � 1 the system effectively
corresponds to the one for isolated chemical steps opposite
to a homogeneous wall, connecting regions which are almost
laterally homogeneous and correspond to (+,−) or (+,+) BC.
As discussed in detail in Ref. [22], every isolated chemical step
represents a line defect which gives rise to a contribution to
the scaling function of the critical Casimir force proportional
to ρ = L/L‖. In the present case we have Nsteps = L‖/S+ of
such steps. Thus, assuming additivity, which holds for well
separated chemical steps, i.e., for S+ � L, the contributions
from the nearly isolated chemical steps to the scaling function
of the critical Casimir force per unit area vanish ∝Nstepsρ =
κ−1. The asymptotic behavior for L 	 S+ of the universal
scaling function for the critical Casimir force for a (+) wall vs
a striped surface is therefore given by

θ+(τ,κ � 1) = 1

2
[θ(+,+)(τ ) + θ(+,−)(τ )] + E(τ )

2κ
, (13)

FIG. 5. (Color online) A section of the ground-state configuration
at y = const for the BC of Fig. 1 and for the BC of Fig. 2 with κ < 2;
the ground-state configuration is translationally invariant along the y

direction. The dashed line at the alternating bottom denotes the layer
of fixed spins. An equivalent configuration is obtained by fixing the
spins to S = −1 in the region above the alternating bottom layer of
fixed spins.

where E(τ ) represents the universal contribution of a pair
of individual chemical steps, which has been determined in
Ref. [22]; the factor 2 in the denominator of the last term of
Eq. (13) has been chosen as to match with the notation of
Ref. [22].

Similarly to Eq. (13), for the case of a (o) wall vs a striped
surface (Fig. 2) θ (τ,κ) approaches

θo(τ,κ � 1) − θ(+,o)(τ ) ∝ κ−1, (14)

because θ(+,o)(τ ) = θ(−,o)(τ ).
For τ < 0, due to the presence of the chemical steps

between the stripes, interfaces form, which separate the
domains of positive and negative order parameter. As will be
discussed below, for the case of a (+) wall opposite to a striped
surface as well as for a (o) wall opposite to a striped surface
and κ < 2, these interfaces align on average parallel to the film
surfaces. In Fig. 5 we illustrate the ground-state configuration
corresponding to these BC. By contrast, for a (o) wall opposite
to a striped surface and κ > 2 the emerging interfaces for
τ < 0 preferentially align perpendicularly to the film surfaces
in order to minimize the interface area. The corresponding
ground-state configuration is illustrated in Fig. 6. As discussed
in Sec. VI below, for the latter case the proportionality constant
in Eq. (14) is determined by contributions from these interfaces
and is given by −Rσ |τ |μ, where Rσ = σ0(ξ+

0 )d−1/(kBTc)
is the universal amplitude ratio for the interfacial tension
σ = σ0|t |μ associated with the spatially coexisting bulk phases
and μ = (d − 1)ν is its critical exponent. Thus, for the limit
τ 	 −1 and κ > 2 the scaling function of the critical Casimir
force between a (o) wall and a striped surface approaches

θo(τ 	 −1,κ > 2) 
 θ(+,o)(τ ) − Rσ

κ
|τ |μ. (15)

FIG. 6. (Color online) Same as Fig. 5 for the BC of Fig. 2 and for
κ > 2.

052110-4



CRITICAL CASIMIR FORCES BETWEEN HOMOGENEOUS . . . PHYSICAL REVIEW E 88, 052110 (2013)

Accordingly, the limits for τ → −∞ and κ → ∞ do not
commute.

III. LATTICE MODEL AND OBSERVABLES

In order to compute the critical Casimir force for a binary
liquid mixture close to its critical demixing point, as in
Ref. [22] we study the so-called improved Blume-Capel model
[51,52] as a representative of the 3D Ising universality class.
It is defined on a three-dimensional simple cubic lattice, with
a spin variable Si on each site i which can take the values
Si = −1, 0, 1. The reduced, dimensionless Hamiltonian for
nearest-neighbor interactions is

H = −β
∑
〈ij〉

SiSj + D
∑

i

S2
i , Si = −1,0,1, (16)

so that the Gibbs weight is exp(−H) and the partition function
is

Z(β,L,L‖) ≡
∑
{C}

exp(−H), (17)

where {C} is the configuration space of the Hamiltonian given
in Eq. (16). We note that the partition function in Eq. (17)
depends implicitly also on the BC (see the discussion below).
In line with the convention used in Refs. [22,31,48,53], in the
following we shall keep D constant, considering it as a part of
the integration measure over {Si}, while we vary the coupling
parameter β, which is proportional to the inverse temperature,
β ∼ 1/T . In the limit D → −∞, one recovers the usual Ising
model, because in this limit any state for which there is an i0

such that Si0 = 0 is suppressed relative to the states {Si = ±1}.
For d � 2, the model exhibits a phase transition at βc = βc(D)
which is second order for D � Dtri and first order for D > Dtri.
The value of Dtri in d = 3 has been determined as Dtri =
2.006(8) in Ref. [54], as Dtri 
 2.05 in Ref. [55], and more
recently as Dtri = 2.0313(4) in Ref. [56].

We consider a three-dimensional simple cubic lattice
Lz × Lx × Ly , with Ly = Lx and periodic BC in the lateral
directions x and y. For the two confining surfaces we employ
the BC shown in Figs. 1–4. The BC illustrated in Fig. 1 are
realized by fixing the spins at the two surfaces z = 0 and
z = Lz − 1, so that there are Lz − 2 layers of fluctuating spins.
The spins at the upper surface z = Lz − 1 are fixed to +1,
and the lower surface z = 0 mimics a patterned substrate, so
that the surface is divided into stripes of equal width s+ and
alternating BC with the spins fixed to +1 or −1, respectively.

Here and in the following all lengths are measured in
units of the lattice constant a. The size Lz indicates the total
number of lattice layers, including eventually the layers of
fixed spins. Therefore the thickness L, the lateral size L‖,
and stripe width S+ are related to the dimensionless lattice
lengths Lz, Lx , and s+ according to L = (Lz − 1)a, L‖ = Lxa,
and S+ = s+a, respectively. For the sake of simplicity, here
and in the following sections (IV and V), we employ a
slightly different definition of the scaling variables τ and
κ . We consider τl ≡ t(Lz/ξ

+
0l )

1/ν and κl ≡ s+/Lz, where
ξ+

0l = ξ+
0 /a is the dimensionless nonuniversal amplitude of

the correlation length on the lattice, measured in units of
the lattice constant. Accordingly, we also redefine the aspect
ratio as ρl ≡ Lz/Lx . By comparing these new definitions with

the previous ones introduced in Eq. (2), we observe that,
for L → ∞, t(Lz/ξ

+
0l )

1/ν = t(L/ξ+
0 )1/ν + O(1/L), s+/Lz =

S+/L + O(1/L), and Lz/Lx = L/L‖ + O(1/L). Therefore,
the FSS limit, i.e., the limit Lz → ∞ at fixed τl , κl , as well
as the limit of vanishing aspect ratio ρl → 0, are unaltered by
these new definitions. In order to avoid a clumsy notation, in
the following we omit the index l.

Here we consider the limit of a vanishing aspect ratio ρ =
Lz/Lx → 0, which is obtained via extrapolation by computing
the critical Casimir force for three different aspect ratios ρ < 1
(see the discussion in the following sections). As discussed at
the end of Sec. II, for the BC illustrated in Fig. 1, in the limit
ρ → 0 the subsequent limit κ ≡ s+/Lz → ∞ corresponds to
the presence of an isolated chemical step. In such a geometry,
the isolated chemical step gives rise to a line defect which, in
turn, results into a linear aspect ratio dependence of the critical
Casimir force. In the limit of vanishing aspect ratio the force
reduces to the mean value of the force for homogeneous (+,+)
and (+,−) BC, for which the two surfaces display the same
(respectively, opposite) adsorption preference [22] [compare
with Eq. (13)]. In the opposite limit κ → 0, the lower surface
is expected to effectively realize Dirichlet BC [compare the
upper part of Eq. (12)]. Such BC can also be obtained by
considering a surface at which the spins are randomly fixed
to +1 or −1 with equal probability; this mimics a surface
with a random local adsorption preference, with on average no
preferential adsorption for one of the two species [47]. In order
to analyze the limit κ → 0, as a reference system we study a
film geometry Lz × Lx × Lx with periodic BC in the lateral
directions x and y, fixed spins at the surface z = Lz − 1, and
open BC on the lower surface, so that there are Lz − 1 layers
of fluctuating spins. This geometry is illustrated in Fig. 3. In
the following, we shall denote this BC as (+,o).

In addition, we consider the three-dimensional film geom-
etry Lz × Lx × Lx with periodic BC in the lateral directions
x and y, with fixed spins at the lower surface z = 0 and open
BC at the upper surface, so that there are Lz − 1 layers of
fluctuating spins. For the lower surface z = 0 we employ a
pattern such that the surface is divided into alternating stripes
of equal width s+ with the spins fixed to either +1 or −1.
This geometry is illustrated in Fig. 2. Two interesting limiting
cases arise from this geometry. In the limit of large stripes,
i.e., for κ = s+/Lz → ∞ and for vanishing aspect ratio, the
lower surface effectively realizes an isolated chemical step. In
analogy with the results of Ref. [22], in this limiting case the
critical Casimir force is the mean value of the force for (+,o)
and (−,o) BC, which corresponds to a film geometry where
one of the confining surface implements Dirichlet BC, and the
other surface exhibits a homogeneous adsorption preference
for one of two components of the fluid. In the absence of
an external bulk magnetic field these two BC are equivalent.
Therefore we conclude that in the limit κ = s+/Lz → ∞ and
for vanishing aspect ratio, the critical Casimir force for the BC
of Fig. 2 reduces to the force for the (+,o) BC illustrated in
Fig. 3 [compare with Eq. (14)].

In the opposite limit κ → 0, the lower surface effectively
realizes Dirichlet BC, so that the system reduces to a film
geometry with Dirichlet BC on both surfaces [compare with
the lower part of Eq. (12)]. In order to analyze this limit,
as a reference system we consider here a three-dimensional
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film geometry Lz × Lx × Lx with periodic BC in the lateral
directions x and y and open BC at both surfaces, so that there
are Lz layers of fluctuating spins (see Fig. 4). In the following
we shall denote this film BC as (o,o).

For the lattice model corresponding to Eq. (16), the scaling
behavior discussed in Eqs. (2), (7), and (9) is valid only up
to contributions due to corrections to scaling. We distinguish
two types of scaling corrections: nonanalytic and analytic
ones. The nonanalytic corrections are due to the presence of
irrelevant operators. In this case, in Eq. (2), additional scaling
field contributions arise, which are characterized by negative
RG dimensions. In the FSS limit, i.e., for Lz → ∞, t → 0
at fixed ξ/Lz, this results in the following expression for the
singular part of the free-energy density F (s) in the absence of
external bulk fields:

F (s)(t,L = a(Lz − 1),L‖ = aLx,S+ = as+)

= 1

Ld
z

⎡⎣f (τ,κ,ρ) +
∑
i,k�1

Lkyi

z gi (τ,κ,ρ)

⎤⎦ , (18)

where yi < 0, i � 1, are the RG dimensions of the irrelevant
operators and gi are smooth functions which are universal
up to a normalization constant. The leading correction is
given by the operator that has the least negative dimension.
This is usually denoted by ω, so that the leading scaling
corrections are ∝L−ω

z . For the standard three-dimensional
Ising model one has ω = 0.832(6) [48]. In a family of
models characterized by an irrelevant parameter λ, it can
occur that for a certain choice of λ the amplitude of the
leading correction-to-scaling term ∝L−ω

z vanishes. In these
so-called improved models, the observed scaling corrections
usually decay much more rapidly, i.e., as L−ω2

z with ω2 =
1.67(11) according to Ref. [57] and ω2 
 1.89 according to
Ref. [58] for the three-dimensional Ising universality class.
This scenario holds for the Blume-Capel model described by
Eq. (16), where D is an irrelevant parameter for D < Dtri.
At D = 0.656(20) [48] the model is improved. In the present
work we fix D = 0.655, which is the value of D used in
most of the recent simulations of the improved Blume-Capel
model [31,33,36,48]. For this value of the reduced coupling
D the model is critical for β = βc = 0.387 721 735(25) [48].
The presence of two confining surfaces can in general give
rise to additional nonanalytic scaling corrections due to the
presence of surface irrelevant operators. In particular, the
symmetry-breaking BC considered here generate odd-parity
irrelevant surface operators, the leading one being the cubic
operator; in a field-theoretic approach, such an irrelevant
perturbation corresponds to a surface φ3 term [59]. According
to the results of Ref. [59], the correction-to-scaling exponent
due to this surface operator is ωw = ε + O(ε2), in 4 − ε spatial
dimensions. We are not aware of a quantitatively reliable
determination of the RG dimension of such an irrelevant
operator. Previous numerical studies [22,31,33,36], as well
as the results which we present here, have not detected the
presence of such scaling corrections.

Another type of scaling corrections is provided by so-called
analytic scaling corrections, which can stem from various
sources. Nonlinear terms in the expansion of the scaling field τ

[60] result in scaling corrections ∝L
−1/ν
z . Analytic corrections

can also be due to the boundary conditions: BC which are not
periodic in all directions induce additional corrections, which
are proportional to L−1

z . It was first proposed in Ref. [61], in the
context of studying surface susceptibilities, that such scaling
corrections can be absorbed by the substitution Lz → Lz + c,
where c is a nonuniversal, temperature-independent length.
Recently, this property has been checked numerically in
Refs. [28,62,63] for the XY model with free surfaces, in
Ref. [31] for the Ising model with homogeneously fixed surface
spins, and in Refs. [22,33] for the Ising model with laterally
inhomogeneous surfaces.

Here we study the critical Casimir force using the improved
Blume-Capel model according to Eq. (16). On the basis
of the above discussion, for such a model the leading
scaling corrections are expected to be proportional to L−1

z .
Furthermore, assuming that also in this case in leading order
such a scaling correction can be absorbed by the substitution
Lz → Lz + c, Eq. (9) is replaced by

FC(t,L = a(Lz − 1),L‖ = aLx,S+ = as+)

= 1

(Lz + c)3
θ

(
t

(
Lz + c

ξ+
0l

)1/ν

,
s+

Lz + c

)
. (19)

In the case of laterally homogeneous BC in Figs. 3 and 4, the
dimensionless quantity c (such that ca is a length) enters only
via the volume factor and via the scaling variable τ . Scaling
corrections to Eq. (19) are expected to decay as ∝L−ω2

z (with
ω2 = 1.67(11) [57] or ω2 
 1.89 [58], see above).

We introduce the reduced energy density E(β,Lz,Lx,s+) in
units of −kBT , which is used in order to compute the critical
Casimir force,

E(β,Lz,Lx,s+) ≡ 1

V

〈∑
〈ij〉

SiSj

〉
, (20)

where V ≡ LzL
2
x is the total number of spins and 〈. . . 〉 denotes

the thermal average. (Note that, according to Eq. (16), − ∂H
∂β

has no contribution ∼∑
i S

2
i .) The reduced free-energy density

F (β,Lz,Lx,s+) is defined as

F (β,Lz,Lx,s+)

≡ 1

V
ln

(
Z(β,L = a(Lz − 1),L‖ = aLx)
Z(0,L = a(Lz − 1),L‖ = aLx)

)
. (21)

Thus F (β,Lz,Lx,s+) is the free energy per spin and in units
of −kBT . It is normalized such that F (β = 0,Lz,Lx,s+) = 0.
With this normalization one has

F (β,Lz,Lx,s+) =
∫ β

0
dβ ′E(β ′,Lz,Lx,s+). (22)

The relation between F(t,Lz,Lx,s+) and the reduced free-
energy density F (β,Lz,Lx,s+) defined in Eq. (21) is given by

F (β,Lz,Lx,s+)

= −F(t,L = a(Lz − 1),L‖ = aLx,S+ = as+)

+F(t → ∞,L = a(Lz − 1),L‖ = aLx,S+ = as+).

