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Frenetic origin of negative differential response
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The Green-Kubo formula for linear response coefficients is modified when dealing with nonequilibrium
dynamics. In particular, negative differential conductivities are allowed to exist away from equilibrium. We
give a unifying framework for such a negative differential response in terms of the frenetic contribution
in the nonequilibrium formula. It corresponds to a negative dependence of the escape rates and reactivities
on the driving forces. Partial caging in state space and reduction of dynamical activity with increased driving
cause the current to drop. These are time-symmetric kinetic effects that are believed to play a major role in the
study of nonequilibria. We give various simple examples treating particle and energy transport, which all follow
the same pattern in the dependence of the dynamical activity on the nonequilibrium driving, made visible from
recently derived nonequilibrium response theory.
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I. INTRODUCTION

Green-Kubo formulas [1–4] relate equilibrium fluctuations
to conductivities of an equilibrium system. They allow one to
compute the more microscopic dependence of the current on
the force, summarized in terms of current-current correlations
for the linear response coefficients. Their positivity follows
often by inspection, e.g., by rewriting them as Helfand mo-
ments generalizing the Sutherland-Einstein relation between
the mobility and diffusion constant [5]. Main examples include
the positive conductance expressing Ohm’s law, the strain
rate for mechanical transport following Newton’s law, and
the thermal conductivity in Fourier’s law. There are also
deeper reasons of thermodynamic stability why some of
these coefficients must always be positive. The thermody-
namic stability refers in the first place to the positivity of
the entropy production. Within the context of irreversible
thermodynamics, the argument runs as follows. Currents
Ji are linearly related to forces Fi with Onsager response
matrix L:

Ji =
∑

j

LijFj ,

making the entropy production equal to σ = ∑
i JiFi =∑

ij FiFjLij . Asking that σ � 0 is equivalent to requiring
that the Onsager matrix L be positive.

When away from thermodynamic equilibrium, the linear
response coefficients (around nonequilibrium) need not give
rise to a positive linear response matrix (even though the
entropy production of course remains positive). Indeed, many
physical systems with negative differential response have been
observed and investigated. Most of these studies, however,
have remained with a specific model or type of mechanism
for the particular context. Here we attempt a unifying theory
where the negative response is understood from a correlation
between the current and the dynamical activity. That is the
frenetic origin to which the title alludes, to be illustrated by
a choice of examples in the following sections and which
we discuss in Sec. VI from a more general perspective.
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The logic can be summarized as follows. For perturbations
around nonequilibrium the response is no longer given only
via the standard Kubo formula; there is a second frenetic
contribution in the form of a correlation 〈JdD〉 between
the time-antisymmetric current J and the excess dynamical
activity dD. The latter refers to a sort of time-symmetric
current, meaning the rate of escape from a given state or
reactivity. When the system shows trapping behavior, e.g., by
getting stuck in some phase space cages, the dynamical activity
is affected. If the trapping behavior significantly grows by the
perturbation, effectively diminishing the escape of the system,
then a negative differential response will occur.1 This picture is
quite intuitive and has been suggested before, e.g., in [9], for an
example that we will also present in Appendix B; it has inspired
us to suggest a biased random walker as a paradigmatic model
of transport where also the escape rate (strongly) depends
on the biasing field. That model will be detailed in the next
section. Such heuristics will be accompanied by a more general
and precise formula for nonequilibrium response allowing
quantitative studies also in cases where exact results are not
available, also reviewed in Sec. II A.

For the plan of the rest of the paper, we basically deal with
two types of models, for particle and for energy transport,
respectively, in Secs. III and IV.2 For particle transport
we study the biased motion of particles in a medium with
obstacles. The first example is a colloidal particle immersed
in an equilibrium fluid, driven through a narrow tube with
hooks, i.e., vertical and horizontal spikes partially blocking
free streaming. The second example is a Lorentz lattice gas
with driven random walkers on a two-dimensional lattice with
random obstacles. Both examples can be effectively mapped
onto our paradigmatic model of a one-dimensional biased
random walker with field-dependent escape rates.

1The negative differential response is distinct from the absolute
negative response where the current flows in the opposite direction
of the applied field (see, for example, [6–8]). In the present paper
we choose models that also have an equilibrium version with a
corresponding linear response for small driving.

2For momentum transport currents are time symmetric and they
require a separate analysis; (see also the first remark of Sec. V).

052109-11539-3755/2013/88(5)/052109(11) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.052109


BAERTS, BASU, MAES, AND SAFAVERDI PHYSICAL REVIEW E 88, 052109 (2013)

Section IV provides a discrete model of heat conduction and
gives a mechanism for negative differential heat conductivity
that is again based on trapping. Also kinetic factors in energy
transport are affected by the installed temperature difference.
If, at a higher temperature difference, these kinetic factors slow
down the transport, an opposite tendency to reduce the energy
current arises.

Sections V and VI take a more general perspective. We add
various remarks and attempt a general heuristics in which the
frenetic contribution in nonequilibrium is related to a surface
effect in abstract phase space, to be compared with volume
effects (i.e., entropic forces) in the relaxation to equilibrium.

II. MODIFIED GREEN-KUBO FORMULA

The aim of linear response theory is to predict the change
in the expected value of an observable O upon some external
stimulus. The present setup is to imagine a change h → h +
dh in an existing field or potential indicated by h.

