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We study localization properties of the eigenstates and wave transport in a one-dimensional system consisting
of a set of barriers and/or wells of fixed thickness and random heights. The inherent peculiarity of the system
resulting in the enhanced Anderson localization is the presence of the resonances emerging due to the coherent
interaction of the waves reflected from the interfaces between the wells and/or barriers. Our theoretical approach
allows to derive the localization length in infinite samples both out of the resonances and close to them. We
examine how the transport properties of finite samples can be described in terms of this length. It is shown that
the analytical expressions obtained by standard methods for continuous random potentials can be used in our
discrete model, in spite of the presence of resonances that cannot be described by conventional theories. All our
results are illustrated with numerical data manifesting an excellent agreement with the theory.
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I. INTRODUCTION

To date, the theory of Anderson localization in one-
dimensional disordered systems is developed in great detail.
In particular, various analytical approaches to the models with
continuous potentials allow to derive all transport character-
istics in dependence on the disorder strength and size of the
samples (see, for example, Refs. [1,2]). On the other hand,
for the tight-binding and Kronig-Penney models the rigorous
analysis is a difficult task due to the presence of resonances
of the Fabry-Perot type. The famous example is the standard
tight-binding Anderson model for which at the band center
the correct expression for the localization length Lloc can be
obtained with specific methods only [3–10]. As was found,
the band center corresponds to the lowest (most important)
resonance resulting in a nonflat distribution ρ(θ ) of the phase
θ of the wave function, emerging when the wave propagates
along a disordered sample. The same situation occurs for
Kronig-Penney models with weak disorder for which the
Fabry-Perot resonances have to be taken into account, if the
aim is to develop general expressions valid for any value of
energy inside allowed energy bands. Although away from these
resonances the analytical results for Lloc and T can be obtained
relatively easy, in the vicinity of the resonances the transport
properties are mainly understood with the use of numerical
simulations.

One of the open problems, in connection with the presence
of these resonances, is how to relate global transmission
characteristics to the localization length Lloc which near the
resonances can be obtained with one of specific methods.
In contrast to the continuous scattering potentials for which
the single parameter scaling (SPS) holds, the question about
the validity of the SPS for tight-binding and Kronig-Penney
models remains open. In the theory of scattering for continuous
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one-dimensional models the SPS is trivially valid since the
distribution of T depends on one single parameter only,
which is the ratio between the localization length Lloc and
size of the sample L. This means that the knowledge of
the localization length (defined in the limit L → ∞) gives
a complete solution of the scattering problem. As for the
tight-binding and Kronig-Penney models, the relation between
the localization length and transport properties in the regions
close to resonances is typically unknown, the fact that makes
the SPS hypothesis questionable [11,12]. Therefore, for such
systems the problem of the relevance of Lloc to transport
properties is of great importance.

Recently, the detailed study of the transmittance and re-
flectance in the vicinity of the lowest resonance was performed
in Ref. [13]. The authors were able to develop the theory
and obtain the analytical results for a quite simple model for
which the potential consists of barriers and wells of a fixed
thickness d, however, with a weak variation of their heights
and depths. The lowest resonance emerges when the phase
shift ϕ of the wave equals π after passing freely a barrier or
well. Numerical simulation shows that for such a value of ϕ a
clear dip occurs for the transmission coefficient. It was shown
how to describe the Landauer resistance and transmittance in
the ballistic regime, with the use of special technics based on
the so-called “building block” method.

In our paper we analyze the same model, however, paying
main attention to the relevance of the localization length to
transport characteristics, namely, to the transmission coeffi-
cient T , its logarithm ln T , and their variances. To do this, we
suggest an approach consisting of a few steps. First, we show
how to find an analytical expression for the phase distribution
ρ(θ ) which is highly nonuniform near the resonances. Then,
with this distribution we demonstrate how the localization
length can be analytically obtained in the vicinity of any
resonance ϕ = jπ with j integer. Finally, we show that if
to insert this localization length into the expression for the
moments of T obtained for the models with random continuous
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potentials, one gets a nice correspondence with numerical
data in a whole energy region including the resonances. The
comparison to the numerical data is excellent outside the
ballistic regime, i.e., in the region of a strong and intermediate
localization, when the obtained localization length Lloc is
smaller than or of the order of the system size L. We also
suggest how to improve the correspondence for the ballistic
regime, indicating that the localization length found in a strong
limit L → ∞ may have no physical sense since for a not
large enough value of L the phase distribution ρ(θ ) is still
nonstationary. To overcome this problem we suggested to use
the finite-length Lyapunov exponent which can be computed
numerically. Our approach can be applied to various physical
problems, for example, to the study of quantum transport of
matter waves in tailored disordered potentials [14,15].