(23)
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Finally, the reduced bulk free-energy density Fbulk(β) is
defined by taking the thermodynamic limit of Eq. (21),

Fbulk(β) = lim
Lz,Lx→∞

F (β,Lz,Lx,s+). (24)

IV. CRITICAL CASIMIR AMPLITUDE AT Tc

In order to determine the critical Casimir force at Tc, we
follow the approach introduced in Ref. [26] and also used
in Refs. [22,27,34], which we briefly describe here. For two
reduced Hamiltonians H1 and H2 associated with the same
configuration space {C} we construct the convex combination
H(λ)

H(λ) ≡ (1 − λ)H1 + λH2, λ ∈ [0,1]. (25)

This Hamiltonian H(λ) leads to a free energy F (λ) in units of
kBT .1 Its derivative is

∂F (λ)

∂λ
=

∑
{C}

∂H(λ)
∂λ

e−H(λ)∑
{C} e−H(λ)

. (26)

Combining Eqs. (25) and (26) we can determine the free-
energy difference as

F (1) − F (0) =
∫ 1

0
dλ

∂F (λ)

∂λ
=

∫ 1

0
dλ〈H2 − H1〉λ, (27)

where 〈H2 − H1〉λ is the thermal average of the observable
H2 − H1 with the statistical weight exp (−H(λ)). For every λ

this average is accessible to standard MC simulations. Finally,
the integral appearing in Eq. (27) is performed numerically,
yielding the free-energy difference between the systems
governed by the Hamiltonians H2 and H1, respectively.

We apply Eq. (27) with H1 as the Hamiltonian of the lattice
Lz × Lx × Lx with the BC illustrated in Figs. 1–4, and H2

as the Hamiltonian of the lattice (Lz − 1) × Lx × Lx plus a
completely separated two-dimensional layer of noninteracting
spins governed by the reduced Hamiltonian of Eq. (16) with
β = 0, so that both Hamiltonians share the same configuration
space. This layer can be inserted into the film by varying the
coupling (1 − λ)β with its neighboring planes between 0 and
β. With this we evaluate the following quantity:

I (β,Lz,Lx,s+) ≡ 1

L2
x

∫ 1

0
dλ〈H2 − H1〉λ. (28)

By using the definitions of the excess free energy [Eq. (6)] and
of the critical Casimir force [Eq. (8)] one finds [22]

I (β,Lz,Lx,s+)

= Fbulk(β)

+FC

(
t,L = a

(
Lz − 3

2

)
,L‖ = aLx,S+ = as+

)
,

(29)

where corrections ∝L−2
z have been neglected. In computing

the critical Casimir force, the derivative in Eq. (8) is imple-
mented by a finite difference between the free energies of a

1Note that the free energy F (λ) in units of kBT differs from the
reduced free-energy density F (β,Lz,Lx,s+) defined in Eq. (21).

film of thickness L = a(Lz − 1) and of a film of thickness
L − a = a(Lz − 2), so that the resulting critical Casimir force
corresponds to the intermediate thickness a(Lz − 3/2). This
choice ensures that in the FSS limit no additional scaling
corrections ∝L−1

z are generated [22]. By inserting Eq. (19)
into Eq. (29) we obtain the following scaling form for
I (β,Lz,Lx,s+):

I (β,Lz,Lx,s+) = Fbulk(β)
1(

Lz − 1
2 + c

)3 θ

×
⎛⎝t

(
Lz − 1

2 + c

ξ+
0

)1/ν

,
s+

Lz − 1
2 + c

⎞⎠ .

(30)

At the bulk critical temperature Eq. (30) turns into

I (βc,Lz,Lx,s+)

= Fbulk(βc) + 1

(Lz − 1/2 + c)3



(
s+

Lz − 1/2 + c

)
. (31)

Equation (31) can be rewritten as

I (βc,Lz,Lx,s+) = Fbulk(βc)+ 1

(Lz − 1/2 + c′)3



(
κ = s+

Lz

)
+O

(
L−3

z

(
c

Lz

)2
)

, (32)

with c′ given by

c′ = c +
(

c − 1

2

)
κ

3
(κ)

∂
(κ)

∂κ
. (33)

In a series of MC simulations, we have evaluated the quantity
I (βc,Lz,Lx,s+) for lattice sizes Lz = 8, 12, 16, 24, 32, and 48
with the BC illustrated in Fig. 1 for κ = 1/4, 1/2, 1, 2, and 3 as
well as with the BC of Fig. 3, which corresponds to the limit
κ → 0. We have also computed I (βc,Lz,Lx,s+) for lattice
sizes L = 8, 12, 16, 24, and 32 with the BC illustrated in Fig. 2
for κ = 1/4, 1/2, 3/4, 1, 2, and 3 as well as with BC of Fig. 4,
which corresponds to the limit κ → 0. Certain important
details of the simulations are reported in Appendix A. Since
we are interested in the film geometry, which corresponds
to the limit of a vanishing aspect ratio ρ = Lz/Lx , we have
simulated every BC for three aspect ratios ρ � 1/8, such that
there is always an even number of stripes in the lower confining
surface. An odd or noninteger number of stripes would give
rise to a line defect which in turn, for ρ → 0, would result into
an unwelcome linear aspect-ratio dependence [22]. Within the
present numerical accuracy, for ρ � 1/8 the MC data do not
show a visible dependence on ρ. Thus we consider our results
obtained for nonvanishing ρ � 1/8 as a reliable extrapolation
to the limit ρ → 0. A posteriori, this also justifies the scaling
ansatz in Eqs. (7)–(11), in which the dependence on ρ has been
neglected. We have simulated the Blume-Capel model with
the Hamiltonian given in Eq. (16), choosing the values of the
reduced couplings as D = 0.655 and βc = 0.387 721 735. This
corresponds to the critical point of the improved model [48],
for which the Eq. (32) is expected to describe correctly the
corrections to scaling. We have fitted our MC data directly
to the quantity I (βc = 0.387 721 735,Lz,Lx,s+) in Eq. (32),

052110-7
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TABLE I. Fit of our MC data at Tc for the BC of Figs. 3 and 1, to Eq. (32) with free parameters Fbulk(βc), 
+(κ = s+/Lz), and c′. Lmin is
the smallest lattice size taken into account for the fit. DOF denotes degrees of freedom. The quoted error bars of the fit parameters correspond
to one standard deviation; see, e.g., Ref. [64] for a discussion of the method of minimum χ 2 data fitting.

Lmin κ → 0 : (+,o) κ = 1/4 κ = 1/2

8 χ 2/DOF = 8.7/15 χ 2/DOF = 12.3/15 χ 2/DOF = 16.1/15
Fbulk(βc) = 0.0757369(2) Fbulk(βc) = 0.0757369(1) Fbulk(βc) = 0.0757375(1)


+ = 0.492(5) 
+ = 0.622(5) 
+ = 0.845(5)
c′ = 0.36(3) c′ = −0.48(2) c′ = −0.44(1)

12 χ 2/DOF = 8.0/12 χ 2/DOF = 7.5/12 χ 2/DOF = 13.2/12
Fbulk(βc) = 0.0757368(2) Fbulk(βc) = 0.0757368(2) Fbulk(βc) = 0.0757375(2)


+ = 0.495(10) 
+ = 0.634(11) 
+ = 0.84(1)
c′ = 0.40(9) c′ = −0.39(7) c′ = −0.44(5)

16 χ 2/DOF = 7.4/9 χ 2/DOF = 6.5/9 χ 2/DOF = 7.7/9
Fbulk(βc) = 0.0757368(2) Fbulk(βc) = 0.0757368(2) Fbulk(βc) = 0.0757372(2)


+ = 0.50(2) 
+ = 0.63(2) 
+ = 0.88(2)
c′ = 0.4(2) c′ = −0.39(15) c′ = −0.23(12)

leaving Fbulk(βc), 
, and c′ as free parameters. In order to
control a possible systematic error due to subleading scaling
corrections, we have repeated the fits discarding the smallest
lattices. For the BC of Figs. 1 and 3, and for various values of
ratio κ , in Tables I and II we report the fit results as a function
of the smallest lattice size Lmin taken into account for the fit.
In Tables III and IV we report the corresponding fit results for
the BC of Figs. 2 and 4.

Inspection of the the fit results tells that we generally reach
a good χ2/DOF ratio and the results appear to be stable with
respect to the choice of Lmin. (DOF is the number of degrees
of freedom, i.e., the number of statistically independent points
minus the number of fit parameters.) While there is a clear
dependence of the Casimir amplitude 
 on κ , as expected the
critical bulk free-energy density Fbulk(βc) does not exhibit a
dependence on κ . Furthermore, the latter is in agreement with
the value Fbulk(βc) = 0.075 736 8(4) reported in Ref. [31]. By
conservatively judging the variation of the resulting 
 with
respect to Lmin, from Tables I and II we obtain the following
estimates for the BC shown in Figs. 1 and 3:

(+) vs stripes: 
+(κ = 0) = 
(+,o) = 0.492(5), (34)


+(κ = 1/4) = 0.62(1), (35)


+(κ = 1/2) = 0.85(1), (36)


+(κ = 1) = 1.383(4), (37)


+(κ = 2) = 1.875(6), (38)


+(κ = 3) = 2.053(5). (39)

The subscript + indicates the homogeneous (+) BC on one
of the confining surfaces. These amplitudes are shown in
Fig. 7. As expected, for decreasing values of κ the critical
Casimir amplitude 
(κ) approaches the corresponding value
for (+,o) BC. In particular, 
+(κ = 1/4) is only 26% larger
than 
+(0). In the opposite limit κ → ∞, 
+(κ) approaches
the critical Casimir amplitude for a single chemical step:

+(κ → ∞) = 2.386(5) [22]. In particular, 
+(κ = 3) is
only 14% smaller than 
+(κ → ∞). Moreover, according to
Eq. (13), the approach to the limit κ → ∞ is determined by the
contribution of the chemical steps. Using the results 
+(κ →
∞) = 2.386(5) and E(τ = 0) = −2.04(3) of Ref. [22], we can
obtain the estimates 
+(κ = 1/2) = 0.35(3), 
+(κ = 1) =
1.37(2), 
+(κ = 2) = 1.876(9), and 
+(κ = 3) = 2.046(7).
While we observe a large deviation between the estimate for
κ = 1/2 and the actual value reported in Eq. (36), surprisingly
the estimate of Eq. (13) agrees rather well even for the

TABLE II. Same as Table I for κ = s+/Lz = 1, 2, 3 and for the BC of Fig. 1.

Lmin κ = 1 κ = 2 κ = 3

8 χ 2/DOF = 8.9/15 χ 2/DOF = 12.7/15 χ 2/DOF = 9.0/15
Fbulk(βc) = 0.0757370(1) Fbulk(βc) = 0.0757366(1) Fbulk(βc) = 0.0757369(1)


+ = 1.383(4) 
+ = 1.875(5) 
+ = 2.053(4)
c′ = −0.264(8) c′ = −0.138(8) c′ = −0.097(5)

12 χ 2/DOF = 4.8/12 χ 2/DOF = 11.0/12 χ 2/DOF = 7.0/12
Fbulk(βc) = 0.0757369(2) Fbulk(βc) = 0.0757367(2) Fbulk(βc) = 0.0757369(2)


+ = 1.387(8) 
+ = 1.869(8) 
+ = 2.048(8)
c′ = −0.25(2) c′ = −0.15(2) c′ = −0.11(2)

16 χ 2/DOF = 4.2/9 χ 2/DOF = 7.1/9 χ 2/DOF = 5.0/9
Fbulk(βc) = 0.0757369(2) Fbulk(βc) = 0.0757368(2) Fbulk(βc) = 0.0757369(2)


+ = 1.394(12) 
+ = 1.86(1) 
+ = 2.05(1)
c′ = −0.22(5) c′ = −0.18(4) c′ = −0.09(3)
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TABLE III. Same as Table I for the BC of Figs. 4 and 2.

Lmin κ → 0 : (o,o) κ = 1/4 κ = 1/2

8 χ 2/DOF = 6.9/12 χ 2/DOF = 7.5/12 χ 2/DOF = 13.7/12
Fbulk(βc) = 0.07573678(9) Fbulk(βc) = 0.0757369(1) Fbulk(βc) = 0.0757369(1)


o = −0.030(2) 
o = −0.039(2) 
o = −0.054(1)
c′ = 0.8(2) c′ = 0.02(9) c′ = 0.07(6)

12 χ 2/DOF = 3.7/9 χ 2/DOF = 3.8/9 χ 2/DOF = 11.0/9
Fbulk(βc) = 0.0757368(1) Fbulk(βc) = 0.0757370(2) Fbulk(βc) = 0.0757369(2)


o = −0.030(5) 
o = −0.045(5) 
o = −0.053(3)
c′ = 0.7(7) c′ = 0.5(4) c′ = 0.0(3)

16 χ 2/DOF = 3.2/6 χ 2/DOF = 2.5/6 χ 2/DOF = 7.5/6
Fbulk(βc) = 0.0757368(3) Fbulk(βc) = 0.0757369(3) Fbulk(βc) = 0.0757368(3)


o = −0.035(15) 
o = −0.038(10) 
o = −0.05(1)
c′ = 1.5 ± 2.3 c′ = −0.2 ± 1.2 c′ = −0.1(9)

relatively small value of κ = 1. In Fig. 7, too, we compare
our results with the estimate of the right-side side of Eq. (13),
finding a nice agreement for κ � 1. In the whole sampled
region, 
+(κ) is a positive and monotonically increasing
function of κ so that the critical Casimir force at Tc is always
repulsive. The critical Casimir amplitude 
+(0) = 
(+,o) for
(+,o) BC can be compared with, e.g., the amplitude 
(+,+)

resulting from homogeneous BC (+,+), for which the two
confining surfaces exhibit the same adsorption preference.
Within mean-field theory one has 
(+,o)/
(+,+) = −1/4 [23].
According to the MC results of Ref. [31], one has 
(+,+) =
−0.820(15) so that the ratio between the two amplitudes is

(+,o)/
(+,+) = −0.60(1). Thus the fluctuations produce a
significant dependence of this ratio on the spatial dimension.
Accordingly, one concludes that in d = 3 mean-field theory
captures only the qualitative behavior of the critical Casimir
force. Our result for 
+(κ = 0) = 
(+,o) = 0.492(5) is in
agreement with the result 
(+,o) = 0.497(3) of Ref. [33], while
it is not compatible with the earlier results [23] 
(+,o) =
0.33 and 0.416 obtained with the ε-expansion method and
0.375(14) obtained by MC simulations [23].

Inspecting the results reported in Tables III and IV, we
obtain the following estimates for the BC shown in Figs. 2
and 4:

(o) vs stripes: 
o(κ = 0) = 
(o,o) = −0.030(5), (40)


o(κ = 1/4) = −0.039(6), (41)


o(κ = 1/2) = −0.053(3), (42)


o(κ = 3/4) = −0.062(4), (43)


o(κ = 1) = −0.032(3), (44)


o(κ = 2) = 0.18(1), (45)


o(κ = 3) = 0.287(5), (46)

where the subscript o indicates the homogeneous Dirichlet
BC on one of the two confining surfaces. These amplitudes
are shown in Fig. 8. As expected, for decreasing values
of κ the critical Casimir amplitude 
o(κ) approaches the
corresponding value 
(o,o) for (o,o) BC, while in the opposite
limit κ → ∞ it approaches slowly the value 
(+,o) for
(+,o) BC. Moreover, the critical Casimir amplitude changes
sign: it is attractive for κ = 0 and repulsive for κ → ∞.
Inspecting Fig. 8, we can estimate that 
o(κ) vanishes for
κ ≈ 1.2. Remarkably, different than 
+(κ) in Fig. 7, the
critical Casimir amplitude 
o(κ) is not monotonic but exhibits
a minimum close at κ ≈ 3/4. Our result for 
o(κ = 0) =

(o,o) = −0.030(5) is in agreement with the recent MC
result 
o(κ = 0) = 
(o,o) = −0.028(16) of Ref. [34] and also
with the earlier results [23] 
o(0) = −0.0278 and −0.0328

TABLE IV. Same as Table III for κ = s+/Lz = 3/4, 1, 2, 3 and for the BC of Fig. 2.