A. Response formula involving the dynamical activity

Let us consider an open system in contact with one or
different equilibrium reservoirs and/or subject to external
forces. We denote by x the state of the open system, e.g.,
the position of particles in a medium. For each trajectory
ω := (xs,0 � s � t) of the system over the interval [0,t]
we identify two quantities, the entropy flux Sh(ω) and the
dynamical activity Dh(ω). The way to compute them for a
given dynamical ensemble is described in [10,11] and we
repeat the main steps in Appendix A. The result is that the
differential response to the perturbation is given by

d

dh
〈O(ω)〉h = 1

2

〈
O(ω)

dSh

dh
(ω)

〉h

−
〈
O(ω)

dDh

dh
(ω)

〉h

. (1)

Setting there O = 1 we get 1
2 〈ddhSh(ω)〉 = 〈 d

dh
Dh(ω)〉, from

which we rewrite (1) as

d

dh
〈O(ω)〉h = 1

2

〈
O(ω);

dSh

dh
(ω)

〉h

−
〈
O(ω);

dDh

dh
(ω)

〉h

, (2)

where 〈A; B〉 denotes the covariance between the observables
A,B. The averages 〈·〉h are over trajectories including possibly
the initial conditions and depending on the considered field
h. We will often drop the explicit dependence on h in the
notation. Thus the first term in (2) signifies the covariance or
the connected correlation of the observable O with the linear
excess of entropy generated due to the perturbation and the
second term arises from the correlation with the change in
dynamical activity.

Assuming that h = 0 corresponds to equilibrium (also
including an initial averaging over the equilibrium distribution)
and that the observable O is time antisymmetric, then〈

O(ω);
d

dh
Dh

∣∣∣∣
h=0

(ω)

〉0

= 0

because the dynamical activity Dh(ω) in (2) is itself time
symmetric and equilibrium is time-reversal invariant. Thence

d

dh
〈O(ω)〉h

∣∣∣∣
h=0

= 1

2

〈
O(ω);

d

dh
Sh

∣∣∣∣
h=0

(ω)

〉0

. (3)

This equilibrium result (3) is basically the Green-Kubo
relation, but we do not rewrite it here by, e.g., replacing the
entropy flux in terms of currents. We will see it more explicitly
in later examples.

The frenetic contribution 〈O(ω); d
dh

Dh(ω)〉h involving the
dynamical activity D(ω) is thus the key term that differentiates
the nonequilibrium response from that around equilibrium.
In particular, a large frenetic contribution can also result
in a negative differential response d

dh
〈O(ω)〉h � 0 in some

regime of the parameter h, even in cases where that is strictly
forbidden and not possible in equilibrium.

To illustrate the use of words, we make more explicit
the entropic and frenetic contributions here for systems
modeled by Markov jump processes. These are specified by
transition rates k(x,y) for jumps x → y between states x,y.
We parametrize them as

k(x,y) = ψ(x,y)es(x,y)/2,

ψ(x,y) = ψ(y,x) � 0, s(x,y) = −s(y,x), (4)

all possibly depending on the field or potential h. A trajectory
ω := (xs,0 � s � t) over time interval [0,t] is characterized
by discrete jumps at times si and by exponentially distributed
waiting times si+1 − si . Then, for substituting in (2) (see
Appendix A),

Sh(ω) =
∑

i

s
(
xsi

,xsi+1

)
,

(5)

Dh(ω) =
∫ t

0
ds ξ (xs) −

∑
i

ln ψ
(
xsi

,xsi+1

)
,

where ξ (x) = ∑
y k(x,y) is the escape rate at state x. The last

line gives the expression for the path-dependent dynamical
activity. Note that it is time symmetric (reversing the time
over the trajectory in [0,t] does not affect it) and that it is
characterized by reactivities ψ and escape rates ξ . It summa-
rizes those kinetic factors that become especially important
outside equilibrium. In contrast, Sh is time antisymmetric
and corresponds to the thermodynamic entropy flux over
[0,t] whenever the condition of local detailed balance is
verified [12–17]. Then indeed s(x,y) is the entropy flux to
the environment (per kB) in the transition x → y.

From (5) we calculate the excess entropy and dynamical
activity produced by the perturbation to be used in (2) to obtain
the linear response. In the following sections we apply this
formalism to explain the origin of the negative differential
response of several systems. What will happen is summarized
in the following simple model.

B. Reference example: Biased random walk

We formulate here the paradigmatic example of the negative
differential response to which all other examples can somehow
be reduced. Consider a one-dimensional (1D) nearest-neighbor
continuous-time random walk specified by rates p and q of
jumping to the right and left neighbor, respectively. In the
parametrization (4),

ψ(x,x ± 1) = √
pq, s(x,x ± 1) = ± ln

p

q
, x ∈ Z.
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The equilibrium dynamics corresponds to p = q. We imagine
an external field E � 0 bringing about the bias p � q and
working in an environment at constant temperature β−1 so
that we get a physical characterization by setting

p + q = gβ(E), ln
p

q
= βE.

The function gβ(E) gives the dependence of the escape
rate ξ (x) = p + q on the field E. We look at differential
conductivity, i.e., how the particle velocity changes by an
increase in the field. For this we use formula (2), where we
now write h = E and O is the time-integrated current J (net
number of steps to the right). We find the entropy flux and the
dynamical activity from (5):

S(ω) = (N+ − N−) ln
p

q
= βEJ,

D(ω) = (p + q)t − 1

2
(N+ + N−) ln pq

= gβ(E)t + N

[
βE

2
+ ln(1 + e−βE) − ln gβ(E)

]
.

We have indicated the number of jumps N+ and N− to the
right and left, respectively. The current J = N+ − N− and
N = N+ + N− is the total number of jumps during the interval
[0,t]. The change in the current caused by a small increase in
the field E → E + dE is expressed as a sum of two terms
following Eq. (2),

d

dE
〈J 〉 = 1

2

〈
J ;

d

dE
S(ω)

〉
−

〈
J ;

d

dE
D(ω)

〉

= β

2
〈J ; J 〉 +

(
g′

β(E)

gβ(E)
− β

2

1 − e−βE

1 + e−βE

)
〈N ; J 〉. (6)

The first term, the variance of the current J , is the positive-
definite entropic contribution, whereas the second term in-
volves the covariance of the current with the total number of
jumps, i.e., with the dynamical activity.