II. MODEL FORMULATION

We study the localization and transport properties of a
quantum particle with the mass m propagating through an array
of rectangular potential barriers and wells. The height Vn of the
nth scatterer randomly depends on index n, however, all the
barriers and/or wells are of the same thickness d (see Fig. 1).
Our study is restricted to the case of the overbarrier scattering
when the particle energy E is much larger than the strength of
the random potential, E2 � 〈V 2

n 〉. The stationary Schrödinger
equation for the wave function ψn(x) of the particle traveling
over the nth barrier and/or well, reads(

d2

dx2
+ k2

n

)
ψn(x) = 0, (2.1)

where kn =
√

2m (E − Vn) /h̄2 is the wave number of the par-
ticle. Its general solution can be presented as the superposition
of two standing waves,

ψn(x) = ψn(xn) cos [kn(x − xn)]

+ k−1
n ψ ′

n(xn) sin [kn(x − xn)] , (2.2)

for xn � x � xn+1. The x axis is directed along the array with
x = xn standing for the coordinate of the left-hand edge of the
nth barrier, see Fig. 1. The prime implies the derivative with
respect to x. Note that the constant thickness of the nth barrier
or well is defined as

d = xn+1 − xn. (2.3)

The general solution (2.2) has to be complemented by two
continuity conditions at the interfaces between neighboring

FIG. 1. (Color online) Set of random barriers and wells.

barriers and/or wells,

ψn(xn+1) = ψn+1(xn+1),
(2.4)

ψ ′
n(xn+1) = ψ ′

n+1(xn+1).

The combination of Eqs. (2.2) and (2.4) yields the recurrent
relations describing the wave-function transfer through the nth
unit cell of the array,

Qn+1 = Qn cos ϕn + Pn

ϕ

ϕn

sin ϕn,

(2.5)
Pn+1 = −Qn

ϕn

ϕ
sin ϕn + Pn cos ϕn.

Here Qn and Pn refer to the wave function and its rescaled
derivative, respectively, taken at the left-hand edge of the nth
unit cell,

Qn = ψn(xn), Pn = k−1ψ ′
n(xn). (2.6)

The phase shift ϕn randomized by the compositional disorder,
and its unperturbed counterpart ϕ are defined by

ϕn = knd = ϕ
√

1 − vn/ϕ2 , ϕ = kd . (2.7)

Here, for convenience, we have introduced the dimensionless
random strength vn of the potential barriers and/or wells and
the unperturbed particle wave number k,

vn = 2mVnd
2/h̄2, k =

√
2mE/h̄2. (2.8)

Remarkably, the recurrent relations (2.5) can be regarded
as the classical Hamiltonian map describing the evolution of
trajectories in the phase space (Q,P ) with discrete time n for
a linear oscillator subjected to the time-dependent parametric
force. In such a representation Qn and Pn can be treated as the
classical coordinate and momentum, respectively [16]. Thus,
the problem of quantum localization can be formally reduced
to the analysis of the energetic instability of a stochastic
oscillator [17]. Note that the Hamiltonian map (2.5) belongs
to the class of area-preserving maps whose determinant equals
unity.