Lmin κ = 3/4 κ = 1 κ = 2 κ = 3

8 χ 2/DOF = 9.9/12 χ 2/DOF = 8.0/12 χ 2/DOF = 13.1/12 χ 2/DOF = 12.0/12
Fbulk(βc) = 0.07573679(9) Fbulk(βc) = 0.0757370(1) Fbulk(βc) = 0.0757365(2) Fbulk(βc) = 0.0757368(2)


o = −0.062(2) 
o = −0.032(2) 
o = 0.185(4) 
o = 0.287(4)
c′ = 0.37(6) c′ = 1.3(2) c′ = 0.34(5) c′ = 0.36(4)

12 χ 2/DOF = 7.4/9 χ 2/DOF = 7.9/9 χ 2/DOF = 8.9/9 χ 2/DOF = 8.3/9
Fbulk(βc) = 0.0757367(1) Fbulk(βc) = 0.0757370(2) Fbulk(βc) = 0.0757369(3) Fbulk(βc) = 0.0757366(3)


o = −0.058(4) 
o = −0.032(5) 
o = 0.173(9) 
o = 0.292(10)
c′ = 0.1(2) c′ = 1.2(7) c′ = 0.04(20) c′ = 0.45(14)

16 χ 2/DOF = 4.4/6 χ 2/DOF = 3.4/6 χ 2/DOF = 5.6/6 χ 2/DOF = 6.6/6
Fbulk(βc) = 0.0757369(3) Fbulk(βc) = 0.0757367(2) Fbulk(βc) = 0.0757361(6) Fbulk(βc) = 0.0757363(6)


o = −0.07(1) 
o = −0.021(8) 
o = 0.20(3) 
o = 0.30(2)
c′ = 0.9(8) c′ = −0.8 ± 1.7 c′ = 0.9(6) c′ = 0.65(35)
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PARISEN TOLDIN, TRÖNDLE, AND DIETRICH PHYSICAL REVIEW E 88, 052110 (2013)

Θ(+,ο)

κ = ∞
↑

↑

t = 0

0 0.5 1 1.5 2 2.5 3 3.5
κ = s+/ Lz

0

0.5

1

1.5

2

2.5
Θ

+(κ
)

(+) vs stripes

FIG. 7. (Color online) Critical Casimir force amplitude 
+(κ) =
θ+(0,κ) [see Eqs. (9) and (11)] at Tc for the BC of Figs. 1 and 3
and for κ = S+/L = 0, 1/4, 1/2, 1, 2, and 3 as inferred from
Tables I and II [see Eqs. (34)–(39)]. The amplitude at κ = 0 is
obtained for the (+,o) BC illustrated in Fig. 3. The dashed line
provides a smooth interpolation. The dashed-dotted line gives the
estimate of the right-hand side of Eq. (13). These lines saturate
at 
+(κ → ∞) = (
(+,+) + 
(+,−))/2 = 2.386(5) [22], which is
indicated by the dotted line. The omitted statistical error bars defined
as one standard deviation and calculated with the standard Jackknife
method (see, e.g., Ref. [65]) are comparable with the symbol size.

obtained with the ε-expansion method and 
o(0) = −0.023(4)
obtained by MC simulations [23].

Finally, we can test the validity of Eq. (33) by studying the
behavior of the scaling corrections in the limit κ → 0. To this
end, we consider the BC of Fig. 1 and we take the limit of
κ → 0 at fixed Lz, i.e., s+ → 0 in Eq. (31). Assuming that

κ = ∞
↑

t = 0

0 0.5 1 1.5 2 2.5 3 3.5
κ = s+/ Lz

-0.1

0

0.1

0.2

0.3

0.4

0.5

Θ
ο(κ

)

(o) vs stripes

FIG. 8. (Color online) Critical Casimir force amplitude 
o(κ) =
θo(0,κ) [see Eqs. (9) and (11)] at Tc for the BC of Figs. 2 and 4 and
for κ = S+/L = 0, 1/4, 1/2, 3/4, 1, 2, 3, as inferred from Tables III
and IV [Eqs. (40)–(46)]. The amplitude at κ = 0 is obtained for the
(o,o) BC illustrated in Fig. 4. The dashed line provides a smooth
interpolation. This line saturates at 
(κ → ∞) = 
(+,o) = 0.492(5)
[Eq. (34)], which is indicated by the dotted line. The comparison with
the thin full line tells that 
o(κ) changes sign at κ ≈ 1.2. The omitted
statistical error bars are comparable with the symbol size.


(κ) is analytic close to κ = 0, we obtain

I (βc,Lz,Lx,s+ → 0) = Fbulk(βc) + 
+(0)

(Lz − 1/2 + c)3
.

(47)

A comparison of Eq. (47) with Eq. (32) gives c′(κ → 0) = c, a
result which could also be obtained by taking the limit κ → 0
in Eq. (33). On the other hand, in the limit s+ → 0, the system
effectively realizes the BC shown in Fig. 3 but still in the
presence of only Lz − 2 fluctuating layers of spins (as for the
BC in Fig. 1 with s+ > 0). According to the convention fixed
in Sec. III, this corresponds to (+,o) BC for a film with Lz − 1
layers and thickness a(Lz − 2),

I (βc,Lz,Lx,s+ → 0)

= I(+,o)(βc,Lz − 1,Lx)

= Fbulk(βc) + 
(+,o)

(Lz − 1 − 1/2 + c′
(+,o))

3
, (48)

where the subscript (+,o) denotes explicitly the BC of Fig. 3
with the convention of Sec. III and where we have used
Eq. (32). By comparing Eq. (47) with Eq. (48) we finally
obtain

lim
κ→0

c′(κ) = c = c′
(+,o) − 1. (49)

We can extract c′
(+,o) = 0.36(4) from the fit results of Table I

for the (+,o) BC. This result is in marginal agreement
with the result c′

(+,o) = 0.42(2) of Ref. [33] in which the
same improved Blume-Capel Hamiltonian as the present one
has been simulated.2 Using Eq. (49) we obtain c = c′(κ →
0) = −0.64(4). Inspecting the fit results of Tables I and II,
we observe that c′(κ) varies smoothly with κ and indeed
approaches the value of c = −0.64(4) for κ → 0. According
to the results of Eqs. (34)–(39) and due to Fig. 7, the coefficient
multiplying (c − 1/2) in Eq. (33) is positive. This would
imply that, due to c − 1/2 < 0, c′(κ) < c. However, within
the current numerical precision such an inequality appears to
be not satisfied by the fit results reported in Tables I and II.
This suggests that the ansatz of Eq. (19) does not completely
capture the scaling corrections for the striped BC. One may
need to modify in addition the second scaling argument of θ

in Eq. (19), for example, by replacing L with L + aN , with
N an integer number depending on the convention used to
measure the film thickness or, more generally, by introducing
a second nonuniversal length. A similar analysis of the scaling
corrections for the BC shown in Fig. 2 is beyond the presently
available numerical precision.

V. THE CRITICAL CASIMIR FORCE SCALING
FUNCTION

The determination of the critical Casimir force off criticality
has been performed using essentially the algorithm introduced
in Ref. [25] and also used in Refs. [28–31,33]. By using the

2Notice that, due to a different convention, the value Ls = 1.42(2)
of the extrapolation length reported in Eq. (58) of Ref. [33] is related
to c′

(+,o) via Ls = 1 + c′
(+,o).
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definition of the critical Casimir force given in Eq. (8), the
definition of the reduced free-energy density given in Eq. (21),
and the definition of the reduced bulk free energy density given
in Eq. (24), the critical Casimir force can be expressed as

FC

(
t,L = a

(
Lz − 3

2

)
,L‖ = aLx,S+ = as+

)
= 
F (β,Lz,Lx,s+) − Fbulk(β), (50)

where


F (β,Lz,Lx,s+) ≡ LzF (β,Lz,Lx,s+)

− (Lz − 1)F (β,Lz − 1,Lx,s+). (51)

Analogous to Eq. (29), in Eq. (50) the derivative in Eq. (8) is
implemented by a finite difference between the free energies
of a film of thickness L = a(Lz − 1) and of a film of thickness
L − a = a(Lz − 2), so that the resulting critical Casimir force
corresponds to the intermediate thickness a(Lz − 3/2). This
choice ensures that in the FSS limit no additional scaling
corrections ∝L−1

z are generated [22]. The reduced temperature
t is given by t = (βc − β)/β, with βc = 0.387 721 735(25)
[48]. As in Eq. (29), in Eq. (50) corrections ∝L−2

z have
been neglected. We note that 
F (β,Lz,Lx,s+) → Fbulk(β)
for Lz,Lx → ∞, which is in accordance with the vanishing
of the critical Casimir force in the limit of large volume.
Another useful relation follows from a comparison of Eqs. (50)
and (29):


F (β,Lz,Lx,s+) = I (β,Lz,Lx,s+). (52)

Instead of using the coupling parameter approach as in Sec. IV,
here we compute the free-energy differences by sampling the
internal energy density E(β,Lz,Lx,s+) for various values of
β and for film thicknesses a(Lz − 1) and a(Lz − 2). Then

F (β,Lz,Lx,s+) is computed by a numerical integration of
Eq. (22). For doing so, it is very useful to observe that it is
not necessary to perform the integral in full between β ′ = 0
and β ′ = β [31]. In fact, by inserting a lower cutoff β0 into
the integral appearing in Eq. (22) one can effectively compute
the difference between the critical Casimir force and the force
at the inverse temperature β0. This implies that the critical
Casimir force can be expressed as

FC

(
t,L = a

(
Lz − 3

2

)
,L‖ = aLx,S+ = as+

)
= 
F̂ (Lz,Lx,s+; β,β0) − [Fbulk(β) − Fbulk(β0)]

+FC

(
t0,L = a

(
Lz − 3

2

)
,L‖ = aLx,S+ = as+

)
,

(53)

with


F̂ (Lz,Lx,s+; β,β0)

≡ Lz

∫ β

β0

dβ ′E(β ′,Lz,Lx,s+)

− (Lz − 1)
∫ β

β0

dβ ′E(β ′,Lz − 1,Lx,s+), (54)

and t0 = (βc − β0)/β0 as the reduced temperature correspond-
ing to the lower cutoff β0. Since for L = a(Lz − 1) � ξ

the critical Casimir force vanishes ∝ exp(−L/ξ ), one can

neglect the last term in Eq. (53) if the correlation length ξ

at the lower cutoff β0 is much smaller than L = a(Lz − 1).
Moreover, due to Eqs. (52) and (50), the last term in Eq. (53)
can be calculated independently with the coupling parameter
approach described in Sec. IV. This provides a precise
control of any approximation involving the cutoff β0. We did
compute FC(t0,L = a(Lz − 3

2 ),L‖ = aLx,S+ = as+) within
the aforementioned coupling parameter approach and we have
taken into account this term in Eq. (53) whenever it is relevant
within the statistical precision. The numerical integrations
in Eq. (54) have been carried out according to Simpson’s
rule. Certain technical details are reported in Appendix A.
Finally, the determination of the critical Casimir force on the
basis of Eq. (53) requires the knowledge of the reduced bulk
free-energy density Fbulk(β) which is independent of the BC.
We have determined it via MC simulations of lattices size L3

z

with Lz = 24–256 and periodic BC. In Appendix B we report
certain details of this computation, which is important for a
successful determination of FC .

Along these lines we have computed the critical Casimir
force for lattice thickness Lz = 8, 12, 16, and 24 with the BC
shown in Figs. 1 and 3 as well as for κ = 0, 1/2, 1, 2, and 3.
As in Sec. IV we have considered three aspect ratios for each
value of Lz and κ; accordingly, we have taken ρ = 1/8, 1/12,
and 1/16 for κ � 2, as well as ρ = 1/12, 1/18, and 1/24 for
κ = 3. We have checked that for these small values the data
are independent of ρ within the statistical accuracy. Therefore
we expect that our results capture the limit ρ → 0.

In the present case, for t �= 0 it is not easy to subtract the
scaling corrections because according to Eq. (19) a part of
the scaling corrections ∝1/Lz stem from the dependence on
Lz of the second scaling argument of θ . This holds even if
the scaling ansatz of Eq. (19) does not completely capture
the 1/Lz scaling corrections. In fact, the nonuniversal length
c′, defined in Eq. (33) and extracted from the fits reported in
Tables I and II, shows a small but significant dependence on κ ,
which would be absent if scaling corrections were independent
of κ . In Ref. [22] a similar problem was encountered in the
MC investigation of the critical Casimir force in the presence
of an isolated chemical step. There the dependence of the force
on the aspect ratio contributes to the scaling corrections. Since
this dependence on ρ was found to be linear, in that case it was
possible to eliminate the scaling corrections via a first-order
Taylor expansion of the critical Casimir force in ρ. As Figs. 7
and 8 show, in the present case the critical Casimir force
does not follow such a simple dependence on κ . Furthermore,
the possible values of κ which can be sampled by the MC
simulations are constrained by the fact that the stripe width s+
has to be an integer number. Due to these technical difficulties,
here we implement an approximate scheme for the removal of
the scaling corrections. For every value of κ we extract the
nonuniversal length c′ from the fits of Tables I and II. Then
we employ the substitution Lz → Lz + c′. Since such a sub-
stitution cannot completely eliminate the scaling corrections
∝L−1

z , the resulting scaling function θ (τ,κ) exhibits a residual
scaling correction ∝ψ(τ,κ)/Lz, where ψ(τ,κ) is a scaling
function. By construction, we have ψ(0,κ) = 0. Thus, since
ψ is a continuous function, there is an interval around τ = 0
in which the residual scaling corrections are negligible with
respect to the numerical precision. Furthermore, for κ → 0
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and κ → ∞ this method becomes exact and, thus, we have
ψ(τ,κ → 0) = ψ(τ,κ → ∞) = 0. Therefore, the interval of
validity around τ = 0 is expected to increase as κ is lowered
towards 0 or is increased toward ∞.

In Fig. 9 we show our results for the BC shown in Fig. 3,
corresponding to the limit κ = s+/Lz → 0 of the BC shown in
Fig. 1. In order to normalize the scaling variable τ , one needs
the value of the nonuniversal amplitude ξ+

0l of the correlation
length ξ . From Ref. [31] we infer ξ+

0l = 0.4145(4) in units
of the lattice constant. As for the critical exponent ν, we
use the recent MC result ν = 0.630 02(10) of Ref. [48]. In
Fig. 9 we also compare our results with those of Refs. [33,34].
We observe a perfect agreement with the results of Ref. [33],
which in fact have been obtained by simulating precisely the
same improved Blume-Capel model. The comparison with
the results of Ref. [34] is less satisfactory and reveals a
difference between the curves around the position of their
maximum in the low-temperature phase, i.e., τ < 0. This
difference may be due to the fact that the Ising model simulated
in Ref. [34] suffers from larger scaling corrections than the
improved model used here, which makes the extrapolation of
the FSS limit more difficult. For the BC illustrated in Fig. 1, in
Figs. 10, 11, 12, 13, and 14 we show our results for the scaling
function θ+(τ,κ), for κ = 1/4, 1/2, 1, 2, and 3, respectively.

Inspection of Figs. 9–14 reveals a satisfactory scaling
collapse for the lattice sizes considered here. This supports
the validity of the procedure described above to eliminate
the scaling corrections. In Figs. 12–14 we also compare our
results with the asymptotic estimate given in Eq. (13), which
describes the approach to the limit κ → ∞. For this purpose
we have used the data of Ref. [31] for computing the mean
value [θ(+,+)(τ ) + θ(+,−)(τ )]/2 and the results of Ref. [22] for
the chemical-step contribution E(τ ), as determined therein for
thickness Lz = 12. For κ = 1 (Fig. 12), the estimate of Eq. (13)
agrees well with our results for τ > 0, while for τ < 0 it shows
a systematic deviation from θ (τ,κ = 1). For κ � 2 (Figs. 13
and 14), the chemical-step estimate given in Eq. (13) agrees

κ = 0

(+,o)

-10 -5 0 5 10 15
τ

0

0.1

0.2

0.3

0.4

0.5

θ (+
,ο

)(τ
)

Lz = 8
Lz = 12
Lz = 16
Lz = 24
Ref. [31]
Ref. [32]

FIG. 9. (Color online) The universal scaling function θ(+,o)(τ )
of the critical Casimir force for the BC (+,o) shown in Fig. 3,
corresponding to the limit κ = s+/Lz → 0 of the BC shown in Fig. 1.
Scaling corrections have been subtracted by using c′ = 0.36(4) (see
the main text). We also compare our results with those of Ref. [33]
for L = 16 and of Ref. [34] for L = 20. The omitted statistical error
bars are, apart from τ � −10, comparable with the symbol size.