Before we discuss this expression any further and to avoid
misunderstanding, we hasten to add that for the present
example all these quantities can be calculated exactly. There
is, for example, no mystery about the current of the walker;
the average current is just

1

t
〈J 〉 = p − q = 1 − e−βE

1 + e−βE
gβ(E). (7)

Clearly the behavior of the current as a function of the external
field depends on the nature of the escape rate gβ(E). In
particular, one can obtain a nonmonotonic behavior of the
current if gβ(E) happens to be a decreasing function of the field
E. A decreasing gβ(E) signifies an increase in the degree of
trapping of the system. Taking the E derivative of (7) obviously
verifies formula (6) as we can also calculate separately

〈J ; J 〉 = gβ(E)t,

〈N ; J 〉 = gβ(E)t
1 − e−βE

1 + e−βE
. (8)

The point of the present example is rather that we see so
clearly how the field dependence on the escape rate (trapping
mechanism) leads to a negative differential response and how
that is exactly picked up by the frenetic contribution in the
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FIG. 1. (Color online) (a) Average velocity 〈j〉 (solid line) and
differential conductivity d〈j 〉

dE
(dashed line) as functions of the field

E. (b) Entropic M(E) (upper solid curve) and frenetic contribution
K(E) (lower solid curve). The dashed curve is obtained by adding
these two and is identical to the one in (a). Here gβ (E) = 1

1+β2E2 and
β = 1.

response formula (6). To be explicit we illustrate all that with
the example gβ(E) = 1

1+(βE)2 . Figure 1(a) shows the plot
of the current and differential conductivity as functions of
field strength E. For the sake of convenience, here we have
used velocity, i.e., current per unit time j = J/t , instead of
the time-integrated current J. We write the corresponding
response as

d

dE
〈j 〉 = M(E) + K(E), (9)

where M(E) and K(E) are the entropic and frenetic
contributions as calculated from Eq. (6). Explicitly,

M(E) = β

2

1

1 + (βE)2
,

K(E) = −β

2

[
βE

1 + (βE)2
+ 1 − e−βE

1 + e−βE

]
1 − e−βE

1 + e−βE

1

1 + (βE)2
.

In this case the frenetic term is negative for all E > 0. The
variations of the entropic and frenetic contributions with the
field strength E are shown separately in Fig. 1(b). The frenetic
contribution becomes very negative at around βE = 1,
causing the current to drop.

Let us look further at more general features of the response
formula (6). We are particularly interested in the negative
differential response. It is clear from Eqs. (6) and (8) that
negative d

dE
〈J 〉 can result only when the coefficient of 〈N ; J 〉

becomes “sufficiently” negative. The critical value E∗ at which
the conductivity becomes negative depends on the particular
choice of gβ(E) and temperature β−1. Physically, we expect
that as the ambient temperature is increased it would take a
larger field strength to reach the negative conductivity regime.
This can be seen more concretely when gβ(E) = g(βE); for
that case it is straightforward to find E∗ ∼ β−1 by taking the
derivative of Eq. (7) and equating it to zero.

Naturally, near equilibrium, the entropic contribution dom-
inates. We can see it by expanding (6) around E = 0:

1

t

d

dE
〈J 〉E = β

2t
〈J ; J 〉0 + β

2
g′

β(0)E + · · · ,
which is just a small perturbation of the Green-Kubo formula.
The first nonlinearity in the response near equilibrium is
thus decided by the derivative of the escape rate gβ(E)
as a function of the field E, which can already contribute
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negatively. Obviously, for large driving field E the frenetic
term contributes substantially and the response deviates from
the Green-Kubo formula. Somewhat surprisingly, however,
for the special choice gβ(E) = cosh βE/2 the frenetic term
vanishes for all field strengths. Then the differential response
is always entropic, that is to say, it follows the Green-Kubo
formula [only the first term in (6)] even though the system
most definitely is driven.

It was already argued by Zia et al. in [9] that a key ingredient
to obtain a negative response in any dynamical system is the
presence of some kind of trap in the system. In conformation
with this conjecture, we point out that a decreasing gβ(E)
directly lowers the dynamical activity, giving rise to the
trapping of the system. In the following section we explore
a few models that have this feature and show that in each case
the dynamics can effectively be mapped to such a biased 1D
random walk with a field-dependent escape rate gβ(E).

III. PARTICLE TRANSPORT

One of the simplest nonequilibrium setups is to consider
independent particles driven by some external force. The
environment is assumed to be in thermal equilibrium at some
temperature β−1. If the velocity of the particle (or the mass
current) decreases when the forcing is increased we speak of
a negative differential mobility. For small values of forcing
the velocity increases as predicted by the equilibrium linear
response relations, but there are simple toy examples of
far-from-equilibrium systems where a negative differential
mobility is indeed found [9,18].

In this section we consider two model systems where a
driven particle system shows negative differential conductivity.
In each case we show, using numerical simulations, that the
negativity of the response originates from the correlation of the
current with the change in dynamical activity of the system.

A. Diffusion of colloids in a narrow tube with hooks

Our first example is the motion of a driven Brownian
particle through a narrow channel [19]. Transport properties
of narrow corrugated channels with different shape and
geometries have also been investigated in recent years [20,21].
In the following the channel is compartmentalized in a specific
way so as to facilitate local trapping. A discrete version,
after [9], is presented in Appendix B.

A point particle of unit mass moves in a fluid contained
in a two-dimensional narrow tube of width YL with hard,
impenetrable, and perfectly reflecting walls. The tube is
divided in cells by attaching hooks to the lower surface of
the tube at regular intervals XL. The hooks have a linear size
SL; this geometry is illustrated in Fig. 2. The particle is driven
by a constant force along the length of the tube. The hooks are
expected to provide the trapping mechanism necessary for the
negative differential response in the velocity.

The state of the particle at any time s is specified by its
position (xs,ys) and velocity (vxs

,vys
); the surrounding fluid

acts as a thermal bath with temperature T = β−1. The free
dynamics of the particle is therefore governed by the Langevin

YL
SL

SL

XL

E

FIG. 2. (Color online) Schematic diagram of a narrow tube with
hooks attached to it. Each unit cell of the tube has a dimension
XL × YL. The hooks have a linear dimension SL. The external force
E acts along the length of the tube.

equations

ẋ = vx, v̇x = −γ vx +
√

2γ

β
ξx + E;

(10)

ẏ = vy, v̇y = −γ vy +
√

2γ

β
ξy.