For the analytical study it is convenient to pass to polar
coordinates, namely, to the radius Rn and angle θn,

Qn = Rn cos θn, Pn = Rn sin θn. (2.9)

According to Eq. (2.5), the Hamiltonian map in the radius-
angle presentation gets the form

R2
n+1

R2
n

= cos2 ϕn + 1

2

(
ϕ

ϕn

− ϕn

ϕ

)
sin 2ϕn sin 2θn

+
(

ϕ2

ϕ2
n

sin2 θn + ϕ2
n

ϕ2
cos2 θn

)
sin2 ϕn, (2.10)

tan θn+1 = −(ϕn/ϕ) sin ϕn + cos ϕn tan θn

cos ϕn + (ϕ/ϕn) sin ϕn tan θn

. (2.11)

As one can see, the linear two-dimensional map (2.5) for Qn

and Pn can be reduced to the nonlinear one-dimensional map
for the angle θn only. It should be stressed that in this map the
angle θn can be considered in the range [0,2π ]. Note also that
both maps are the time dependent ones, this fact makes the
rigorous analysis problematic.

In line with the concept of the Hamiltonian map, the
localization length Lloc is determined by the rate of exponential
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growth of the coordinate Qn or momentum Pn, once the initial
conditions (Q0,P0) are specified. The conventional definition
of the localization length Lloc is due to the inverse of the
Lyapunov exponent λ, and the latter can be defined as

d

Lloc
≡ λ = lim

N→∞
1

N

N∑
n=1

ln

∣∣∣∣Qn+1

Qn

∣∣∣∣ . (2.12)

Another definition which gives the same result, takes the form
[2,16],

λ = 1

2

〈
ln

R2
n+1

R2
n

〉
= −1

2

〈
ln

dθn+1

dθn

〉
. (2.13)

Here the averaging 〈. . .〉 is performed along the discrete “time”
n. The second relation in (2.13) can be derived directly from
Eqs. (2.10) and (2.11). It is useful for the analytical analysis
since due to ergodicity the averaging over n can be substituted
by the averaging over different realizations of the disorder vn

and random phase θn.
In what follows, the dimensionless variable vn imposing

the disorder, is specified by a random sequence of white-noise
type with the zero average and variance σ 2,

〈vn〉 = 0,
〈
v2

n

〉 = σ 2, 〈vnvn′ 〉 = σ 2δnn′ . (2.14)

In numerical analysis, when generating random sequence vn

we use the entries of the uniform box probability distribution
inside a finite interval [−w,w] with the variance σ 2 = w2/3.
However, our analytical results are valid for any distribution
of vn with correlation properties (2.14) and finite variance.

In terms of the statistical characteristics (2.14) for random
quantity vn the conditions of weak disorder (vn 	 ϕ, vn 	 ϕ2)
and the overbarrier scattering (vn < ϕ2) can be rewritten in the
explicit form

σ 2 	 ϕ2, σ 2 	 ϕ4. (2.15)

These conditions allow us to develop a proper perturbation
theory.

It is worthwhile to mention that the system under con-
sideration is similar to an array of optic slabs with random
and frequency dispersive refractive indices. The features of
optic wave localization in the nondispersive array, where the
refractive index is independent of the wave frequency, were
analyzed in detail in Refs. [2,18–23]. As one can recognize
below, the effect of energy or frequency dispersion drastically
changes the localization properties of both quantum and optic
disordered systems.

III. NONRESONANT LOCALIZATION LENGTH

For a weak disorder, see Eq. (2.15), we expand the R

map (2.10) up to the second order in perturbation vn. Then,
we substitute the result into Eq. (2.13) with the subsequent
expansion of the logarithm, keeping the terms quadratic in
disorder. Taking into account that we consider the case of a
white-noise disorder, one can neglect high-order correlations
between the disorder vn and phase θn [1]. This allows us to
perform the statistical averaging over vn in accordance with
the correlation properties (2.14). As a result, we arrive at the

following quadratic approximation for the Lyapunov exponent,

λ = σ 2

8ϕ4

[
sin2 ϕ + sin 2θ

(
3 sin 2ϕ

4
− 2ϕ cos 2ϕ

)

− cos 2θ

(
3 sin2 ϕ

2
− 2ϕ sin 2ϕ

)

+ sin 4θ sin2 ϕ sin 2ϕ + cos 4θ sin2 ϕ cos 2ϕ

]
. (3.1)

Here we substituted the averaging of θn over n by the
statistical average over θ (denoted by the bar) assuming that
the distribution ρ(θ ) exists. The starting point for obtaining
ρ(θ ) is the quadratic expansion of the θ map (2.11),

θn+1 − θn

= −ϕ + vn

2ϕ2
[ϕ + sin ϕ cos(2θn − ϕ)]

+ v2
n

8ϕ4
[ϕ + sin ϕ cos(2θn − ϕ) − 2ϕ cos(2θn − 2ϕ)

− sin2 ϕ sin(4θn − 2ϕ) − 2 sin θn sin ϕ sin(θn − ϕ)].