κ = 1/4
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Lz = 12
Lz = 16
Lz = 24

(+) vs stripes

FIG. 10. (Color online) The universal scaling function θ+(τ,κ)
of the critical Casimir force for the BC shown in Fig. 1 with κ =
S+/L = 1/4 and c′ = −0.48(2). The omitted statistical error bars
are comparable with the symbol size.

very well the MC results throughout the critical region. In
Fig. 15 we show a comparison of the critical Casimir force
for κ = 0, 1/4, 1/2, 1, 2, and 3, as obtained for Lz = 24. We
also compare the present results with the universal scaling
function which describes the critical Casimir force for an
isolated chemical step in the limit of vanishing aspect ratio, as
determined in Ref. [22]. This system corresponds to the limit
κ → ∞ and results in the mean value of the critical Casimir
force for laterally homogeneous (+,+) and (+,−) BC. In the
whole range 0 � κ � ∞ the critical Casimir force is always
repulsive. This is expected because the stripe width for (+) and
for (−) BC are equal and the repulsive critical Casimir force
for (+,−) BC is stronger than the attractive one for (+,+)
BC [27]. In Fig. 15 we also show a comparison with the mean
value of the critical Casimir force for the homogeneous (+,+)
and (+,−) BC, as obtained by MC simulations in Refs. [27,31].

In Fig. 16 we show our results for the (o,o) BC shown
in Fig. 4, corresponding to the limit κ = s+/Lz → 0 of the
BC (o) vs stripes shown in Fig. 2. We also compare our
results with those of Ref. [27] for the approximants (i) and
(ii) presented therein. The approximant (i) agrees with our
results for τ � −6, whereas the approximant (ii) displays

κ = 1/2

-10 -5 0 5 10 15
τ

0

0.2

0.4
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Lz = 8
Lz = 12
Lz = 16
Lz = 24

(+) vs stripes

FIG. 11. (Color online) Same as Fig. 10 for κ = 1/2 and c′ =
−0.44(1).
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κ = 1
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Lz = 16
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FIG. 12. (Color online) Same as Fig. 10 for κ = 1 and c′ =
−0.26(1). The results are compared with the chemical-step estimate
(CS est.) given in Eq. (13).

a systematic deviation from our results. For τ � −6 both
approximants show a disagreement with our results. While the
approximant (ii) displays a small but visible deviation from
our results, the approximant (i) exhibits a larger, systematic
deviation from our results. Such deviations may be due to the
difficulty in extrapolating the FSS limit of the Ising model
used in Ref. [27], which exhibits larger scaling corrections
than the improved model of Eq. (16). For the BC illustrated in
Fig. 2, in Figs. 17, 18, 19, 20, and 21 we show our results for
the scaling function θo(τ,κ), for κ = 1/4, 1/2, 3/4, 1, and 3,
respectively.

The numerical determination of the critical Casimir forces
in the presence of a Dirichlet BC at one of the two confining
surfaces has turned out to be much more involved than the
computation for the BC of Figs. 1 and 3. First, at variance with
the previous cases, we observed the onset of a dependence of
the critical Casimir force on the aspect ratio ρ = Lz/Lx . As
illustrated in the insets of Figs. 16–21, such a dependence on
ρ appears in a narrow interval of τ in the low-temperature
phase. Although small, the differences between the calculated
scaling functions θo(τ,κ) for the three aspect ratios considered

κ = 2
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FIG. 13. (Color online) Same as Fig. 12 for κ = 2 and c′ =
−0.14(1).
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FIG. 14. (Color online) Same as Fig. 12 for κ = 3 and c′ =
−0.10(1).

here is visible and larger than the statistical error bars.3 The
observed dependence on ρ implies the onset of a lateral
correlation length, associated with an ordering process in the
low-temperature phase. In order to understand this point, it is
useful to consider the limit β → ∞, i.e., the ground state of
the model with the BC illustrated in Figs. 2 and 4. For the
BC shown in Fig. 4, it is easy to see that the ground state is a
spatially homogeneous state in which all spins take the same
value. For the BC shown in Fig. 2, besides the homogeneous
state shown in Fig. 5, one can consider also a “striped” state,
in which each spin in the film takes the value corresponding
to the underlying stripe, so that the configuration of the
system consists of columns of cross-sectional area s+ × Lx

and height Lz. In Fig. 6 we illustrate such a configuration.
In view of the periodic BC in the two lateral directions,
the area A of the interface between + and − spins is
given by

A = L2
x

2
, homogeneous state,

(55)

A = Lx

s+
LzLx = L2

x

κ
, striped state.

Thus, at low temperature, the system orders in a homogeneous
state for κ < 2 and in a striped state for κ > 2. As a
function of the parameter κ , the ground state undergoes a
first-order transition at κ = 2. Moreover, for κ = 2, besides the
homogeneous (see Fig. 5) and the striped (see Fig. 6) ground
states, there are other states which have the same (minimal)
energy: such states can be obtained by flipping the value of
the spins in a single column in the striped state illustrated in
Fig. 6. We note that the number of these additional ground
states diverges in the thermodynamic limit. The emergence
of these ground states at κ = 2 gives rise to a sort of glassy
behavior at low temperatures, which results in a considerable

3We note that the error bars shown in Figs. 16–21 are the sum of
the statistical error bars originating from the MC sampling and the
uncertainty in the determination of c′, this last one being the dominant
contribution to the error bars. The dependence on ρ is more clearly
seen in the raw MC data.
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FIG. 15. (Color online) Comparison of the universal scaling
function θ+(τ,κ) for κ = 0, 1/4, 1/2, 1, 2, and 3 as determined
with L = 24. We compare the data also with the scaling function
θ+(τ,κ → ∞) in the limit of vanishing aspect ratio ρ, as obtained in
Ref. [22] with L = 16. The limit κ → ∞ corresponds to the critical
Casimir force between a homogeneous (+) surface and a surface with
an isolated chemical step which, for ρ → 0, results in the mean value
of the critical Casimir force for laterally homogeneous (+,+) and
(+,−) BC [22]. We compare the results also with those latter mean
values, which are either extracted from the so-called approximant IV
of Ref. [27] [mv (IV)] or which stem from the results of Ref. [31]
(mv).

technical difficulty in simulating these systems. We leave this
issue for future research.

This lateral ordering process at low temperatures corre-
sponds to a phase transition which occurs in the film geometry
characterized by the BC described by Figs. 2 and 4. This causes
the dependence on the aspect ratio exhibited in Figs. 16–21. We
note that, for the BC corresponding to Figs. 1 and 3, the striped

κ = 0
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Lz = 8, ρ = 1 / 16
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Lz = 12, ρ = 1 / 16
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Lz = 16, ρ = 1 / 12
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Ref. [25] (i)
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- 6 - 5 -4
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FIG. 16. (Color) Universal scaling function θ(o,o)(τ ) of the critical
Casimir force for the BC (o,o) shown in Fig. 4, corresponding
to the limit κ = s+/Lz → 0 of the BC shown in Fig. 2. Scaling
corrections have been subtracted by using c′ = 0.8(2) (see the main
text). We compare our results with those of Ref. [27] obtained from
the approximants (i) and (ii) presented therein and for the film
thickness L = 20. The inset provides a magnification of the resulting
curves close to the minimum of the force, for the largest available
film thickness L = 16 and for the three aspect ratios ρ ≡ Lz/Lx

considered here.

κ = 1 / 4
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FIG. 17. (Color) Universal scaling function θo(τ,κ) of the critical
Casimir force for the BC shown in Fig. 2 with κ = s+/Lz = 1/4
and c′ = 0.02(9). The data points for L = 8 and ρ = 1/8, 1/12 are
hardly visible because they overlap with the other data sets. The inset
provides a magnification of the resulting curves close to the minimum
of the force, for the largest available film thickness L = 16 and for
the three aspect ratios ρ ≡ Lz/Lx considered here.

state illustrated in Fig. 6 is never a ground state. Moreover,
without an external bulk field the presence of a surface
field at the upper surface rounds the transition between the
paramagnetic high-temperature phase and the homogeneous
ground state to a simple crossover. This is in agreement with the
independence of ρ observed in Figs. 9–14. The appearance of a
lateral correlation length breaks the scaling behavior discussed
in Sec. II. On the other hand, inspection of Figs. 16–21 reveals
that the data for the two smallest aspect ratios agree within
the statistical error. Therefore, since one expects a smooth
dependence of the scaling function θo(τ,κ) on ρ, in particular
in the limit of ρ → 0, we can regard our results for the smallest
aspect ratio as a reliable extrapolation of the limit ρ → 0.

Another difficulty in the numerical determination of the
critical Casimir force for the BC shown in Figs. 2 and 4 lies in
the fact that the scaling function θo(τ,κ) exhibits a minimum
in the low-temperature phase which is shifted towards more
negative values of τ upon increasing κ . Thus, in order to
study this important feature of the scaling function, one has
to generate MC data for temperatures lower than the ones
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FIG. 18. (Color) Same as Fig. 17 for κ = 1/2 and c′ = 0.05(8).
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FIG. 19. (Color) Same as Fig. 17 for κ = 3/4 and c′ = 0.37(7).

needed for the BC shown in Figs. 1 and 3. Upon lowering
the temperature the simulations become increasingly difficult
because of the appearance of many metastable states associated
with the aforementioned ground-state phase transition at
κ = 2.

Finally, in order to eliminate the leading scaling corrections,
we have implemented the procedure outlined above. We note
that for the BC shown in Fig. 2 such a method appears to
be less reliable. While for κ � 1/2 and κ = 3 the overall
scaling collapse is good, for κ = 3/4 and for sufficiently
negative values of τ , there is a small but systematic deviation
between the data for lattice size L = 12 and L = 16. The
scaling collapse is even worse for κ = 1; in this case a further
complication seems to be that, apparently, in this case scaling
corrections are stronger (see Table IV).

According to the discussion in Sec. III, for the BC shown in
Fig. 2 in the limit κ → ∞ one expects to recover the BC shown
in Fig. 3. Since for κ = 0 the force is always attractive (see
Fig. 16) and for κ → ∞ the force is repulsive (see Fig. 9), at
a certain intermediate value of κ the force has to change sign.
According to Fig. 8, at criticality this occurs at κ = κ0 ≈ 1.2.
Besides a change of sign of the force as a function of κ there is
also a change of sign as a function of τ . This is nicely illustrated
in Fig. 21, where for κ = 3 the force is found to be repulsive

κ = 1
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Lz = 12, ρ = 1 / 16
Lz = 16, ρ = 1 / 8
Lz = 16, ρ = 1 / 12
Lz = 16, ρ = 1 / 16

(o) vs stripes

FIG. 20. (Color) Same as Fig. 17 for κ = 1 and c′ = 1.3(2).
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interface est.
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FIG. 21. (Color) Same as Fig. 17 for κ = 3 and c′ = 0.36(9).
We also compare our results with the interface estimate given by
the right-hand side of Eq. (15). The scaling function changes sign at
τ = τ0 
 −2.7.

(respectively, attractive) for τ � τ0 (respectively, τ � τ0),
with τ0 ≈ −2.7. This implies that in the scaling regime and
for a given temperature T < Tc, i.e., t = (T − Tc)/Tc < 0
the force is repulsive (respectively, attractive) for L < L0(t)
[respectively, L > L0(t)], with L0(t) = ξ0l(τ0/t)ν . Therefore
L = L0(t) is a mechanically stable point of equilibrium for
the critical Casimir force which can be sensitively tuned by
varying the reduced temperature. This can be exploited for
levitation purposes [43]. In Fig. 21 we also compare our
result with the interface estimate, i.e., the right-hand side of
Eq. (15), which is expected to hold for κ > 2 and τ 	 −1. To
this end, we employ the estimate of the universal amplitude
ratio Rσ = 0.377(11) [66]. The interface estimate is in nice
agreement with our MC results for τ � −3.5.

In principle, the determination of the full scaling function
of the critical Casimir force at κ = κ0 ≈ 1.2 would be of
particular interest. According to the discussion in Sec. III,
due to κo < 2 the scaling function θo(τ,κ0) is expected to
develop a minimum for τ < 0 and to vanish for τ → ±∞.
Therefore, if τ = 0 is the only zero of θo(τ,κ0), the function
θo(τ,κ0) must have a positive maximum for τ > 0; in the
presence of additional zeros beside the one at τ = 0, the scaling
function θo(τ,κ0) may exhibit additional stationary points.
Unfortunately, the study of such an interesting case is beyond
the current technical capacities. On one hand, we note that for
τ > 0 and within the available numerical precision the scaling
function for the value of κ closest to κo, i.e., θo(τ,κ = 1), is
hardly distinguishable from 0. Thus the possible stationary
points of θo(τ,κ0) for τ > 0 and for τ < 0 close to τ = 0
are expected to be undetectable within the presently available
precision. Moreover, the minimum in the low-temperature
phase for κ = κ0 is expected to be shifted towards a more
negative value of τ with respect to the corresponding minimum
for κ = 1; this fact could lead to further technical difficulties,
because lower temperatures have to be investigated in order
to study the critical Casimir force close to this minimum. On
the other hand, it is even technically impossible to simulate
the present lattice Hamiltonian for a generic value of κ .
This is so because all lattice lengths Lz, Lx , and s+ must
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FIG. 22. (Color online) Comparison of the universal scaling
function θo(τ,κ) for κ = 0, 1/4, 1/2, 3/4, 1, and 3 for the BC (o) vs
stripes shown in Fig. 2, as determined with L = 16 and the smallest
aspect ratio ρ available. We compare these data also with the scaling
function θo(τ,κ → ∞) = θ(+,o)(τ ), as obtained in Fig. 9 with L = 24.
For further discussions see the main text.

be integer numbers. Even so, the need of studying several
values of Lz together with the limited computational resources,
further constraints the (rational) values of κ which can
be analyzed.

In Fig. 22 we show a comparison of the scaling function
θo(τ,κ) of the critical Casimir force for the BC shown in
Fig. 2 for κ = 0, 1/4, 1/2, 3/4, 1, and 3 as determined with
L = 16 and with the smallest aspect ratio ρ available. We
also compare these results with the Casimir scaling functions
for the BC (+,o) shown in Fig. 3, which corresponds to
the limit κ → ∞. Figure 22 suggests that the approach of
the limit κ → ∞ is somehow singular. Apparently, for every
finite value of κ , the force becomes attractive for sufficiently
negative values of τ and exhibits a minimum which deepens
and shifts to more negative values of τ as κ is increased.
Simultaneously, the zero of θo(τ,κ) shifts towards lower values
of τ .

VI. MEAN-FIELD THEORY

Within the field-theoretic approach, bulk and surface critical
phenomena of the Ising universality class are described by the
standard Landau-Ginzburg-Wilson fixed-point Hamiltonian
given by [4,5,67]

H[φ] =
∫

V

ddr

{
1

2
(∇φ)2 + τ̃

2
φ2 + u

4!
φ4

}
+

∫
∂V

d (d−1)r

{
c(r)

2
φ2 − h1(r)φ

}
, (56)

where φ(r) is the spatially varying order parameter describing
the critical medium, which completely fills the volume V

bounded by the boundaries ∂V in d-dimensional space. In
Eq. (56) τ̃ ∝ t and u > 0 is a coupling constant providing
stability for t < 0; c(r) is the surface enhancement, which,
within mean-field theory, can be interpreted as an inverse
extrapolation length of the order parameter field, and h1(r) is

an (external) surface field acting on the order parameter at the
boundaries. Here, we consider surface fields and enhancements
which can differ for the two confining surfaces and which
may also vary along one lateral direction of a single surface.
In the strong adsorption limit, i.e., (±) BC, corresponding
to the so-called normal surface UC, the surface behavior
is described by the renormalization-group fixed-point values
h1 → ±∞, and the order parameter diverges close to the
surface: φ|∂V → ±∞. The ordinary surface UC corresponds
to the fixed-point values {c = ∞,h1 = 0} and a vanishing
order parameter φ|∂V = 0, i.e., Dirichlet (o) BC. The film
geometry considered here is bounded by surfaces at z = 0
and at z = L with either homogeneous (+) or (o) BC or
periodically alternating (+)/(−) BC of width S+ = P/2 along
the lateral x direction (see Figs. 1–4).

The Hamiltonian given in Eq. (56) is minimized
by the mean-field order parameter profile m ≡ u1/2〈φ〉:
δH[φ]/δφ|φ=u−1/2m = 0. Renormalization group arguments
tell that mean-field theory (MFT) provides the correct universal
properties of critical phenomena for spatial dimensions above
the upper critical dimension d � duc = 4 (up to logarithmic
corrections in d = duc). Mean-field theory provides the lowest-
order contribution to universal properties within an expansion
in terms of 4 − d = ε. Thus, universal properties in d = 4 can
be determined from MFT, up to two independent nonuniversal
amplitudes appearing in the description of bulk critical
phenomena (two-scale universality [4,5]): the amplitude B

of the bulk order parameter 〈φ〉 = ±B|t |β for t < 0, where
β(d = 4) = 1/2, and the amplitude ξ+

0 of the correlation
length [see Eq. (3), where ν(d = 4) = 1/2]. Since here we
are dealing only with vanishing or diverging values of h1

and c, within MFT all quantities appearing in Eq. (56)
can be expressed in terms of these amplitudes: τ̃ = t(ξ+

0 )−2

and u = 6(Bξ+
0 )−2. Using the stress tensor method [23] the

mean-field universal scaling functions of the critical Casimir
forces at the upper critical dimension duc = 4 can be inferred
directly from the MFT order parameter profiles up to an overall
prefactor ∝u−1.