The noises ξx and ξy are taken to be uncorrelated white noise
with zero mean. There is no forcing along the width of the tube.
The constant force E along the length drives the particle to a
nonequilibrium condition. We are interested in the response
of the velocity of the particle as this force is increased by a
small amount. This response is quantified by the differential
mobility

μ(E) = lim
t→∞

d

dE
〈vx(t)〉E. (11)

Another quantity of interest is the diffusion constant, which
measures the fluctuation in the position of the particle

Ddif(E) = lim
t→∞

1

2t
[〈(xt − x0)2〉 − 〈xt − x0〉2]. (12)

In equilibrium, when there is no forcing, the diffusion constant
Ddif [not to be confused with the dynamical activity D(ω)] and
the mobility μ are related by the Sutherland-Einstein equation
μ(0) = βDdif(0). In the presence of an external driving force
this relation is no longer valid; mobility and diffusion are
not proportional to each other in nonequilibrium situations
(see [22,23]).

We use numerical simulations to study the response of
this system; Fig. 3(a) shows the dependence of 〈vx〉 on the
external force E. As E becomes larger the mobility decreases

0 1 2 3 4 5
E

0

0.5

1

1.5

〈v
x
〉

μ

0 1 2 3 4 5 6
T

0

1

2

3

4

E
*

E
*

(a) (b)

FIG. 3. (Color online) (a) Average current in the x direction 〈vx〉
(shown as dark green circles) and mobility (light orange squares)
in a narrow tube with hooks. (b) Temperature dependence of the
critical field E∗ after which a negative response sets in. For both plots
XL = YL = 5, SL = 2.5, β = 1, and γ = 1.
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and becomes negative after a certain value E∗ that increases
linearly with temperature [see Fig. 3(b)]. The differential
mobility eventually reaches a minimum, increases again, and
saturates to zero for very large forces. The diffusion constant
(not shown) increases initially for small forces and reaches
a maximum around the same value where the mobility is
minimal.

Physically, the negative differential mobility indicates that
the particle becomes more trapped in the “cages” as the
external force is increased. That is the picture of the biased
random walk in Sec. II B. We can indeed effectively describe
it that way, as illustrated in the next section. We also checked
that if only vertical obstacles (spikes) are present, then there
is no negative mobility; spikes only are not sufficient to trap
the particles. In particular, motion in a channel with hooks as
in Fig. 2 but with reversed field E will not show a negative
differential conductivity.

Mapping to a biased 1D random walk

If we consider the cells of the narrow tube in Fig. 2 as sites
of a 1D lattice, the motion of the particle can be described
as an effective biased random walk on this lattice. To check
whether dynamical activity is still well represented by the
escape rates (such as for Markov processes), we measure the
waiting-time distribution of the particle in the cages. Let tW
denote the waiting time of the particle in the lower half of the
cell. Figure 4(a) shows P (tW ) on a semilogarithmic scale for
different values of the driving force; it suggests an exponential
probability density

P (tW = τ ) = λe−λτ , (13)

confirming the effective Markov process picture. Here λ = 1
〈tW 〉

measures the escape rate from the cage. The dependence
of 〈tW 〉 on the external force E for β = 1 is shown on a
semilogarithmic scale in Fig. 4(b); the best-fit straight line
is also included in the figure. From the linear nature of this
plot we infer that

〈tW 〉 ∼ eb(β)E. (14)

An empirical study of b(β) for different temperatures (not
shown here) indicates that b(β) ∝ β. The exponentially

0 1×10
5

2×10
5

t
W

10
-7

10
-6

10
-5

10
-4

P
(t

W
)

E=0.6
E=1.0
E=1.6
E=2.0

0 1 2
E

10
3

10
4

10
5

〈t W
〉

(a) (b)

FIG. 4. (Color online) (a) Probability distribution of the waiting
time tW plotted on a semilogarithmic scale for different values of
the external force E = 0.6,1.0,1.6,2.0 (from dark to light curves).
(b) Average waiting time 〈tW 〉 of a particle versus the external force
E in a narrow tube with cages. The solid line corresponds to the best
fit ebE with b = 1.988. Here XL = YL = 5, SL = 2.5, β = 1, and
γ = 1.

increasing average waiting time indicates that the particle
spends more and more time inside the cages as the external
force is increased. The original two-dimensional nonequilib-
rium process can then be thought of as an equivalent biased
random walk on the one-dimensional lattice with an escape rate

gβ(E) = 1

〈tW 〉 ∼ e−b(β)E,

with b(β) ∝ β, which is indeed a decreasing function of
the field strength. This picture agrees with the suggestion of
Sec. II B, namely, a decreasing escape rate is a key ingredient
of systems with a negative differential response as that is
mathematically picked up by the nonequilibrium response
formula (2) in the frenetic contribution. A fully discrete and
Markovian version is discussed in Appendix B.

B. Driven lattice Lorentz model

Our second example is the two-dimensional Lorentz gas
[24], a well studied model of particle transport where a
particle is allowed to freely diffuse in the presence of random
obstacles [25,26]. The field driven lattice Lorentz gas has
been studied earlier in the very wide context of diffusion in a
random medium [18] and it was shown that the drift velocity
is a nonmonotonic function of the bias. In this section we
investigate the origin of this nonmonotonicity and following
the main theme of the paper, we show that the presence of
random obstacles results in a decrease of the dynamical activity
causing the negative mobility of the particle.