(3.2)

By analyzing Eq. (3.2) one can suggest that for nonzero
values of ϕ only a small number of iterations are needed for
θn to fill the whole interval [0,2π ]. Therefore, in this case the
uniform phase distribution can be expected in the lowest order
of perturbation,

ρ(θ ) = 1/2π. (3.3)

The averaging of Eq. (3.1) with the probability density (3.3)
is trivial and gives rise to the expression

λ = σ 2

8ϕ4
sin2 ϕ. (3.4)

This result is in a complete correspondence with those pre-
viously obtained for discrete optic systems with randomized
refractive index (see, e.g., Refs. [18–20,22]).

However, the flat distribution (3.3) may not be valid for
the resonant values of ϕ, namely, for ϕ = 2πr/q with r,q

integers. For such rational values (with respect to 2π ) the
unperturbed trajectory θn is the periodic orbit with the period
q, therefore, ρ(θ ) is the periodic delta function of the same
period. By adding a weak disorder the phases θn begin to
diffuse around each of the delta peaks, and it is not clear
whether the fingerprint of these periodic orbits disappears in
the form of ρ(θ ) in the limit n → ∞. One can expect that the
strongest resonances correspond to q = 1 and q = 2. Below
we restrict our study by these resonances only. As for high-
order resonances with q > 2, it is quite natural to expect that
they give much less influence to the localization length, if any.

Indeed, as is displayed in Fig. 2, the Lyapunov exponent
(2.12) obtained from the numerical iteration of the Hamilto-
nian map (2.5) differs from Eq. (3.4) only very close to the
points ϕ = 2jπ and ϕ = (2j − 1)π (j is an integer), i.e., when
q = 1 and q = 2. Note that for ϕ = 2jπ the unperturbed θ

map is given by a single point, and for ϕ = (2j − 1)π it results
in two fixed points. Therefore, in the analytical approach one
has to treat these two cases separately.
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FIG. 2. (Color online) Lyapunov exponent λ vs phase shift ϕ:
Continuous curve depicts the analytical result (3.4), dashed curve
shows the numerical computation of λ obtained with the use of
Eq. (2.12). The intensity of disorder is σ 2 = 0.1.

From the physical point of view, the origin of the above
peculiarities is the resonance effect emerging due to the
coherent interaction of the waves reflected from the boundaries
of wells and/or barriers. This effect may be compared to the
well-known Fabry-Perot resonances emerging due to multiple
reflections of the wave from the interfaces in multilayered
photonic structures. As was shown both theoretically and in
experiments [2,24–27], in the nondispersive systems these
resonances strongly suppress the localization. Thus, the Fabry-
Perot resonances are typically associated with the resonance
enhancement of the transmission. In our case, as is seen in Fig.
2, the resonances result in the suppression of the transmission
for both odd and even values of q. Such a peculiarity of
the lowest resonance ϕ = π occurring in the model has been
predicted in Ref. [13].

Below the analysis of the resonance effects will be per-
formed in a way similar to that used in the study of peculiarities
of the localization arising in the one-dimensional Anderson
model near the band center and band edges [2,10].