For the laterally homogeneous (+,+), (+,−), (+,o),
or (o,o) BC the MFT order parameter profiles across the
film [23,68] and the corresponding universal scaling func-
tions of the critical Casimir force are known analytically
[23,69]. Accordingly, the critical Casimir amplitude 
(+,+) =
8K4(1/

√
2)(Bξ+

0 )2 
 −47.2682(Bξ+
0 )2, where K(k) is the

complete elliptic integral of the first kind [23]. Note that, within
MFT, the scaling functions θ(+,−)(τ ) = −4θ(+,+)(−τ/2) [70],
and θ(+,o)(τ ) = θ(+,−)(4τ )/16 [23] are directly related to
each other, so that at Tc 
(+,−) = −4
(+,+) and 
(+,o) =
−
(+,+)/4. In contrast to the case d = 3, the MFT scaling
function for (o,o) BC vanishes for τ � 0 [i.e., 
(o,o)(d =
4) = 0] and exhibits a cusplike singularity at its minimum at
τ = −π2 below which θ(o,o)(τ < −π2) = θ(+,+)(τ ) and above
which an analytic expression for θ(o,o) has been derived in
Ref. [69].

In order to obtain the spatially inhomogeneous MFT order
parameter profile for the film geometry involving chemically
striped surfaces, we have minimized H[φ] numerically using
a quadratic finite element method. Here, we extend previous
investigations [40] to negative values t < 0 and to a broader
range of geometrical parameters. The corresponding scaling
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functions for the critical Casimir force are obtained via the
stress tensor [23].

The boundary condition for the diverging order parameter
profile at those parts of the surface where there are (+) or
(−) BC can be implemented numerically only approximately
via a short-distance expansion of the corresponding profile for
the semi-infinite systems [4,5]. Thus, the MFT data presented
below are subject to a numerical error which contains also
the uncertainties due to the fineness of the numerical mesh.
We estimate the numerical error for the data presented below
to be less than 1% or ±0.004 × |
(+,+)| if the latter is
bigger.

A. Critical Casimir amplitude at Tc

In Fig. 23 the amplitude of the critical Casimir force

+(κ) = θ+(0,κ) [see Eqs. (9) and (11)] for a striped surface
opposite to a homogeneous surface with (+) BC is shown
as obtained numerically within MFT in units of |
(+,+)|. We
have been able to calculate the values of 
+(κ) numerically
within the range κ = 0.1 to κ = 80. As discussed above,
for κ → 0 the Casimir amplitude approaches the value for
(+,o) BC shown in Fig. 3, i.e., 
(+,o), so that for relatively
narrow stripes the chemically striped wall effectively mimics
a wall with (o) BC. On the other hand, for κ → ∞ the
Casimir amplitude approaches the average value of the Casimir
amplitudes for (+,+) and (+,−) BC, i.e., 
+(κ → ∞) =
(
(+,+) + 
(+,−))/2 = − 3

2
(+,+), whereas 
+(κ) monotoni-
cally interpolates between these two limits.

0.1 1 10 100
κ = S+ / L

0

0.5

1

1.5

Θ
+(κ

) /
 |Θ

(+
,+

)|

1.5 - 0.525 κ−1

(+) vs. stripes

(Θ(+,+)+ Θ(+,−)) / | 2Θ(+,+)|

Θ(+,ο) / |Θ(+,+)|

t = 0

FIG. 23. (Color online) Reduced critical Casimir force amplitude

+(κ) [Eq. (11)] in units of |
(+,+)| for the BC shown in Fig. 1
as obtained within mean-field theory. For κ → 0 the Casimir
amplitude approaches the value for (+,o) BC shown in Fig. 3,
i.e., 
(+,o)/|
(+,+)| = 1

4 , indicated by the lower red dotted line. For
large stripes, 
+(κ → ∞)/|
(+,+)| approaches the average value
of the reduced Casimir amplitudes for (+,+) and (+,−) BC, i.e.,
(
(+,+) + 
(+,−))/|2
(+,+)| = 3

2 shown as upper blue dotted line.
For κ � 1 the behavior of the Casimir amplitude 
+(κ)/|
(+,+)|
approaches the function 3

2 − 5
4 α+κ−1 (see the black dashed line

and the main text). From a least-squares fit we have obtained
α+ = 0.420(4). Compare Fig. 7, where 
(+,o)/|
(+,+)| = 0.60(1) and

+(κ → ∞)/|
(+,+)| 
 2.91(5).

For κ � 1, according to Eq. (13), we find for the critical
Casimir amplitude


+(κ � 1)


 
(+,o) +
(


(+,+) + 
(+,−)

2
− 
(+,o)

)(
1 − α+

κ

)
= − 
(+,+)

(
3

2
− 5

4
α+κ−1

)
, (57)

where the proportionality constant α+ is related to the scaling
function E(τ ) according to E(0) = −α+(
(+,+) + 
(+,−))
and by using a least-squares fit it has been determined within
MFT as α+ = 0.420(4). In three spatial dimensions, using the
results (
(+,+) + 
(+,−))/2 = 2.386(5) and E(0) = 2.04(3)
of Ref. [22], we obtain α+ = 0.427(7), in nice agreement with
the MFT result.

Figure 24 shows the reduced critical Casimir force ampli-
tude 
o(κ) in units of |
(+,+)| for the case of a striped surface
opposite to a surface with a homogeneous (o) BC (see Figs. 2
and 4). Similarly to Fig. 23, 
o(κ) monotonically interpolates
between the limiting values for κ → 0 and κ → ∞, i.e.,

(o,o)/|
(+,+)| = 0 and 
(+,o)/|
(+,+)| = 1/4, respectively.
For narrow stripes the amplitude 
o(κ → 0) approaches its
limit already for larger values of κ than in the case of a
homogeneous (+) BC shown in Fig. 23. This indicates that
the strength of the tendency of a chemically striped surface to
effectively mimic an (o) BC in the limit κ → 0 also depends
on the type of homogeneous BC at the opposing surface of
the film. According to Eq. (14), for κ � 1 the dependence of
the Casimir amplitude 
o(κ) on κ approaches the following

0.1 1 10 100
κ = S+ / L

0

0.1

0.2

Θ
ο(κ

) /
 |Θ

(+
,+

)|

0.25 - 0.214 κ−1

Θ(+,ο) / |Θ(+,+)|

(o) vs. stripes t = 0

FIG. 24. (Color online) Reduced Casimir amplitude 
o(κ)
[Eq. (11)] in units of |
(+,+)| for the BC shown in Fig. 2 as
obtained within MFT. For κ → 0 the Casimir amplitude approaches
monotonically from positive values the limiting value 
(o,o) = 0
shown by the lower green dotted line. According to Eq. (14), for
κ � 1 the reduced Casimir amplitude 
o(κ)/|
(+,+)| approaches
1
4 (1 − αoκ

−1) shown as black dashed line. From a least-squares
fit we have obtained, within MFT, αo = 0.857(9) [Eq. (58)]. For
κ → ∞, 
o(κ)/|
(+,+)| approaches the Casimir amplitude for (+,o)
BC, i.e., 
(+,o)/|
(+,+)| = 1/4 shown as the upper red dotted line.
Compare Fig. 8, where 
o(κ = 0)/|
(+,+)| = 0.037(6) and 
o(κ →
∞)/|
(+,+)| = 0.60(1).
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form:


o(κ � 1) 
 
(o,o) + (
(+,o) − 
(o,o))
(

1 − αo

κ

)
= −
(+,+)

4
(1 − αo κ−1), (58)

where we have determined αo = 0.857(9) via a least-squares
fit.

Whereas the behavior of the Casimir amplitude 
+(κ) for
the case of a homogeneous (+) BC as calculated within MFT
(Fig. 23) is similar to the one obtained from MC simulations
(Fig. 7), the form of 
o(κ) for the case of a homogeneous (o)
BC as obtained within MFT (Fig. 24) is qualitatively different
from the one obtained from MC simulations (Fig. 8). This will
be addressed in more detail in Sec. VII below.

B. Scaling function of the critical Casimir force

The reduced scaling function θ+(τ,κ)/|
(+,+)| [Eq. (9)]
of the critical Casimir force between a chemically striped
surface and a homogeneous surface with (+) BC (Fig. 1) is
shown in Fig. 25 for d = 4 (MFT) and for various values
of κ . For κ → 0, θ+(τ,κ)/|
(+,+)| approaches the scaling
function θ(+,o)(τ )/|
(+,+)|, i.e., the striped surface effectively
mimics a surface with homogeneous (o) BC. On the other
hand, for κ → ∞, the universal scaling function of the critical
Casimir force approaches the average of the scaling functions
for (+,+) and (+,−) BC, i.e., θ+(τ,κ → ∞)/|
(+,+)| =
(θ(+,+)(τ ) + θ(+,−)(τ ))/|2
(+,+)| [Eq. (13)]. For intermediate
values of κ , the scaling functions smoothly and monotonically
interpolate between these limiting cases.

As discussed in Sec. V, the behavior of the universal scaling
scaling function θo(τ,κ) for a striped surface opposite to a
surface with homogeneous (o) BC (Fig. 2) is more complex
than the one in the previous case. Whereas for τ � 0 the scaling
function θo(τ,κ) smoothly interpolates between its limiting

-150 -100 -50 0 50
τ

0

1

2

3

θ +(τ
,κ

) /
 |Θ

(+
,+

)|

8κ

(+) vs. stripes

κ = 3

2

0

1

1/4

1/2

FIG. 25. (Color online) Reduced universal scaling function
θ+(τ,κ)/|
(+,+)| [Eq. (9)] for a striped surface opposite to a surface
with homogeneous (+) BC (Fig. 1), as determined numerically within
MFT for various values of κ . For κ → 0 and κ → ∞, the reduced
scaling functions approach their limiting behaviors θ(+,o)(τ )/|
(+,+)|
[Eq. (12)] and (θ(+,+)(τ ) + θ(+,−)(τ ))/|2
(+,+)| [Eq. (13)], respec-
tively. Compare Fig. 15 by taking into account that there, i.e., in
d = 3, |
(+,+)| = 0.820(15).
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FIG. 26. (Color online) Reduced universal scaling function
θo(τ,κ)/|
(+,+)| of the critical Casimir force for a striped surface
opposite to a surface with homogeneous (o) BC (Fig. 2), as determined
numerically within MFT for various values of κ . We compare the
data also with the reduced scaling functions θ(o,o)(τ )/|
(+,+)| and
θ(+,o)(τ )/|
(+,+)|, which correspond to the limits κ → 0 [Eq. (13)]
and κ → ∞ [Eq. (14)], respectively. For κ < 2 the numerically
obtained MFT scaling functions suggest the occurrence of a cusplike
singularity or a finite jump of θo(τ,κ) at its minimum position τmin.
(Due to the numerical difficulties in determining the thermodynam-
ically stable configuration, both the positions and the depths of
the minima of θo(τ,κ < 2)/|
(+,+)| are affected by an estimated
numerical error of around 10%, which is one order of magnitude
larger than for the remaining data.) For κ > 2 the scaling functions
diverge for τ → −∞ [Eq. (15)]. Compare Fig. 22 by taking into
account that there, i.e., in d = 3, |
(+,+)| = 0.820(15).

behaviors θ(o,o)(τ ) for κ = 0 and θ(+,o)(τ ) for κ → ∞, for
negative values of τ its dependence on κ is nonmonotonic and
involves a phase transition associated with the one at κ = 2
between the ground states of the system [see Eq. (55)]. For
κ < 2 the ground states are spatially homogeneous, which
results in a vanishing value θo(τ → −∞,κ < 2) → 0. The
numerically obtained MFT data shown in Fig. 26 suggest that
the minima of the scaling functions for κ < 2 correspond to
a cusplike singularity or even a finite jump. (Recall that θo

is the scaling function of the critical Casimir force, which is
the derivative of the Casimir interaction.) However, due to the
presence of metastable striped and homogeneous states the
numerics even within MFT is so involved that the present data
suffer from an error of the position of the minimum of around
10%. Moreover, due to using the short-distance expansion
in the numerical implementation of (±) BC, it is technically
difficult to distinguish these metastable states for κ 
 2. For
κ > 2 a striped ground state is stable, which involves a
divergence of the scaling function for τ → −∞ so that for
τ < 0 the transition to its limiting behavior θ(+,o)(τ ) > 0 for
κ → ∞ is somewhat singular. Since at T = Tc, the critical
Casimir amplitude 
o(κ) is non-negative for all values of κ

(see Fig. 24; for κ � 0.5, 
o is vanishingly small), within
MFT the scaling function θo(τ,κ) changes sign for all values
of κ at a certain value τ ∗(κ) < 0.

In the following we consider the contribution of the
interface tension to the critical Casimir force for τ < 0 [see
Eq. (15)]. Near Tc the interface tension varies as σ = σ0|t |μ,
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where μ = (d − 1)ν, so that μ = 3/2 within MFT [66]; σ0

is the corresponding nonuniversal amplitude which forms
the universal amplitude ratio 1

kBTc
σ0(ξ+

0 )(d−1) = Rσ . Within

MFT σ/(kBTc) = 4
√

2u−1(ξ+
0 )−(d−1)|t |μ [71] so that Rσ =

2
3

√
2(Bξ+

0 )2 and Rσ/|
(+,+)| 
 0.020. For the homogeneous
configuration with the interfaces parallel to the film (i.e., for
κ < 2), the interface energy does not contribute explicitly to
the resulting force because the area of these interfaces is not
changed upon varying of the film thickness. (Note, however,
that the order parameter profile across these interfaces does
depend on L.) For the striped configurations, i.e., for κ > 2, in
which the interfaces are oriented perpendicular to the film, the
interface tension dominates the resulting force for large nega-
tive τ (i.e., L large), because approximately the interface along
the z direction has an area Ld−2

‖ L which is proportional to the
film thickness L. Thus, the free energy �i

s of such a single
interface is given by

�i
s = Ld−2

‖ Lσ, (59)

where L‖ is the extension of the system along the invariant
direction(s). For a single such interface this gives rise to a
force along the normal direction,

F i
�,s = −∂�i

s

∂L
= −Ld−2

‖ σ. (60)

For the striped state there are 2 × L‖/P = L‖/S+ such
interfaces so that the total force per area Ld−1

‖ of the film
and per kBTc is

F i
�,tot

kBTcL
d−1
‖

= − 1

S+

σ

kBTc

= − 1

Ld

1

κ
Ld−1 σ0

kBTc

|t |(d−1)ν

= 1

Ld

(
− 1

κ
Rσ |τ |μ

)
, (61)

so that its contribution θo,�(τ,κ) to the universal scaling
function of the critical Casimir force reads [see Eq. (9)]

θo,�(τ,κ) = −Rσ

κ
|τ |μ, (62)

which is attractive and becomes as strong as 
(+,+) for
|τ |μ/κ � 50 within MFT. Accordingly, for the limit τ 	
−1 and κ > 2 the scaling function of the critical Casimir
force approaches the expression given in Eq. (15), which
corresponds to the sum of the homogeneous contribution and
the contribution due to the interfaces oriented perpendicular to
the film surfaces.

Figure 27 compares θo(τ,κ) for a striped surface opposite to
a surface with homogeneous (o) BC as determined numerically
within MFT with the estimate of the corresponding interface
contribution as given in Eq. (15). The dashed lines shown
in Fig. 27 correspond to Eq. (15). They are approached by
the actual scaling functions shown as solid lines in Fig. 27. As
expected, Eq. (15) describes neither the behavior for κ < 2 nor
the one for small absolute values of τ . However, for τ 	 −1
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FIG. 27. (Color online) Reduced universal scaling function
θo(τ,κ)/|
(+,+)| of the critical Casimir force for a striped surface
opposite to a surface with homogeneous (o) BC (Fig. 2), as determined
numerically within MFT (solid lines, same as Fig. 26). For τ 	 −1
and κ > 2 they agree well with the asymptotic expression given
by the right-hand side of Eq. (15) shown as dashed lines (a). For
κ > 2 and large negative values of τ , i.e., τ 	 −10, the attractive
interface contribution −Rσ κ−1|τ |μ/|
(+,+)| [Eq. (62)] dominates the
the scaling function θo(τ,κ)/|
(+,+)| (b).

and κ > 2, the scaling functions agree rather well with their
asymptotic behavior given in Eq. (15).