We consider a particle performing a continuous-time two-
dimensional random walk on a periodic square lattice of linear
dimension L where randomly a fraction n of sites, called
obstacles, has been made inaccessible. Let us assume that the
particle is driven in the x direction by an external force field E;
local detailed balance suggests that p/q = eβE , where p (q)
is the rate of moving forward (backward). That condition does
not specify the individual rates fully, but we choose p = eβE/2

and q = e−βE/2. In the absence of obstacles such a choice
corresponds to gβ(E) ∼ cosh βE/2, where, as mentioned in
Sec. II B, the Green-Kubo formula holds for all E (no frenetic
contribution at all.) There is no bias in the y direction and
the rates of moving up and down are both assumed to be
unity. However, the particle is blocked when the target site is
inaccessible. Figure 5 illustrates the setup and dynamics.

We use numerical simulation to study the dependence of the
average velocity 〈vx〉 of the particle in the x direction on the
field strength E. Figure 6(a) shows this plot for two different
obstacle densities n. The data are obtained by averaging over
at least 150 obstacle configurations, with 100 independent
trajectories for each such configuration. The resulting curve
shows a nonmonotonic behavior, which decreases for a large
force E after an initial increase, consistent with the Green-
Kubo formula. The decreasing velocity for large E marks
the negative differential mobility regime. As the obstacle
density is increased the onset of the negative mobility shifts to
smaller values of field E. In contrast with the previous model
of Sec. III A, the motion is left-right symmetric for E = 0.
Moreover, there are no a priori constructed traps. The trapping
is more random and comes from obstacle configurations that
make effective cages.
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q 1
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FIG. 5. (Color online) Schematic diagram of the two-dimensional
lattice Lorentz gas. The particle (shown as the green circle) performs
a biased random walk; the red squares represent obstacles or
inaccessible sites.

Here again we can follow the path-space approach of
Appendix A to understand the role of the frenetic contribution
to the response of this system. For each trajectory ω over [0,t]
let tRO (tLO) denote the time during which there is an obstacle
at the right (left) neighboring lattice site of the particle. Then
(5) gives

S(ω) = (N→ − N←) ln
p

q
= JE,

(15)
D(ω) = p(t − tRO) + q(t − tLO).

As before, the perturbation considered is a small increase in
the external field E → E + dE. The linear response relation
for any observable O is then written following Eq. (1),

d

dE
〈O〉E=β

2
[〈JO〉 − (p − q)t〈O〉+p〈tROO〉 − q〈tLOO〉].

(16)

This formula holds true for any initial configuration of the
system and therefore can be applied in both transient and
stationary regimes. We are particularly interested in the linear
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eff
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FIG. 6. (Color online) Driven lattice Lorentz gas. (a) Plot of
〈vx〉 versus E for two different obstacle densities n = 0.05 (dark
blue circles) and n = 0.1 (light brown squares). (b) Dependence of
(p + q)eff (dark green circles) and qeff (light orange squares) on the
external field E for obstacle density n = 0.05. In both cases β = 1.

response of the velocity vx = J/t in the large t limit,

d

dE
〈vx〉E = βt

2
〈vx ; vx〉 + β

2
[p〈vx ; tRO〉 − q〈vx ; tLO〉].

The first term, in the limit of t → ∞, is proportional to the
diffusion constant D for the particle and is always positive. The
observed negative mobility can only be caused by the second
term, for example, when vx and tLO are highly positively
correlated.

If we take a constant O = 1 in (16), then the left-hand side
vanishes, which gives us a relation between the stationary state
current J in the x direction and the rates,

〈J 〉 = (p − q)t − p〈tRO〉 + q〈tLO〉
= (peff − qeff)t, (17)

where we have defined

peff = p

(
1 − 〈tRO〉

t

)
, qeff = q

(
1 − 〈tLO〉

t

)
.

This relation allows us to map the dynamics of the lattice
Lorentz gas to that of an effective biased 1D random walker
with rates peff and qeff. In other words, we are back to the biased
random walker of Sec. II B. The sum (p + q)eff ≡ peff + qeff =
gβ(E) plays the role of an effective escape rate from a site.
Unsurprisingly, (p + q)eff is nonmonotonic in the field strength
E, as shown in Fig. 6(b), and the conclusions of Sec. II B apply.

At the end of the previous section we mentioned that the
presence of obstacles in both the x and y directions is crucial
for the trapping of the particle. In the case of the Lorentz gas
we can see this immediately by studying a variation where the
obstacles do not block the motion in the y direction. Numerical
simulations show that the system does not show any negative
mobility in this case; the stationary velocity is a monotonically
increasing function of the external field. Figure 7(a) shows
current versus field for densities n = 0.05,0.2. In agreement
with our claim, the (p + q)eff is a monotonically increasing
function in this case [Fig. 7(b)]. So it is not just the fact that
there are obstacles; it is the caging effect that is important.

IV. THERMAL TRANSPORT

As a second major case we look here at thermal conduc-
tivity. We ask how the transport of thermal energy is affected

0 2 4 6 8
E
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10
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30

〈v
x〉

n=0.05
n=0.20

0 2 4 6 8
E

0

10

20

30

(p
+

q)
ef

f

n=0.05
n=0.20

(a) (b)

FIG. 7. (Color online) Lorentz gas with obstacles in the x

direction only. (a) The average velocity 〈vx〉 increases monotonically
with the driving field E. The two curves correspond to two different
obstacle densities n = 0.05 (dark maroon squares) and n = 0.20
(light orange circles). (b) The corresponding escape rates (p + q)eff

are also increasing functions of the field E, indicating that there is no
trapping in this case.
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FIG. 8. (Color online) Schematic representation of the discrete
model for heat conduction. The horizontal direction is spatial and the
vertical direction is energetic. Heat exchange is only possible at the
edges.

when some ambient temperature is changed. In this section we
give a scenario for negative differential thermal conductivity,
which again will be traced back to the frenetic contribution.

Thermal conductivity (or resistivity) measures the change
in current when the magnitude of the thermal gradient
is changed. Close-to-equilibrium thermal conductivity is a
positive quantity. Here we are interested in systems that show
the counterintuitive property of negative differential thermal
resistance (NDTR), a decrease in thermal current when the
temperature difference between the two ends of the system
is increased. In recent years there have been several studies
[27–31] where NDTR has been observed by various nonlinear
mechanisms. We believe they are all related more specifically
to the negative frenetic contribution, which we make explicit
in a simpler model.