IV. EVEN RESONANCES

Here we consider the energy region around the even
resonances,

ϕ = 2jπ + ε, |ε| 	 1, j = 1,2,3, . . . , (4.1)

where the unperturbed θ map has almost-periodic orbits of
the period one. Therefore, the point θn+1 is very close to θn

provided a weak disorder is imposed. The disordered θ map
near the even resonances (4.1) can be obtained from Eq. (3.2)
by the corresponding first-order expansion with respect to a
small resonance detuning ε. After omitting the term that is
integer multiple of 2π , the recurrence relation for the polar
angle θ reads

θn+1 − θn = −ε + vn

4jπ
+ v2

n

64j 3π3
(1 − 2 cos 2θn). (4.2)

Here we have neglected the terms containing vnε since they do
not contribute to the associated Fokker-Plank equation derived
within the linear approximation in the detuning ε and quadratic
one in the disorder vn.

To obtain the phase distribution, one has to derive the
stationary Fokker-Plank equation for ρ(θ ). This can be done in
the same way as described, e.g., in Refs. [6,10,16,19,20,22,28].
As the first step, we substitute the quadratic term v2

n in Eq. (4.2)
by its average, σ 2, which can be safely done in the first-order
approximation. Then, the obtained linear equation with respect
to the “noise” vn can be associated with the Itô stochastic
differential equation. The latter emerges in the continuum limit
in which the difference θn+1 − θn converts into the differential
dθ and vn ⇒ σdW is treated as the Wiener process W (see
details in the book [29]). As a result, the differential equation
for θ (t) takes the form,

dθ = σ

4jπ
dW +

[
−ε + σ 2(1 − 2 cos 2θ )

64j 3π3

]
dt, (4.3)

where t plays the role of the sample length. With this equation
one can study the dynamics of the stochastic process θ (t)
once the initial condition θ (t0) = θ0 is known. On the other
hand, following the theory of stochastic differential equations
[29], one can readily associate the Itô equation (4.3) with the
stationary Fokker-Plank equation for the probability density
ρs(θ ),

σ 2

32j 2π2

d2ρs

dθ2
+ d

dθ

[
ε − σ 2(1 − 2 cos 2θ )

64j 3π3

]
ρs = 0. (4.4)

This equation should be complemented by the condition of
periodicity and by the normalization condition,

ρs(θ + 2π ) = ρs(θ ),
∫ 2π

0
ρs(θ )dθ = 1. (4.5)

After the integration of Eq. (4.4) we obtain the following
linear first-order equation,

dρs(θ )

dθ
+

[
bj + 1

jπ
cos 2θ

]
ρs(θ ) = C, (4.6)

with the constant C which can be found from the periodicity
condition. Remarkably, in Eq. (4.6) the resonance detuning
turns out to be modified as follows,

bj =
(

ε − σ 2

64j 3π3

)
32j 2π2

σ 2

=
(

ϕ − 2jπ − σ 2

64j 3π3

)
32j 2π2

σ 2
. (4.7)

This means that the even resonances are shifted by disorder to
the right,

ϕres = 2jπ + σ 2

64j 3π3
. (4.8)

Also, Eq. (4.7) manifests an emergence of the disorder-induced
scale ∼ σ 2/j 2π2 for the resonance detuning.

Solving Eq. (4.6) with the periodicity condition (4.5) yields
the nonuniform phase distribution in the vicinity of the even
j -resonance (4.1),

ρs(θ )

ρs(0)
= e−μ(θ)

[
1 + eμ(2π) − 1∫ 2π

0 eμ(θ ′ )dθ
′

∫ θ

0
eμ(θ ′)dθ

′
]

,

μ(θ ) =
[
bj θ + 1

2jπ
sin 2θ

]
. (4.9)
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Here the initial value ρs(0) is specified by the normalization
condition from Eqs. (4.5).

It is important to emphasize that the initial Eq. (3.1) for the
Lyapunov exponent contains only zero, second, and fourth
harmonics with respect to the θ phase. Hence, to perform
the averaging procedure only the corresponding zero, second,
and fourth harmonics of the probability density ρs(θ ) are
needed. All the others give zero result after the averaging.
The simplest way to extract the important harmonics from
Eq. (4.9) is to replace the smooth factors in exp[−μ(θ )] and
exp[μ(θ ′)] with their approximate expansions, e.g.,

exp

(
sin 2θ

2jπ

)
= 1 + sin 2θ

2πj
+ sin2 2θ

8π2j 2
. (4.10)