VII. COMPARISON BETWEEN MEAN-FIELD THEORY
AND MONTE CARLO DATA

A. Critical Casimir amplitude at Tc

Differing from the MC data for d = 3, the universal
scaling functions of the critical Casimir force obtained within
mean-field theory can be determined only up to an unknown
constant amplitude. In order to facilitate nonetheless a valuable
comparison between them, which illustrates the dependence
of the scaling functions on the spatial dimension d, it is useful
to normalize them by an overall amplitude so that the unknown
constant amplitude for the MFT results drops out. In the
previous section we normalized the various scaling functions
by one and the same universal critical Casimir amplitude
|
(+,+)|. Here, we propose an alternative normalization, which
makes use only of that scaling function under consideration
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FIG. 28. (Color online) Comparison of the normalized critical
Casimir amplitude 
̂+(κ) = [
+(κ) − 
+(κ → 0)]/[
+(κ → ∞)
− 
+(κ → 0)] [Eq. (63)] for a homogeneous (+) wall opposite to
a striped wall (Fig. 1) as obtained from MC data (symbols; same as
Fig. 7) and within MFT (solid line; see Fig. 23).

and also normalizes the ratios between the corresponding
critical Casimir amplitudes, which depend on d,


̂(κ) ≡ 
(κ) − 
(κ → 0)


(κ → ∞) − 
(κ → 0)
→

{
0, κ → 0,

1, κ → ∞.

(63)

As discussed in the previous sections, the critical Casimir
amplitude between a chemically striped wall and a homoge-
neous wall with (+) BC interpolates between 
+(κ → 0) =

(+,o) and 
+(κ → ∞) = (
(+,+) + 
(+,−))/2. Figure 28
shows the corresponding normalized critical Casimir ampli-
tude 
̂+(κ) [Eq. (63)] as obtained from MC data (symbols)
as well as obtained within MFT (full line). As can be inferred
from Fig. 28 the behavior of the normalized Casimir amplitude

̂+(κ) as a function of κ as obtained from MFT (d = 4) is
rather similar to the one in d = 3. Thus, for this geometry
the effects of the chemical patterning are captured even
semiquantitatively by MFT.

In contrast, for the case of a homogeneous (o) surface
opposite to a striped one (Fig. 2), we find qualitative differ-
ences. In Fig. 29 the normalized critical Casimir amplitude

̂o(κ) [Eq. (63)], as obtained both in d = 3 and within
MFT, is shown, using the corresponding limits 
o(κ →
0) = 
(o,o) and 
o(κ → ∞) = 
(+,o). Whereas the critical
Casimir amplitude as obtained from MC simulations shows a
nonmonotonic behavior and changes sign as a function of κ , the
mean-field amplitudes are always positive and monotonically
increasing as function of κ . As expected, the absence of
fluctuations within MFT affects the quantitative estimate of
the Casimir amplitude more strongly for the (o) BC than for
the (+) BC.

B. Scaling function of the critical Casimir force

In order to compare also the temperature dependence of
the scaling functions θ+/o(τ,κ) of the critical Casimir force
in d = 3 with their corresponding MFT estimates, it is useful
to not only normalize the amplitude of the latter but also to

T = T c
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FIG. 29. (Color online) Normalized Casimir amplitude 
̂o(κ) =
[
o(κ) − 
o(κ → 0)]/[
o(κ → ∞) − 
o(κ → 0)] [Eq. (63)] for a
homogeneous (o) wall opposite to a striped wall (Fig. 2) as obtained
from MC data (symbols; same as Fig. 8) and within MFT (solid line;
see Fig. 24). In contrast to the behavior shown in Fig. 28, the MFT
results differ qualitatively from the behavior in d = 3. In both cases
MFT overestimates the strength of the force (here for κ � 0.75).

̂o(κ → ∞) attains its limiting value 1 slower than 
̂+(κ → ∞).

rescale them along the τ axis by an overall factor. Although
this is an ad hoc procedure, it has turned out that a suitable
combination of such rescaled MFT results with only partly
available MC data might be a successful method in order to
obtain quantitatively reliable approximations in an extended
range of variables [72]. In the following we use a simple
normalization of the MFT scaling functions θMFT

+/o (τ,κ). In
Figs. 30 and 31 the mean-field scaling functions are rescaled
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FIG. 30. (Color online) Comparison of the scaling functions
θ+(τ,κ) for a wall with a homogeneous (+) BC opposite to a
chemically striped wall (Fig. 1) as obtained for d = 3 and within
MFT, i.e., for d = 4. The symbols are the data obtained from the MC
simulations shown in Fig. 15. The data obtained for κ → ∞ [22]
agree with the mean value of the data for (+,+) and (+,−) BC of
Ref. [31]. The solid lines correspond to the MFT scaling functions
θ̂MFT
+ shown in Fig. 25 which have been rescaled according to Eq. (64)

(see the main text and the caption of Fig. 15). Upon construction, for
κ = ∞ the positions and the heights of the maxima for d = 3 and
d = 4 agree.
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FIG. 31. (Color online) Comparison of the scaling functions

θo(τ,κ) for a homogeneous (o) wall opposite to a striped wall (Fig. 2).
The symbols correspond to the MC data (d = 3) shown in Fig. 22,
whereas the solid lines correspond to the MFT scaling functions
(d = 4) shown in Fig. 26 which have been rescaled according to
Eq. (64). In contrast to Fig. 30, the rescaled MFT scaling functions
differ qualitatively from the corresponding ones in d = 3. Upon
construction, for κ = ∞ the positions and the heights of the maxima
for d = 3 and d = 4 agree.

linearly according to

θ̂MFT
+/o (τ,κ)

≡ θ+/o(τmax,+/o,κ → ∞)

θMFT
+/o

(
τMFT

max,+/o,κ → ∞)θMFT
+/o

(
τMFT

max,+/o

τmax,+/o

τ,κ

)
(64)

so that for κ → ∞ the positions and the values of the maxima
of the rescaled scaling functions θ̂MFT

+/o agree with those of
the MC data. In Eq. (64) τmax,+/o and τMFT

max,+/o correspond
to the position of the maximum of the scaling functions for
κ → ∞ in d = 3 and d = 4, respectively. For the case of a
homogeneous (+) wall opposite to a striped wall we can infer
from the data of Ref. [31] the rough estimates τmax,+ 
 −6.0
and θ+(τmax,+,κ → ∞) 
 3.21 in d = 3 (see the caption
of Fig. 15 and Refs. [22,31]) and τMFT

max,+ 
 −31.960 and
θMFT
+ (τMFT

max,+,κ → ∞) 
 2.7531|
(+,+)| in d = 4 (by taking
the mean value of the scaling functions for (+,+) and (+,−)
BC from Ref. [23]; see Fig. 25). For a homogeneous (o)
wall opposite to a striped wall one has τmax,o = −1.174(10)
and θo(τmax,o,κ → ∞) = 0.564(3) in d = 3 (see Ref. [33]
which agrees with the result shown in Fig. 9) and τMFT

max,o 

−7.0275 and θMFT

o (τMFT
max,o,κ → ∞) 
 0.352 80|
(+,+)| in d =

4 as obtained from Ref. [23].
Figure 30 shows the comparison of the scaling functions of

the critical Casimir force for a homogeneous (+) wall opposite
to a striped wall (see Fig. 1). All MFT curves have been
rescaled by the same factors according to Eq. (64) so that the
position and the height of the maximum of the MFT curve for
κ → ∞ agrees with the one obtained from the MC simulations
in d = 3. As can be inferred from Fig. 30, the rescaled MFT
behaviors as a function of τ show a qualitative agreement with
the corresponding MC results, even for finite values of κ .

In Fig. 31 we compare the scaling functions of the critical
Casimir force for a homogeneous wall with (o) BC opposite
to a striped one (see Fig. 2). The MFT scaling functions have

been rescaled according to Eq. (64). In contrast to the case
shown in Fig. 30, these rescaled MFT scaling functions for
the (o) case shown in Fig. 31 differ qualitatively from the
corresponding behavior in d = 3. Whereas for κ < 2 the MFT
results suggest that the minima of the scaling functions exhibit
a cusplike singularity or a finite jump, the scaling functions
θo(τ,κ) in d = 3 are analytic at their minima. These differences
are analogous to the ones obtained for homogeneous (o,o) BC
at both surfaces [68,69].

VIII. SUMMARY AND OUTLOOK

Within the Ising universality class we have studied the
critical Casimir force for a film of thickness L by using
Monte Carlo (MC) simulations in d = 3 spatial dimensions
and by using mean-field theory. Along the lateral directions
we have employed periodic boundary conditions, whereas
along the normal direction at the two confining surfaces fixed
BC have been imposed. We have considered two cases: a
homogeneous wall with (+) BC opposite to a wall patterned
with alternating chemical stripes of equal width S+ = S− with
(+)/(−) BC (Fig. 1) and a homogeneous wall corresponding
to (o) BC opposite to a striped wall (Fig. 2). In the limit
of very narrow stripes, i.e., κ ≡ S+/L → 0, the striped wall
effectively mimics the behavior of Dirichlet (o) BC, so that
for κ → 0 the system reduces to the homogeneous cases with
(+,o) or (o,o) BC, respectively (see Figs. 3 and 4). In the
opposite limit κ → ∞, i.e., very broad stripes, in the first case
(+; Fig. 1) the critical Casimir force equals the mean value of
the corresponding forces for films with homogeneous (+,+)
and (+,−) boundary conditions at both surfaces, respectively.
On the other hand, in the second case (o; Fig. 2), deep in the
two-phase regime, the corresponding limit is singular.

We have investigated this system by combining MC
simulations and numerical integration as well as by carrying
out numerically the corresponding MFT calculation. We have
employed an improved lattice model, for which the leading
scaling corrections are suppressed. We have obtained the
following main results.

(i) In the finite-size scaling limit the critical Casimir force
FC = L−dθ (τ,κ) per area and in units of kBT is described
[Eq. (9)] by a universal scaling function θ (τ,κ), with the
scaling variables τ ≡ t(L/ξ+

0 )1/ν and κ ≡ S+/L. Here t ≡
(T − Tc)/Tc is the reduced temperature, ξ+

0 is the nonuniversal
amplitude of the correlation length ξ (t → 0+) = ξ+

0 |t |−ν , and
S+ is the width of the stripes on the lower surface. In the
limit κ → 0 the patterned surface attains an effective Dirichlet
BC [Eq. (12)]. Within the range of aspect ratios ρ = L/L‖
(Figs. 1–4) considered here, the MC data do not display a
detectable dependence on ρ. Therefore we regard our results
as the ones corresponding to the extrapolation to the film limit
ρ → 0.

(ii) In the limit of broad stripes, i.e., κ � 1, the ef-
fects of the chemical steps separating the stripes vanish as
∝κ−1 [Eqs. (13) and (14)]. Thus, the total critical Casimir
force effectively approaches the sum of the forces between
the individual stripes and the opposing wall. Accordingly,
the assumption of additivity of the forces (which underlies the
Derjaguin or proximity force approximation) generally holds
for κ → ∞. However, in the case of a homogeneous wall with
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(o) BC opposite to a chemically striped wall, for κ > 2 and
τ 	 −1, due to the formation of interfaces perpendicular to
the film surfaces, the scaling function of the force varies as
∝κ−1|τ |μ ∝ Ld/S+ [for a fixed temperature t < 0; Eq. (15)],
so that FC does not decay for L → ∞ as long as L < S+/2.
Accordingly, for τ → −∞, in the subsequent limit κ → ∞
force additivity breaks down. The two limits κ → ∞ and
τ → −∞ do not commute.

(iii) By using MC simulations for d = 3, we have deter-
mined the critical Casimir amplitude at Tc for various values
of κ , in the case of the BC illustrated in Figs. 1 and 2 as well
as in the limit κ → 0, which corresponds to the BC shown in
Figs. 3 and 4. The results are reported in Eqs. (34)–(37) for
the case of Fig. 1 and in Eqs. (40)–(46) for the case of Fig. 2.
Whereas in the first case involving a homogeneous (+) wall,
the critical Casimir force is always repulsive (Fig. 7), in the
case of a homogeneous (o) wall the critical Casimir amplitude
is nonmonotonic and changes sign as a function of κ (Fig. 8).

(iv) Concerning T �= Tc we have determined the critical
Casimir scaling functions θ+/o(τ,κ) in d = 3 for various
values of κ , as well as in the limit κ → 0. In Figs. 9–14
and 16–21 we show the scaling functions θ+(τ,κ) and θo(τ,κ),
respectively, as determined for various film thicknesses. In
Fig. 15 we compare the universal scaling function θ+(τ,κ) of
the critical Casimir force between a homogeneous wall with
(+) BC and a striped wall (Fig. 1) for various values of κ ,
as determined from systems with the largest film thickness
considered here, i.e., Lz = 24, where Lz = L/a + 1 and a is
the MC lattice constant. We also compare our results with
the universal scaling function for the geometry consisting of
a single chemical step (in the limit of vanishing aspect ratio
studied in Ref. [22]) which corresponds to the limit κ → ∞.
Moreover, using the results of Ref. [22], we have computed
the asymptotic estimate for θ (τ,κ) given in Eq. (13), which
describes the approach to the limit κ → ∞. We observe that
this estimate agrees very well with our MC results for κ � 2, as
well as for κ = 1 and τ > 0. In this case, within the entire range
0 � κ � ∞ the critical Casimir force is always repulsive.

(v) In contrast, for the case of a homogeneous (o) wall
opposite to a striped one (Fig. 2), the scaling function of
the critical Casimir force exhibits a rather different behavior.
As shown in Fig. 22, the critical Casimir force varies
nonmonotonically and changes sign as a function of κ as well
as a function of τ . Moreover, for τ < 0 and for finite values
of κ the force may become much stronger than the ones for
its limiting homogeneous cases (o,o) and (+,o) attained for
κ → 0 and κ → ∞, respectively, which are also shown in
Fig. 22. At κ = 2 the system exhibits a transition of ground
states from homogeneous states for κ < 2 to vertically striped
states for κ > 2. Whereas the scaling functions of the critical
Casimir force for the homogeneous states exhibit a minimum
at finite τ < 0 and vanish for τ → −∞, for κ > 2 the scaling
functions diverge for τ → −∞ as ∝|τ |μ in accordance with
Eq. (15). This is confirmed by the MC results for κ = 3 as
shown in Fig. 21. Thus, the scaling functions of the critical
Casimir force as obtained for this case—belonging to the Ising
bulk universality class—do not vanish for τ → −∞. So far
this peculiar feature is only known for the critical Casimir force
acting in films belonging to the XY bulk universality class and
thus exhibiting Goldstone modes [24–30,69,73].

(vi) In Sec. VI, within MFT we have calculated the
corresponding scaling functions for the critical Casimir force
for the two cases sketched in Fig. 1 and Fig. 2. The results
for the suitably reduced critical Casimir amplitudes are shown
in Figs. 23 and 24 as a function of κ within a wide range
of values. For κ � 1 the numerical MFT results agree with
the asymptotic behaviors of the scaling functions 
+ and 
o

given in Eq. (13) and Eq. (14), respectively, according to which
they approach their corresponding limits for κ → ∞ as κ−1.
The suitably reduced universal scaling functions for τ �= 0, as
obtained within MFT, are shown in Fig. 25 for various values of
κ in the case of a homogeneous surface with (+) BC opposite
to a striped surface. They interpolate smoothly between their
limiting cases and always correspond to a repulsive critical
Casimir force.
(vii) In the case of a homogeneous surface with (o) BC

opposite to a striped surface the reduced MFT scaling functions
are presented in Fig. 26. They show a rich dependence on κ .
For κ < 2 and τ < 0 the scaling function exhibits a minimum,
and our numerical data suggest a cusplike singularity or a finite
jump of the scaling function at its minimum. For κ > 2 the
scaling functions diverge for τ → −∞ and the MFT scaling
functions agree to large extent with the interface estimate given
by Eq. (15) (Fig. 27).
(viii) The comparison of the suitably normalized Casimir
amplitudes as obtained from MC simulations in d = 3 with
the corresponding MFT ones reveals a good agreement for
a homogeneous (+) surface opposite to a striped surface
(Fig. 28) but qualitative differences for the corresponding
(o) case (Fig. 29). Whereas in the latter case the data for
d = 3 show a nonmonotonic behavior and a change of sign
as function of κ , in d = 4 the MFT Casimir amplitudes are
always positive.