Let us consider L consecutive sites labeled by i = 1, . . . ,L.

Associated with each site i are two states carrying different
energies. As shown in Fig. 8, one can think of a two-lane
model; the lower lane and upper lane carry energies U0 and
U1, respectively. Energy quanta are hopping symmetrically
along these lanes without interlane transitions. The system is
allowed to exchange energy with the environment only at the
left and right edges, where it is attached to two heat baths of
temperatures T1 and T2, respectively. We denote the state of
the system by x

u,d
i , where u (d) refers to the upper (lower)

energy lanes. The dynamics is then completely specified by
the following rates:

k
(
xd

1 ,xu
1

) = e−β1U , k
(
xu

1 ,xd
1

) = 1,

k
(
xd

L,xu
L

) = e−β2U , k
(
xu

L,xd
L

) = 1, (18)

k
(
xd

i ,xd
i±1

) = p0, k
(
xu

i ,xu
i±1

) = p1.

Here β1,2 are the respective inverse temperatures of the left
and right baths and U = U1 − U0 is the energy difference
between the two lanes. Without any loss of generality we
assume energies U0 = 0 and U1 = U.

Let N
u,d
� denote the total number of jumps to the right and

left in the upper and lower lanes, respectively. Similarly, N
l,r
↑↓

denotes the number of jumps to the upper and lower levels
at the left and right bonds, respectively. The heat or energy
transported through the system over a time [0,t] is given by

J = U1(Nu
→ − Nu

←) + U0(Nd
→ − Nd

←)

= U (Nu
→ − Nu

←). (19)

We assume T1 > T2, so the system is expected to have a
constant heat or energy current 〈J 〉 flowing from the left bath
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FIG. 9. (Color online) Thermal conductivity. (a) Both the current
〈J 〉 (solid line) and the conductivity κ (dashed curve) as functions of
the temperature difference �T. (b) The entropic (dark green circles)
and frenetic (light orange diamonds) components of the response
function κ . These curves added together result in the dashed curve
of (a). The inset shows the same for a different range of �T. Here
the hot bath is fixed at temperature T1 = 10.0, p0 = T1T2, with T2 =
T1 − �T. The other parameters are p1 = 1.0 and U = 1.0. The time
interval is t = 100 and the data are averaged over 107 independent
ensembles.

to the right one in the stationary state. Near equilibrium, i.e.,
when the temperature difference �T = T1 − T2 between the
two baths is small, this current is proportional to �T (Fourier’s
law) no matter how we choose p0,p1. For a large gradient
that need not be true. Suppose indeed that we introduce a
temperature dependence in the symmetric jump rate p0 =
T1T2, which decreases as the temperature of the cold bath T2 is
decreased; p1 is taken to be independent of temperature. That
provides a trapping mechanism for the system in the lower
lane configurations xd

1 and xd
L. Other setups are possible, but

the main idea is to let kinetic factors of transport be negatively
influenced by lowering one of the edge temperatures.

The simplest case is when L = 2, in which case we have
only four sites. The results of the simulation are shown for that
case (where it is also possible to exactly calculate the average
current), but the result remains entirely similar when longer
systems are considered. The dependence of the thermal current
〈J 〉 on the temperature difference �T is shown in Fig. 9(a) for
T1 = 10.0 (solid line); though initially increasing, the current
drops down as �T approaches T1, i.e., as T2 → 0, marking a
negative differential thermal response.

The rate of change of thermal current with the temperature
difference �T between the two baths is

κ ≡ d〈J 〉
d�T

= 1

2

〈
J ;

d

d�T
S(ω)

〉T1,T2

−
〈
J ;

d

d�T
D(ω)

〉T1,T2

.

This equation follows from Eq. (2), where �T acts as the
driving field, with T2 = T1 − �T. The entropy S(ω) and
dynamical activity D(ω) associated with a path ω are obtained
following (5),

S(ω) = (Nl
↓ − Nl

↑)β1U + (Nr
↓ − Nr

↑)β2U,

D(ω) = −(Nu
→ + Nu

←) ln p1 − (Nd
→ + Nd

←) ln p0

+ 1

2
(Nl

↓ + Nl
↑)β1U + 1

2
(Nr

↓ + Nr
↑)β2U +

L∑
i=1

α=u,d

ξ α
i tαi ,

where the tαi are the residence times of states xα
i and the ξ are

the corresponding escape rates.
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The entropic component of the thermal conductivity can be
calculated from the above equations,

M(T1,T2) ≡ 1

2

〈
J ;

d

d�T
S(ω)

〉T1,T2

= U

2T 2
2

〈J ; (Nr
↓ − Nr

↑)〉 = 1

2T 2
2 (L − 1)

〈J ; J 〉. (20)

In the last equality we have assumed a large time limit. As
always, this term is positive definite and gives the Green-
Kubo formula in equilibrium. The other component, arising
from the correlation with dynamical activity, comprises several
contributions. For the simplest case L = 2 it has the form

K(T1,T2) ≡ −
〈
J ;

d

d�T
D(ω)

〉

= − 1

T2
〈J ; (Nd

→ + Nd
←)〉 − U

2T 2
2

〈J ; (Nr
↑ + Nr

↓)〉

+ T1 〈J ; td1 〉 +
(

T1 + U

T 2
2

e−(U/T2)

)〈
J ; td2

〉
. (21)

The first two terms quantify the correlation of the current
with the total number of jumps in the lower and right bonds,
whereas the two last terms contain the correlation with the
time spent in the configurations xd

1 and xd
2 in the lower lane.

Figure 9(b) shows separate plots of the quantities M(T1,T2)
and K(T1,T2); the frenetic component shows a large negative
contribution. In fact, though the two curves look like mirror
images of each other, they do differ on a much smaller scale.