Then, the integrals in Eq. (4.9) can be taken explicitly that
yields the truncated distribution function ρs(θ ) as a superpo-
sition of the uniform one (3.3) with oscillating modulations,

ρs(θ ) = 1

2π
− 2 sin 2θ + bj cos 2θ

2jπ2
(
4 + b2

j

)
+6bj sin 4θ + (

b2
j − 8

)
cos 4θ

4j 2π3
(
4 + b2

j

)(
16 + b2

j

) . (4.11)

One can see that at the resonance ϕ = ϕres (bj = 0) the
distribution profile has strong oscillations. However, when
the phase shift ϕ moves away from the resonance (bj → ∞),
the oscillations are decreasing, with a smooth (power-law)
convergence to the flat distribution. The similar effect takes
place as the order of the resonance j increases: The higher the
order j the closer the θ distribution to the flat one. Therefore,
the resonances with large j are hardly observable. Figure 3
displays the change of the θ distribution with the variation of
the modified detuning parameter b1 in the vicinity of the even
resonance ϕ ≈ 2π . The data shown in Fig. 3 demonstrate an
excellent agreement between the analytical result (4.11) and
the corresponding numerical simulation.

Now we are able to perform the averaging in Eq. (3.1) with
the use of the probability density (4.11). Within the lowest
approximation in disorder σ 2 and in resonance detuning ε, the
nonzero contribution comes from the first and second terms in

 0.13
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FIG. 3. (Color online) Distribution ρs(θ ) for the even resonance
(j = 1) and various values of b1: Continuous curves show the
analytical expression (4.11), while different symbols correspond to
numerical data. The intensity of disorder is σ 2 = 0.1.
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FIG. 4. (Color online) Rescaled Lyapunov exponent vs phase
shift ϕ in the vicinity of the even resonance (4.1) with j = 1 and
σ 2 = 0.1. Continuous curve corresponds to the analytical result
(4.12), circles represent the numerical data.

both Eqs. (3.1) and (4.11). As a result we get

λ = σ 2

8ϕ4

(
sin2 ϕ + 4

4 + b2
j

)
. (4.12)

Figure 4 compares this expression with the numerical data for
the Lyapunov exponent in the vicinity of the first (j = 1) even
resonance.

V. ODD RESONANCES

The energy region of the odd resonances is defined by
condition

ϕ = (2j − 1)π + ε, |ε| 	 1, j = 1,2,3, . . . . (5.1)

At odd resonances the unperturbed θ map for a fixed initial
value θ0 has periodic orbits with period 2 and is presented by
two points. Therefore, the phase θn+2 coincides with θn. For
a weak disorder, due to a small resonance detuning ε these
points are no more fixed, however, after two steps the distance
between them is quite small. For this reason it is convenient to
analyze the two-step recurrent θ relation between θn+2 and θn.
This relation is readily obtained by the iteration of the general
map (3.2). Within the lowest order in the resonance detuning
ε and with the use of statistical independence of the variables
vn and vn+1, see Eq. (2.14), one gets

θn+2 − θn = −2ε + vn + vn+1

2(2j − 1)π

+ v2
n + v2

n+1

8(2j − 1)3π3
(1 − 2 cos 2θn). (5.2)

Being written in the continuum limit in the terms of two
independent Wiener processes, W1 and W2, the θ map (5.2)
takes the form of the Itô equation

dθ = σ

2(2j − 1)π
(dW1 + dW2)

+
[
−2ε + σ 2(1 − 2 cos 2θ )

4(2j − 1)3π3

]
dt. (5.3)

It is important that the random processes W1 and W2 have
the same statistical properties. Therefore, as in the previous
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section, we can apply the method described in Ref. [29] and
write down the corresponding Fokker-Plank equation for the
stationary distribution function ρs(θ ),

σ 2

8(2j − 1)2π2

d2ρs

dθ2
+ d

dθ

[
ε − σ 2(1 − 2 cos 2θ )

8(2j − 1)3π3

]
ρs = 0.

(5.4)

This equation is complemented by the conditions (4.5) of
periodicity and normalization.