(ix) Similarly, as shown in Fig. 30, the behaviors of the
full scaling functions θ+/o(τ,κ) as obtained from simulations
and within MFT plus a suitable rescaling [Eq. (64)] agree
qualitatively to large extent for a homogeneous (+) wall
opposite to a striped one. On the other hand, for a homogeneous
(o) surface opposite to a striped surface the MFT scaling
functions show, even after rescaling, qualitative differences
to the ones obtained via MC simulations (Fig. 31). However,
within MFT as well as in d = 3, in the latter (o) case (Fig. 2)
we always observe a change of sign of the critical Casimir
force from negative values at τ 	 −1 to positive values for
τ > 0. In d = 3 this occurs for κ � 3 and within MFT for all
values of κ � 0.5. At a fixed reduced temperature t , this zero
at τ = τ0 corresponds to a stable distance L0(t) = ξ+

0 (τ0/t)ν

at which the upper plate levitates above the lower plate due
to critical Casimir forces alone. The levitation height L0(t)
varies very sensitively as function of the reduced temperature
t = (T − Tc)/Tc.

(x) The computation of the critical Casimir force requires
to subtract the bulk free-energy density from the free-energy
density of the film. This bulk quantity is independent of the
BC. For d = 3 we have determined it using a combination of
MC simulations and numerical integration (see Appendix B).

The present study is relevant for the critical behavior
of films belonging to the Ising universality class and in
the presence of a chemically structured substrate. This
can be experimentally realized by considering complete
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wetting films of binary liquid mixtures near their critical
end points of demixing and by exposing their vapor phases
to a chemically structured substrate [10,21]. The critical
Casimir forces can be inferred by monitoring the thicknesses
of the wetting films. This realizes the (+) BC versus a
striped surface. The surface fields describe the preferences
of the two species for the confining interfaces of the wetting
films.

Another realization consists of studying directly the force
acting on a colloidal particle immersed in a critical binary
liquid mixture and exposed to a chemically structured sub-
strate, as has been done in Ref. [14]. In this case the normal
critical Casimir force is approximately the one for the film
geometry investigated here, provided the radius of the colloidal
particle is sufficiently large relative to its distance from the
wall. However, near Tc for such a system an additional lateral
critical Casimir force sets in. In Ref. [43] the critical Casimir
force for a sphere in front of a chemically structured substrate
has been studied by means of mean-field theory as well
as in d = 3 by using the Derjaguin approximation. In this
study, it was found that for suitable geometric features of the
stripes on the substrate and in the presence of homogeneous
BC on the spherical colloid levitation is possible even for
τ > 0, i.e., in the homogeneous phase of the solvent. Although
these experimental studies [14,15] are closely related to the
setup studied here, a re-evaluation of the existing data is not
sufficient in order to compare them with the present theoretical
predictions. On one hand, the authors of Refs. [14,15] have
measured only the lateral forces acting on the colloidal
particles and not the normal ones studied here. On the other
hand, in order to effectively mimic the film geometry studied
here, the radius of the colloidal particles should be much
larger than the stripe widths S+ and S−, whereas the length
scales realized in those experimental studies are of the same
size [14,15].

In view of recent MC results for the critical Casimir force
of a sphere in front of a homogeneous wall [36], it would be
very interesting to extend this study by considering a sphere
in front of a chemically structured wall. Besides analyzing
directly the latter experimental setup, this would also provide
the possibility of elucidating the range of validity of the
Derjaguin approximation, which is commonly employed for
curved geometries [42,43].

Here we have determined the critical Casimir force in the
presence of a chemically structured substrate by using MC
simulations in spatial dimension d = 3, and by using mean-
field theory, which holds in d = 4. In order to complement
this spatial dependence and to further probe the relevance
of fluctuations, it would be interesting to investigate the
corresponding system in d = 2, where some exact results
are available [45] and conformal invariance allows one to
determine exactly certain critical properties.

The present study also lends itself to further extensions.
Here we have considered stripes with (+) and (−) BC of equal
widths. A natural extension of the present study would consist
of calculating the critical Casimir force as a function of the
ratio of the widths of the (+) and (−) stripes. Moreover, by
considering two striped surfaces, one can also investigate the
corresponding lateral critical Casimir force. So far the case of
two striped surfaces has been investigated by mean-field theory

for the film geometry [40]; the issue of the lateral force has
been analyzed by mean-field theory and in d = 3 within the
Derjaguin approximation for the sphere-wall geometry [43].

Finally, as mentioned in Secs. V and VI, for the BC shown in
Fig. 2 and for κ = 2, the system displays a rich glassy behavior
at low temperatures. This deserves further investigation.
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APPENDIX A: MONTE CARLO SIMULATIONS

In this appendix we report certain technical details of the
MC simulations we have performed. As explained in Sec. IV,
the evaluation of the Casimir force at Tc has been carried out
in two steps. First, we have determined the thermal average
〈H2 − H1〉λ which appears in Eq. (28). This is obtained by
a standard MC simulation for the ensemble characterized
by the crossover Hamiltonian Hλ defined in Eq. (25). We
have implemented a combination of the standard Metropolis
and Wolff cluster algorithms. Each MC step consists of 1
Metropolis sweep over the entire lattice in lexicographic order
and Lz Wolff single-cluster flips; Lz denotes the total number
of lattice layers, including the surfaces of fixed spins, so that
there are Lz − 2 layers of fluctuating spins in the case of
the BC shown in Fig. 1, Lz − 1 layers in the case of BC
shown in Figs. 2 and 3, and Lz layers in the case of the (o,o)
BC illustrated in Fig. 4. As random number generator we
have used the double precision SIMD-oriented Fast Mersenne
Twister (dSFMT) [74]. Important details of the simulations
performed at the critical temperature are reported in Tables V–
IX. Additional details concerning the implementation of the
simulating algorithm can be found in Ref. [22].

As explained in Sec. V, the determination of the scaling
function for the critical Casimir force has been obtained by
sampling the reduced energy densities E(β ′,Lz,Lx,s+) and
E(β ′,Lz −1,Lx,s+) [see Eq. (54)] followed by carrying out
numerically the integration in Eq. (54) by using Simpson’s
rule. An upper bound of the systematic error due to the
discretization of the integrals can be determined by sam-
pling the fourth derivative of the integrand: by computing
∂4E(β,Lz,Lx,s+)/(∂β4) we have checked that such a system-
atic error is always negligible compared to the statistical errors.
(Since for Lz → ∞ the quantity ∂4E(β,Lz,Lx,s+)/(∂β4)
diverges at the critical point, the number of sampled points has
to increase with Lz.) In Table X we report important details
concerning these simulations associated with Eq. (54). For
each film thickness and BC we have considered the same three
aspect ratios ρ for determining the scaling functions as the
ones used for determining the critical Casimir amplitude (see
Tables V–IX), except for the BC shown in Fig. 2 and κ = 3
(see Table IX and Fig. 21). For the BC shown in Figs. 1 and 3,
we have verified that the sampled reduced energy densities
are de facto independent of ρ. Therefore our results capture
reliably the limit ρ → 0; we have averaged them over the
three aspect ratios considered. Concerning the BC shown in
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TABLE V. The total number Nsteps of MC steps and the number Ntherm of MC steps discarded in order to achieve thermalization as used to
determine the critical Casimir amplitudes for film thicknesses Lz � 24, for aspect ratios ρ = Lz/Lx � 1/8, and for the BC shown in Figs. 1
and 3. Every MC step consists of 1 Metropolis sweep over the entire lattice and Lz Wolff single-cluster flips. Additional details concerning the
simulation algorithm can be found in Ref. [22].

κ → 0 : (+,o) κ = 1/4 κ = 1/2

Lz ρ Nsteps/103 Ntherm/103 Lz ρ Nsteps/103 Ntherm/103 Lz ρ Nsteps/103 Ntherm/103

24 1/8 1200 200 24 1/8 500 100 24 1/8 400 80
24 1/12 800 100 24 1/12 200 40 24 1/12 160 32
24 1/16 600 100 24 1/16 100 20 24 1/16 100 20
32 1/8 3000 500 32 1/8 1500 300 32 1/8 1200 240
32 1/12 1400 200 32 1/12 700 140 32 1/12 500 100
32 1/16 800 100 32 1/16 350 70 32 1/16 250 50
48 1/8 1500 200 48 1/8 1500 200 48 1/8 1500 200
48 1/12 700 100 48 1/12 700 100 48 1/12 700 100
48 1/16 350 50 48 1/16 350 50 48 1/16 350 50

TABLE VI. Same as Table V for κ = 1, 2, 3.

κ = 1 κ = 2 κ = 3

Lz ρ Nsteps/103 Ntherm/103 Lz ρ Nsteps/103 Ntherm/103 Lz ρ Nsteps/103 Ntherm/103

24 1/8 1600 320 24 1/8 1600 320 24 1/12 800 160
24 1/12 1100 220 24 1/12 1100 220 24 1/18 550 110
24 1/16 800 160 24 1/16 800 160 24 1/24 400 80
32 1/8 2600 520 32 1/8 2600 520 32 1/12 1300 260
32 1/12 1700 200 32 1/12 1700 340 32 1/18 850 170
32 1/16 1300 250 32 1/16 1300 200 32 1/24 650 130
48 1/8 1500 200 48 1/8 1500 300 48 1/12 750 150
48 1/12 700 100 48 1/12 700 140 48 1/18 350 70
48 1/16 350 50 48 1/16 350 50 48 1/24 170 34

TABLE VII. Same as Table V for the BC of Figs. 2 and 4.

κ → 0 : (o,o) κ = 1/4 κ = 1/2

Lz ρ Nsteps/103 Ntherm/103 Lz ρ Nsteps/103 Ntherm/103 Lz ρ Nsteps/103 Ntherm/103

24 1/8 12000 1200 24 1/8 12000 1200 24 1/8 12000 1200
24 1/12 8000 800 24 1/12 8000 800 24 1/12 8000 800
24 1/16 6000 600 24 1/16 6000 600 24 1/16 6000 600
32 1/8 32000 600 32 1/8 6000 600 32 1/8 6000 600
32 1/12 16000 300 32 1/12 3000 300 32 1/12 3000 300
32 1/16 8000 150 32 1/16 1500 150 32 1/16 1500 150

TABLE VIII. Same as Table VII for κ = 3/4 and 1.

κ = 3/4 κ = 1

Lz ρ Nsteps/103 Ntherm/103 Lz ρ Nsteps/103 Ntherm/103

24 1/9 12000 120 24 1/8 12000 1200
24 1/12 8000 800 24 1/12 8000 800
24 1/15 6000 600 24 1/16 6000 600
32 1/9 6000 600 32 1/8 6000 600
32 1/12 3000 300 32 1/12 3000 300
32 1/15 1500 150 32 1/16 1500 150
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TABLE IX. Same as Table VII for κ = 2 and 3.

κ = 2 κ = 3

Lz ρ Nsteps/103 Ntherm/103 Lz ρ Nsteps/103 Ntherm/103

24 1/24 600 100 24 1/24 600 60
24 1/36 400 80 24 1/36 400 60
24 1/48 300 60 24 1/48 300 60
32 1/24 150 30 32 1/24 150 20
32 1/36 70 15 32 1/36 70 10
32 1/48 40 8 32 1/48 40 8

Figs. 2 and 4, as discussed in Sec. V, the data exhibit a weak
dependence on the aspect ratio at low temperatures and we
have considered the three aspect ratios separately, i.e., without
taking this average.

Finally, we mention that with the above described sim-
ulation algorithm and for the BC shown in Fig 2, we
occasionally observed the appearance of metastable states at
low temperatures, which cause the thermalization of the run to
be rather long. We have found that this problem can be healed
by starting the simulations with an ordered states.

APPENDIX B: DETERMINATION OF THE BULK
FREE-ENERGY DENSITY

Here we report certain details concerning the determination
of the bulk free-energy density which is needed for calculating
the critical Casimir force [see Eqs. (50) and (53)]. For this
purpose we have simulated the improved Blume-Capel model
described by Eq. (16) for a simple cubic lattice with periodic
BC in all directions and lattice sizes Lz = 24–256. For
this system we have determined the reduced energy density
E(β,Lz) and the reduced free-energy density F (β,Lz) as
defined in Eqs. (20) and (21). For the sake of simplicity,
here we omit the dependence on Lx and s+ because the
lattice considered here has the same size in all directions
and it does not have any surface. Since the aim is to extract
the thermodynamic limit of these quantities from finite-size
results, we recall the expected behavior of the corresponding
finite-size parts. For T �= Tc and Lz � ξ , E(β,Lz) approaches
its infinite-volume limit Ebulk(β) as

δE(β,Lz) ≡ E(β,Lz) − Ebulk(β) ∼ (Lz/ξ )k+1e−Lz/ξ , (B1)

TABLE X. The lowest (β0) and the highest (βmax) inverse
temperatures used for the computation of the scaling functions
associated with the free-energy differences via Eq. (54). The integrals
have been computed numerically using Simpson’s rule, with the
reported intervals 
β between two consecutive points. For each
film thickness we have considered the same three aspect ratios as
the ones used for determining the critical Casimir amplitude (see
Tables V–IX).

Lz β0 βmax 
β

8 0.327721735 0.427721735 0.0005
12 0.327721735 0.427721735 0.0001
16 0.327721735 0.427721735 0.0005
24 0.377721735 0.397721735 0.00002

where k is an integer. Conversely, in the region where ξ ≈ Lz,
one has (α = 2 − 3ν)

δE(β,Lz) = t1−αh̃E (Lz/ξ ) = 1

L
3−1/ν
z

hE (Lz/ξ ) , (B2)

where the scaling function hE(x) is universal up to a prefactor
and hE(x) = O(1) for ξ ≈ Lz. The reduced free-energy
density F (β,Lz) can be obtained by integrating E(β,Lz)
according to Eq. (22). It follows that, for T > Tc and Lz � ξ ,
F (β,Lz) approaches its infinite-volume limit Fbulk(β) as

δF (β,Lz) ≡ F (β,Lz) − Fbulk(β) ∼ (Lz/ξ )k e−Lz/ξ . (B3)

In deriving Eq. (B3), we have used the fact that for T > Tc

the condition Lz � ξ is satisfied throughout the interval of
integration on the right-hand side of Eq. (22). This is not the
case if T < Tc. For T < Tc, Lz � ξ , and by using Eq. (22),
the finite-size correction δF (β,Lz) can be expressed as

δF (β,Lz) ≡ F (β,Lz) − Fbulk(β)

= δF (β → ∞,Lz) +
∫ β

∞
dβ ′δE(β ′,Lz). (B4)

In the second term of the right-hand side of Eq. (B4) one has
Lz � ξ throughout the integration interval. Thus, by using
Eq. (B1), the integral on the right-hand side of Eq. (B4) varies
as (Lz/ξ )k e−Lz/ξ . The finite-size correction δF (β → ∞,Lz)
can be inferred from computing F (β,Lz) for β → ∞ and
for a finite size Lz. For β → ∞, the Gibbs measure is
dominated by the twofold degenerate ground state, consisting
of a configuration in which all spins are fixed to +1 or to −1.
By using the definition of F (β,Lz) given in Eq. (21), one has

F (β → ∞,Lz) = 1

L3
z

ln

[
2e(3β−D)L3

z

(1 + 2e−D)L3
z

]

= ln 2

L3
z

+ ln

(
e3β−D

1 + 2e−D

)
, (B5)

where D is the coupling constant appearing in the second term
of the Hamiltonian given in Eq. (16). By taking the Lz → ∞
in Eq. (B5), we identify the second term on the right-hand
side of Eq. (B5) as the infinite-volume limit Fbulk(β).4 Thus,

4We note that Fbulk(β) → ∞ for β → ∞. This is because Fbulk(β)
is the bulk free energy per volume and in units of −kBT . The free
energy per volume −Fbulk(β)/β has instead a finite limit for β → ∞.
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we infer δF (β → ∞,Lz) = (ln 2)/(L3
z). Thus, for T < Tc and

Lz � ξ , F (β,Lz) approaches its infinite-volume limit Fbulk(β)
as

δF (β,Lz) ∼ (Lz/ξ )ke−Lz/ξ + ln 2

L3
z

. (B6)

From Eqs. (22) and (B6) one finds that∫ ∞

0
δE(β ′,Lz)dβ ′ = ln 2

L3
z

, (B7)

where the support of the integrand is actually confined to the
region where Lz ≈ ξ . In this region the finite-size correction
of the reduced free-energy density is given by

δF (β,Lz) = 1

L3
z

hF (Lz/ξ ) , (B8)

where, as in Eq. (B2), the universal scaling function hF (x) =
O(1) for ξ ≈ Lz. A comparison of the finite-size corrections
for the reduced energy density given in Eqs. (B1) and (B2) and
those for the reduced free-energy density in Eqs. (B3), (B6),
and (B7) shows that F (β,Lz) converges faster to limit for
Lz → ∞ than E(β,Lz). The only exception to this rule occurs
in the low-temperature phase, T < Tc and Lz � ξ , where the
reduced free-energy density exhibits an additional finite-size
correction ln 2/L3 [see Eq. (B7)]. However, because this
correction term is known exactly, one can eliminate it by
subtracting it explicitly.