V. ADDITIONAL REMARKS

The origin of a negative differential response need not
always be frenetic. A more complete and correct (but also more
complicated) title of the present paper would be “The time-
symmetric origin in nonequilibrium ensembles for the negative
differential response in time-antisymmetric variables.” Not
considered in the present paper but still an interesting response
indeed deals with time-symmetric observables, e.g., for the
dynamical activity itself or for time-symmetric currents as
occur with momentum transfer. The situation then gets
reversed with respect to the present study. At equilibrium
the Green-Kubo relation would be reconstructed from the
correlation of the observable with the dynamical activity and
nonequilibrium corrections would be entropic. At equilibrium
there is no real distinction.

Note that the negative differential response sets in at
intermediate values of the (driving) field h, not necessarily
very large. In fact, it is also possible to observe the same effect
of the negative differential response at intermediate driving
while the current starts to increase again for large values of the
driving. In particular, the current does not need to vanish for
large external field. As an example one can consider the model
discussed in Sec. III A, but with “soft hooks,” which can be
crossed with a small probability. If we include a small rate of
crossing the barriers, then after an initial increase, the current
drops, marking the negative conductivity regime, but at large
biasing field the current rises again.

There are by now various mathematically equivalent for-
mulations of linear response in nonequilibrium; see the review

0 1 2 3 4
E
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-1
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1

2

β ef
f

β=1

β=2

FIG. 10. (Color online) Variation of the effective temperature βeff

with the external field E for β = 1,2 and for gβ (E) = [1 + (βE)2]−1.

in [11]. They do not, however, appear equally useful in all
circumstances. We feel that for a unifying framework of
negative response, the one starting from the path integration
reviewed in Appendix A is the most promising. It remains,
however, interesting to relate the present approach with, for
example, ideas around a negative effective temperature. Let
us take for simplicity the biased random walker of Sec. II B.
Equation (6) can be rewritten as proportional to the current-
current correlation

d

dE
〈J 〉 = βeff

2
〈J ; J 〉 (22)

simulating the Green-Kubo expression but with effective
temperature given by

βeff = β + 2

(
g′

β(E)

gβ(E)
− β

2

1 − e−βE

1 + e−βE

)
1 − e−βE

1 + e−βE
.

Clearly, a negative differential conductivity is accompanied
by a negative βeff. The actual dependence of the effective
temperature on the external field E depends on the escape
rate gβ(E). In Fig. 10, βeff is shown as a function of E for
two different temperatures and gβ(E) = [1 + (βE)2]−1. There
βeff → 0 for large E. When for large E, gβ(E) ∼ e−αβE , then
limE→∞ βeff → −2αβ.

There are other aspects of negative response that fall
outside the discussion of the present paper. That is, for
example, the case for the occurrence of negative heat ca-
pacities in nonequilibrium multilevel systems [32,33]. It is
not yet sufficiently understood how to identify there the
origin of negative (thermal) response in terms of the frenetic
contribution.

As frenetic effects make it possible to have a negative
differential response, they are also the cause of having a
zero differential response, for example, at the (temperature-
dependent) field value E∗ in the model in Sec. III A. Consider-
ing the model exactly at that value, there is no linear response
and the change in current 〈J 〉E∗+dE − 〈J 〉E∗ ∝ (dE)2 starts
off nonlinearly in dE.

VI. SUMMARY AND GENERAL DISCUSSION

We have discussed a general formalism to understand neg-
ative differential responses in far-from-equilibrium systems.
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Equilibrium

FIG. 11. (Color online) Cartoon of the very-high-dimensional
classical phase space for a macroscopic mechanical system. Each
region corresponds to a reduced description or physical coarse
graining, say, collecting all microscopic states that correspond to
a particular position of a tagged particle and a certain energy
and particle number in each of the reservoirs. For the time scale
of nonequilibrium phenomena the trajectory of the microscopic
state visits much smaller regions of phase space as compared to
equilibrium.

The prototypical example of a biased random walker where the
escape rates are field dependent already makes the point quite
clearly. When kinetic factors such as trapping mechanisms,
collision frequencies, and reactivities are dependent on the
nonequilibrium driving, they have a strong influence on the
response via the frenetic contribution. We have seen that in
both particle and thermal transport.

To move the discussion to some more general phase space
considerations, we would like to remind the reader of the
phase space picture in Fig. 11. We see the usual state space of
a mechanical system where each point collects the information
of the positions and momenta of all the many particles. Say
for the motion of colloids in the narrow tube as discussed in
Sec. III A the mechanical system is the closed and isolated
system containing both reservoirs (heat and particle baths
organizing the isothermal driving) and colloids. We look
over time scales where the nonequilibrium condition exists
(before any global relaxation to equilibrium is apparent).
The phase space is divided into regions that each collect all
states of the mechanical system that correspond to certain
positions of the colloids and to certain values of the energy
and particle number in the reservoirs. The biggest region (in
terms of volume or entropy) is the equilibrium situation. Under
nonequilibrium the mechanical trajectory is visiting regions
in phase space that are tiny (in terms of volume) compared
to equilibrium. The dynamics now runs effectively between
relatively small phase space volumes. At that moment, not only
the volume (read entropy) but also surface considerations start
to matter. The surface area measures the interface between
different phase space regions in terms of exit and entrance
rates, for short, the dynamical activity as we have discussed
in the present paper. A negative differential response then
corresponds to kinetic constraints or caging effects restricting
mechanical motion between different phase space regions.
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APPENDIX A: RESPONSE FROM PATH INTEGRATION

Dynamical ensembles in nonequilibrium statistical me-
chanics are represented by a probability measure P(ω) on path
space. This measure depends on the parameters of driving and
reservoirs and would generally change when a perturbation is
added to the system. Let us think of a generic perturbation
h → h + dh that changes the probability measure Ph(ω) to
Ph+dh(ω). We compare the path weights with a reference
process and associate an action A(ω) with each trajectory ω

via P(ω) = e−A(ω)P0(ω), where P0(ω) is the weight of the
same path for the reference process.