It is clear that the solution of Eqs. (5.4) and (4.5) has the
form of Eq. (4.9), however, with a new function μ(θ ),

μ(θ ) =
[
bj θ + 1

(2j − 1)π
sin 2θ

]
, (5.5)

and with another resonance detuning bj ,

bj =
[
ε − σ 2

8(2j − 1)3π3

]
8(2j − 1)2π2

σ 2

=
[
ϕ − (2j − 1)π − σ 2

8(2j − 1)3π3

]
8(2j − 1)2π2

σ 2
.

(5.6)

Thus, the odd resonances are shifted by disorder exactly as
even resonances,

ϕres = (2j − 1)π + σ 2

8(2j − 1)3π3
, (5.7)

and have similar disorder-induced broadening of the order of
σ 2/(2j − 1)2π2.

The truncated distribution function ρs(θ ) containing only
zero, second, and fourth harmonics that contribute to the
averaging of Eq. (3.1), can be extracted from the equations
(4.9), (5.5), and (5.6) in the same manner as for even
resonances. As a result, we have

ρs(θ ) = 1

2π
− 2 sin 2θ + bj cos 2θ

(2j − 1)π2
(
4 + b2

j

)
+ 6bj sin 4θ + (b2

j − 8) cos 4θ

(2j − 1)2π3
(
4 + b2

j

)(
16 + b2

j

) . (5.8)

One can see that this probability density has the structure
similar to the truncated distribution (4.11) obtained for even
resonances. Specifically, at the resonance ϕ = ϕres (bj = 0) the
distribution (5.8) oscillates. These oscillations decrease and
smoothly disappear when the phase shift ϕ moves away from
the resonance (bj → ∞). As the order of the odd resonance
j increases the oscillations begin to be smoother. Figure 5
shows the change of the θ distribution with the variation of
the modified detuning b1 in the vicinity of the first (j = 1)
odd resonance ϕ ≈ π . The results confirm the validity of
the theoretically obtained Eq. (5.8) in comparison to the
corresponding numerical data.

After the averaging of Eq. (3.1) with the distribution
function (5.8) we obtain the Lyapunov exponent for odd
resonances (5.1)

λ = σ 2

8ϕ4

(
sin2 ϕ + 4

4 + b2
j

)
. (5.9)

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

ρ s

θ

b1=0
b1=1
b1=5

b1=10

FIG. 5. (Color online) Distribution ρs(θ ) for the first odd reso-
nance (j = 1) and various b1: Continuous curves show the analytical
equation (5.8) while different symbols stand for the numerical data.
The intensity of disorder is σ 2 = 0.1.

As one can see, it is actually of the same form as Eq. (4.12)
derived for even resonances (4.1). The only difference is in
the definition of the modified resonance detuning: for odd
resonances bj contains the quantity 2j − 1 instead of 2j for
even resonances, compare Eqs. (4.7) and (5.6).

VI. INTERPOLATED EXPRESSION FOR THE
LYAPUNOV EXPONENT

Let us now compare expressions (3.4), (4.12), and (5.9)
for the Lyapunov exponent valid away from resonances and
in the vicinity of odd or even resonances, respectively. From
this comparison one can easily conclude that Eq. (4.12) or, the
same, Eq. (5.9) can be regarded as the general interpolation
for the Lyapunov exponent if to write the parameter bj in the
generalized form. To realize this idea, in Eqs. (4.7) or (5.6) we
replace the quantities 2jπ and (2j − 1)π with the phase shift
ϕ, and generalize the definition of the resonance detuning ε.
The explicit result reads

λ(ϕ) = σ 2

8ϕ4

(
sin2 ϕ + (σ 2/4ϕ2)2

(σ 2/4ϕ2)2 + (ε − σ 2/8ϕ3)2

)
;

(6.1)

ε =
{

ϕ − [
ϕ

π

]
π for 0 � ϕ

π
− [

ϕ

π

]
� 1

2 ,

ϕ − ([
ϕ

π

] + 1
)
π for 1

2 <
ϕ

π
− [

ϕ

π

]
< 1,

where [. . .] stands for the integer part. Within the quadratic
approximation in disorder, Eq. (6.1) adequately describes the
Lyapunov exponent λ inside a wide range of the phase shift
ϕ ∝ √

E. The applicability of Eq. (6.1) is restricted only by the
conditions of weak disorder and overbarrier scattering (2.15).