In order to compute the bulk free-energy density, we
proceed as follows. At a given lattice size Lz, we com-
pute the reduced energy density E(β,Lz) in an interval
[βmin,βmax] around the inverse critical temperature βc =
0.387 721 735(25) [48]. In order to minimize the error bars
we have implemented the control-variates scheme introduced
in Ref. [75]. Control variates are observables which have
a vanishing mean value and therefore can be added to any
observable without changing its mean value; control variates
provide also an additional check of the MC simulations.
In the second step F (β,Lz) − F (βmin,Lz) is calculated by
numerically integrating Eq. (22). For this purpose we have used
Simpson’s rule. The resulting quantity F (β,Lz) − F (βmin,LZ)
suffers from two types of errors: a statistical error originating
from the statistical error bars of the integrand E(β,Lz) and a
systematic error due to the chosen quadrature. In the present
case and as mentioned above, the maximum systematic error
in Simpson’s rule can be computed by estimating the fourth
derivative of E(β,Lz). We have always checked that such
an error is at least one order of magnitude smaller than the
statistical error, so that it can be safely neglected and the
statistical error bar is a correct measure of the uncertainty of
the reduced free-energy density. The integration of E(β,Lz)
leads to the value of F (β,Lz) − F (βmin,Lz) for several inverse
temperatures β ∈ [βmin,βmax]. For those values of β < βc for
which Lz � ξ , we regard our results for finite Lz to be the
ones for infinite Lz if the statistical error bars are smaller than
the finite-size correction. To this end, we have checked that
E(β,Lz) is, within the numerical accuracy, independent of Lz

by comparing the values obtained for two consecutive lattice
sizes. As discussed above, E(β,Lz) is expected to converge

TABLE XI. The interval of integration [βmin,βmax] for each lattice
size L used in the determination of the bulk free-energy density. We
have implemented Simpson’s rule with the reported distances 
β

between two consecutive points.

L βmin βmax 
β

24 0.327721735 0.427721735 0.0002
32 0.347721735 0.427721735 0.0001
48 0.367721735 0.407721735 0.0001
64 0.377721735 0.397721735 0.0001
96 0.380521735 0.395721735 0.00005
128 0.381521735 0.394521735 0.00005
192 0.384121735 0.393321735 0.00002
256 0.385321735 0.391321735 0.00001

to the thermodynamic limit slower than F (β,Lz). Roughly
speaking, with the present numerical accuracy, the finite-size
scaling corrections are negligible for Lz/ξ � 20. For T < Tc

we use the more conservative bound Lz/ξ � 35–40, and we
explicitly subtract the additional finite-size term (ln 2)/L3

z

which appears in Eq. (B7). We note that the nonuniversal
amplitude ξ−

0l of the correlation length below Tc is roughly half
of ξ+

0l : ξ
+
0l /ξ

−
0l = 1.957(7) [76]. At any given lattice size Lz, this

procedure results in the estimate of the bulk free-energy density
for a subset [βmin,βinf] ∪ [βsup,βmax] of the integration interval
[βmin,βmax], with ξ (βinf) ≈ Lz/20 and ξ (βsup) ≈ Lz/40. Thus,
for β � βinf and β � βsup, F (β,Lz) − F (βmin,Lz) agrees
within error bars with Fbulk(β) − Fbulk(βmin), while [βinf,βsup]
is the interval in which the finite-size correction δF (β,Lz)
is not negligible. In the next step we have applied the
above procedure for a larger lattice size L′

z > Lz and the
smaller integration interval [β ′

min = βinf,β
′
max = βsup]. This

results in the quantity F (β,L′
z) − F (β ′

min,L
′
z) to which we

add F (β ′
min,Lz) − F (βmin,Lz) 
 Fbulk(β ′

min) − Fbulk(βmin) as
determined from the lattice size Lz, so that we finally obtain the
desired quantity F (β,L′

z) − Fbulk(βmin). As before, this results
in the estimate of the bulk free energy for β ∈ [βmin,β

′
inf] ∪

[β ′
sup,βmax], with β ′

inf > βinf and β ′
sup < βsup. By iterating the

procedure with increasing values of Lz, we progressively
narrow the interval around βc where ξ ≈Lz and finite-size
scaling corrections are not negligible. In Table XI we report
the interval used for each lattice size considered here. The
final statistical error bars for Fbulk(β) are generally between
4 × 10−8 and 10−7. Even for the largest lattice size Lz = 256
we have considered, there exists of course an interval around
βc for which the condition Lz � ξ cannot be satisfied. In
such a region the finite-size scaling corrections are given
by Eq. (B8). In order to ensure that the residual finite-size
correction is less than the statistical error bars, we have checked
that the results for Lz = 192 and Lz = 256 differ at most
by one error bar. As an additional check, using Eq. (B8)
and the results of Ref. [77], we can infer that the finite-size
correction term is at most ≈0.7/(2563) = 4 × 10−8. For the
same interval the statistical error bar is between 8 × 10−8

and 10−7. Thus we conclude that our determination of the
bulk free-energy density is reliable within the statistical error
bars.
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J. F. van der Veen, and C. Bechinger, Soft Matter 7, 5360 (2011).
[18] D. Bonn, J. Otwinowski, S. Sacanna, H. Guo, G. Wegdam, and

P. Schall, Phys. Rev. Lett. 103, 156101 (2009); A. Gambassi,
S. Dietrich, ibid. 105, 059601 (2010); D. Bonn, G. Wegdam,
and P. Schall, ibid. 105, 059602 (2010).

[19] S. J. Veen, O. Antoniuk, B. Weber, M. A. C. Potenza, S. Mazzoni,
P. Schall, and G. H. Wegdam, Phys. Rev. Lett. 109, 248302
(2012); V. D. Nguyen, S. Faber, Z. Hu, G. H. Wegdam, and
P. Schall, Nat. Commun. 4, 1584 (2013); M. A. C. Potenza,
A. Manca, S. Veen, B. Weber, S. Mazzoni, P. Schall, and G. H.
Wegdam, arXiv:1304.7077.

[20] M. P. Nightingale and J. O. Indekeu, Phys. Rev. B 32, 3364
(1985).

[21] M. Krech and S. Dietrich, Phys. Rev. A 46, 1922 (1992).
[22] F. Parisen Toldin and S. Dietrich, J. Stat. Mech. (2010) P11003.
[23] M. Krech, Phys. Rev. E 56, 1642 (1997).
[24] D. Dantchev and M. Krech, Phys. Rev. E 69, 046119 (2004).
[25] A. Hucht, Phys. Rev. Lett. 99, 185301 (2007).
[26] O. Vasilyev, A. Gambassi, A. Maciołek, and S. Dietrich, EPL

80, 60009 (2007).
[27] O. Vasilyev, A. Gambassi, A. Maciołek, and S. Dietrich, Phys.

Rev. E 79, 041142 (2009); 80, 039902(E) (2009).
[28] M. Hasenbusch, J. Stat. Mech. (2009) P07031.
[29] M. Hasenbusch, Phys. Rev. B 81, 165412 (2010).
[30] M. Hasenbusch, Phys. Rev. E 80, 061120 (2009).

[31] M. Hasenbusch, Phys. Rev. B 82, 104425 (2010).
[32] A. Hucht, D. Grüneberg, and F. M. Schmidt, Phys. Rev. E 83,

051101 (2011).
[33] M. Hasenbusch, Phys. Rev. B 83, 134425 (2011).
[34] O. Vasilyev, A. Maciołek, and S. Dietrich, Phys. Rev. E 84,

041605 (2011).
[35] M. Hasenbusch, Phys. Rev. B 85, 174421 (2012).
[36] M. Hasenbusch, Phys. Rev. E 87, 022130 (2013).
[37] A. W. Rodriguez, F. Capasso, and S. G. Johnson, Nat. Photon. 5,

211 (2011); J. Lussange, R. Guérout, and A. Lambrecht, Phys.
Rev. A 86, 062502 (2012).

[38] M. Tröndle, L. Harnau, and S. Dietrich, J. Chem. Phys. 129,
124716 (2008).

[39] A. Gambassi and S. Dietrich, Soft Matter 7, 1247 (2011).
[40] M. Sprenger, F. Schlesener, and S. Dietrich, J. Chem. Phys. 124,

134703 (2006).
[41] F. Karimi Pour Haddadan, F. Schlesener, and S. Dietrich, Phys.

Rev. E 70, 041701 (2004); F. Karimi Pour Haddadan and
S. Dietrich, ibid. 73, 051708 (2006).
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[58] C. Bervillier, A. Jüttner, and D. F. Litim, Nucl. Phys. B 783, 213

(2007).
[59] A. Ciach and H. W. Diehl, Europhys. Lett. 12, 635 (1990);

H. W. Diehl and A. Ciach, Phys. Rev. B 44, 6642 (1991).
[60] A. Aharony and M. E. Fisher, Phys. Rev. B 27, 4394 (1983).
[61] T. W. Capehart and M. E. Fisher, Phys. Rev. B 13, 5021

(1976).
[62] M. Hasenbusch, J. Stat. Mech. (2009) P02005.
[63] M. Hasenbusch, J. Stat. Mech. (2009) P10006.
[64] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes: The Art of Scientific Computing, 2nd ed.
(Cambridge University Press, New York, 1992), Chap. 15.

[65] D. J. Amit and V. Martı́n-Mayor, Field Theory, the Renormaliza-
tion Group, and Critical Phenomena, 3rd ed. (World Scientific,
Singapore, 2005).

[66] S.-Y. Zinn and M. E. Fisher, Physica A 226, 168 (1996); M. E.
Fisher and S.-Y. Zinn, J. Phys. A 31, L629 (1998).

[67] H. W. Diehl, Int. J. Mod. Phys. B 11, 3503 (1997).

052110-27

http://dx.doi.org/10.1088/1742-6596/161/1/012037
http://dx.doi.org/10.1088/0953-8984/11/37/201
http://dx.doi.org/10.1103/PhysRevLett.83.1187
http://dx.doi.org/10.1103/PhysRevLett.97.075301
http://dx.doi.org/10.1103/PhysRevLett.94.135702
http://dx.doi.org/10.1103/PhysRevLett.94.135702
http://dx.doi.org/10.1016/j.physa.2007.07.072
http://dx.doi.org/10.1016/j.physa.2007.07.072
http://dx.doi.org/10.1103/PhysRevLett.88.086101
http://dx.doi.org/10.1103/PhysRevLett.88.086101
http://dx.doi.org/10.1103/PhysRevLett.90.116102
http://dx.doi.org/10.1038/nature06443
http://dx.doi.org/10.1103/PhysRevE.80.061143
http://dx.doi.org/10.1103/PhysRevLett.101.208301
http://dx.doi.org/10.1080/00268976.2011.553639
http://dx.doi.org/10.1209/0295-5075/88/26001
http://dx.doi.org/10.1039/c1sm05103b
http://dx.doi.org/10.1103/PhysRevLett.103.156101
http://dx.doi.org/10.1103/PhysRevLett.105.059601
http://dx.doi.org/10.1103/PhysRevLett.105.059602
http://dx.doi.org/10.1103/PhysRevLett.109.248302
http://dx.doi.org/10.1103/PhysRevLett.109.248302
http://dx.doi.org/10.1038/ncomms2597
http://arXiv.org/abs/arXiv:1304.7077
http://dx.doi.org/10.1103/PhysRevB.32.3364
http://dx.doi.org/10.1103/PhysRevB.32.3364
http://dx.doi.org/10.1103/PhysRevA.46.1922
http://dx.doi.org/10.1088/1742-5468/2010/11/P11003
http://dx.doi.org/10.1103/PhysRevE.56.1642
http://dx.doi.org/10.1103/PhysRevE.69.046119
http://dx.doi.org/10.1103/PhysRevLett.99.185301
http://dx.doi.org/10.1209/0295-5075/80/60009
http://dx.doi.org/10.1209/0295-5075/80/60009
http://dx.doi.org/10.1103/PhysRevE.79.041142
http://dx.doi.org/10.1103/PhysRevE.79.041142
http://dx.doi.org/10.1103/PhysRevE.80.039902
http://dx.doi.org/10.1088/1742-5468/2009/07/P07031
http://dx.doi.org/10.1103/PhysRevB.81.165412
http://dx.doi.org/10.1103/PhysRevE.80.061120
http://dx.doi.org/10.1103/PhysRevB.82.104425
http://dx.doi.org/10.1103/PhysRevE.83.051101
http://dx.doi.org/10.1103/PhysRevE.83.051101
http://dx.doi.org/10.1103/PhysRevB.83.134425
http://dx.doi.org/10.1103/PhysRevE.84.041605
http://dx.doi.org/10.1103/PhysRevE.84.041605
http://dx.doi.org/10.1103/PhysRevB.85.174421
http://dx.doi.org/10.1103/PhysRevE.87.022130
http://dx.doi.org/10.1038/nphoton.2011.39
http://dx.doi.org/10.1038/nphoton.2011.39
http://dx.doi.org/10.1103/PhysRevA.86.062502
http://dx.doi.org/10.1103/PhysRevA.86.062502
http://dx.doi.org/10.1063/1.2977999
http://dx.doi.org/10.1063/1.2977999
http://dx.doi.org/10.1039/c0sm00635a
http://dx.doi.org/10.1063/1.2178355
http://dx.doi.org/10.1063/1.2178355
http://dx.doi.org/10.1103/PhysRevE.70.041701
http://dx.doi.org/10.1103/PhysRevE.70.041701
http://dx.doi.org/10.1103/PhysRevE.73.051708
http://dx.doi.org/10.1209/0295-5075/88/40004
http://dx.doi.org/10.1063/1.3464770
http://dx.doi.org/10.1103/PhysRevE.81.061117
http://dx.doi.org/10.1103/PhysRevE.81.061117
http://dx.doi.org/10.1103/PhysRevLett.105.055701
http://dx.doi.org/10.1103/PhysRevLett.105.055701
http://dx.doi.org/10.1209/0295-5075/99/56004
http://arXiv.org/abs/1308.5220
http://dx.doi.org/10.1103/PhysRevB.82.174433
http://dx.doi.org/10.1016/S0370-1573(02)00219-3
http://dx.doi.org/10.1103/PhysRev.141.517
http://dx.doi.org/10.1016/0031-8914(66)90027-9
http://dx.doi.org/10.1142/S0129183101002383
http://dx.doi.org/10.1103/PhysRevE.56.5204
http://dx.doi.org/10.1103/PhysRevE.57.4976
http://dx.doi.org/10.1103/PhysRevE.57.4976
http://dx.doi.org/10.1103/PhysRevE.70.046111
http://dx.doi.org/10.1103/PhysRevB.30.6615
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.036
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.036
http://dx.doi.org/10.1209/0295-5075/12/7/011
http://dx.doi.org/10.1103/PhysRevB.44.6642
http://dx.doi.org/10.1103/PhysRevB.27.4394
http://dx.doi.org/10.1103/PhysRevB.13.5021
http://dx.doi.org/10.1103/PhysRevB.13.5021
http://dx.doi.org/10.1088/1742-5468/2009/02/P02005
http://dx.doi.org/10.1088/1742-5468/2009/10/P10006
http://dx.doi.org/10.1016/0378-4371(95)00382-7
http://dx.doi.org/10.1088/0305-4470/31/37/002
http://dx.doi.org/10.1142/S0217979297001751
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