The change in expectations for an observable O due to the
perturbation is now conveniently expressed as

〈O(ω)〉h+dh − 〈O(ω)〉h

=
∫

dωP0(ω)(e−Ah+dh(ω) − e−Ah(ω))O(ω).

For small perturbations dh this leads to a general differential
response formula [11]

d

dh
〈O(ω)〉h = −

〈
O(ω)

d

dh
Ah(ω)

〉h

, (A1)

where the right-hand side is an average over the unperturbed
process.

It is useful to decompose the action into two components by
writing Ah(ω) = Dh(ω) − 1

2Sh(ω), where Sh(ω) is the time-
antisymmetric entropy associated with the trajectory ω and the
time-symmetric part is the dynamical activity D(ω) [10]. The
response relation (A1) now takes the form (1).

To apply this formula to specific systems one needs to
determine Sh(ω) and Dh(ω). Let us derive the formulas (5)
mentioned for Markov jump processes (see [10,34] for more
details).

Let the transition rates between states x → y be k(x,y).
Escape rates are ξ (x) = ∑

y k(x,y). Paths ω are piecewise
constant with jumps at times si and have weight

Ph(ω) = μ0(x0)
∏
si

k
(
xsi

,xsi+1

)
exp

(
−

∫ t

0
ξ (xs)ds

)

for initial distribution μ0(x0). To write the action Ah(ω) we
need to choose a reference process. It is easy to show that the
final response formula does not depend on this choice. Thus,
for our purpose we take the simplest reference process defined
by k0(x,y) = 1 if and only if k(x,y) �= 0. Then

A(ω) = −
∑
si

ln k
(
xsi

,xsi+1

) +
∫ t

0
ds[ξ (xs) − ξ0(xs)]. (A2)

The entropy and dynamical activity associated with trajectories
can be identified as the time-antisymmetric and -symmetric
components of A(ω). Denoting the time-reversed trajectory

052109-9



BAERTS, BASU, MAES, AND SAFAVERDI PHYSICAL REVIEW E 88, 052109 (2013)

1 2

3 4

E

1 1 22

3 3 44

FIG. 12. Schematic diagram of the discrete model with cages.

as θω,

Sh(ω) = A(θω) − A(ω),
(A3)

Dh(ω) = 1

2
[A(θω) + A(ω)],

from which (5) follow. Note that
∫

ds ξ0(xs) in (A2) can be
ignored for a differential response as it does not depend on h.

APPENDIX B: DISCRETE HOOKS

Another discretization of the model in Sec. III A is to
define a Markovian random walker in one dimension following
Fig. 12. A single particle walks in a long channel consisting of
identical cells; each cell is again divided into four parts labeled
i = 1, . . . ,4. There is a field E in the horizontal direction that
creates a bias in the rates of moving forward and backward, but
motion in the vertical direction is unbiased. The corresponding
rates can be expressed as

k→ = eβE/2, k← = e−βE/2,

k↑ = 1, k↓ = 1.

A hard wall prohibits jumps between parts 2 and 4 of the
same cell and from 4 to 3 of the next cell in the forward
direction. This model is basically the one studied in [9] except
for the fact that here the hard walls are placed at regular
intervals. We assume periodic boundary conditions in the
horizontal direction.

It is straightforward to calculate the stationary current by
solving the corresponding master equation. Figure 13(a) shows
the current (solid line) as a function of field strength E; for
convenience we have plotted 〈j 〉 = 〈J 〉/t. After an initial
increase the current decreases for large field and eventually
vanishes: The upper sites, which contribute to the current,
become exponentially less likely to be populated as E is
increased, which overcompensates for the increasing bias in

2 4 6E
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FIG. 13. (Color online) Discrete model with cages. (a) Current
per unit time 〈j〉 (solid line) and conductivity d〈j 〉

dE
(dashed line)

similar to Fig. 3(a). (b) Entropic (dark blue circles) and frenetic (light
orange diamonds) contributions to the response of j as a function
of E following Eq. (B3). The time interval t = 104 and the data are
averaged over 107 independent ensembles.

the forward rate. Instead of giving the analytic solution we
concentrate again on the response formula to find that the
negative differential mobility can be attributed to the frenetic
contribution.

The observed quantity is, once again, the average current in
the forward direction over a time interval [0,t], 〈J 〉 = 〈N→ −
N←〉 with N→ and N← the number of jumps in the forward
and backward directions, respectively. Let ti be the time spent
during a trajectory ω by the particle in the ith site;

∑
i ti = t.

The escape rates are

ξ (1) = 1 + eβE/2 + e−βE/2, ξ (3) = 1 + eβE/2,
(B1)

ξ (2) = eβE/2 + e−βE/2, ξ (4) = e−βE/2.

The entropy and dynamical activity associated with the path
takes the simple forms

S(ω) = (N→ − N←)E,
(B2)

D(ω) =
4∑

i=1

ξ (i)ti ,

where ti is the total time the particle spends in the ith part over
the time interval [0,t].

Finally, using (1) the response can be expressed as a sum
of the correlations with excess entropy and excess activity

d

dE
〈J 〉E = 1

2

〈
J ;

d

dE
S(ω)

〉E

−
〈
J ;

d

dE
D(ω)

〉E

= 1

2
〈J ; J 〉E + e−βE/2〈(t − t3); J 〉E

− eβE/2〈(t − t4); J 〉E.

We stick to the velocity j = J/t and, after a small calculation,
obtain

d

dE
〈j 〉E = M(E) + K(E), (B3)

with

M(E) = 1

2t
〈J ; J 〉E,

K(E) = e−βE/2〈(t − t3); j 〉E − eβE/2〈(t − t4); j 〉E.

The entropic correlation M(E) is strictly positive and this
is the only contributing term to the response in equilib-
rium. However, as the driving field E is increased, a finite
contribution K(E) to the response gets established. We use
numerical simulations to get quantitative result for the various
correlations in Eq. (B3). Figure 13(b) shows plots of M(E)
and K(E) as functions of E. The negative frenetic term K(E)
overcompensates for the entropic component and eventually
makes the differential conductivity negative.
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