Out of the resonances, the detuning is of the order of unity,
ε ∼ 1. The second term in square brackets is negligibly small
being of the order of (σ 2/4ϕ2)2. Due to this fact, Eq. (6.1) is
equivalent to Eq. (3.4) in the region between the neighboring
resonances.

The second (resonant) term in the square brackets has the
Lorentzian form. For both odd and even resonances we have
ϕ = jπ + σ 2/8ϕ3, therefore, this term equals 1 and strongly
prevails over the first term which is of the order of (σ 2/8ϕ3)2.
The half-width of the resonances is σ 2/4ϕ2, thus, showing that
the resonant line-shape is very sharp. It is worthwhile to note
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FIG. 6. (Color online) Resonant line-shape of the Lyapunov
exponent for first (a) odd and (b) even resonances, respectively.
Continuous curve depicts analytical interpolation (6.1) whereas the
circles show corresponding numerical data. The intensity of disorder
is σ 2 = 0.1.

that the higher the resonance order j the sharper the resonance,
however, the smaller its amplitude σ 2/8ϕ4. When the phase
shift ϕ moves away from the resonance the main contribution
turns in Eq. (6.1) from the second term to first one.

Figure 6 shows that the interpolation (6.1) provides a good
agreement with the numerical data, apart from the transition
regions where the Lyapunov exponent is so small that the
perturbation terms of higher order have to be taken into
account.

VII. TRANSPORT PROPERTIES

Now, in connection with the localization length, we address
the problem of transport properties in finite systems con-
structed by an array of N unit cells (random barriers and wells).
In terms of the trajectories of the Hamiltonian map (2.5), and
(2.9) the transmittance TN of a finite system of length L = Nd

can be expressed through the following relation [1,2,30]

TN = 4

2 + (R(1))2 + (R(2))2
. (7.1)

Here R(1) and R(2) are the radii of two independent trajectories
at the time n = N which start, respectively, from the points
(R(1)

0 ,θ
(1)
0 ) = (1,0) and (R(2)

0 ,θ
(2)
0 ) = (1,π/2). In the present

context, one can use the famous definition of the inverse

localization length L−1
loc via the transmittance

d

Lloc
≡ λ = − lim

N→∞
1

2N
〈ln TN 〉. (7.2)

As is known from the theory of disordered one-dimensional
(1D) systems, this definition of the Lyapunov exponent is
equivalent to that considered above, see Eq. (2.12). In our
numerical calculations we perform the averaging 〈. . .〉 over
5 × 104 different realizations of the disorder vn which allows
one to reduce the fluctuations.

With the knowledge of the localization length, the mean
value of ln TN can be obtained due to the relation,

〈ln TN 〉 = − 2L

Lloc
, (7.3)

which can be rigorously derived for 1D weakly disor-
dered models with continuous potentials, see, for example,
Refs. [1,2]. It should be stressed that for such models this
relation is rigorously derived for any ratio between the
localization length Lloc and the sample size L, therefore, both
in the ballistic regime (for Lloc � L) and in the localized
regime (for Lloc 	 L). In our model with finite barriers and/or
wells this relation cannot be analytically obtained due to
the presence of resonances, however, below we demonstrate
numerically that it works well in the localized regime, provided
the derived above expressions for the Lyapunov exponent are
used. As for the ballistic regime, our suggestion is to use
another definition of the localization which takes into account
finite size of the sample, see below.

In the case of finite one-dimensional continuous systems
with weak random potential, the scattering problem was
rigorously solved by various analytical methods. Our interest
below is in the validity of the following rigorous expression
for the moments of the transmittance TN (see, e.g., Refs. [1,2])
that can be readily adapted for a discrete model

〈
T s

N

〉 =
√

2

π

exp(−λN/2)

(λN)3/2

∫ ∞

0

α exp(−α2/2λN)dα

cosh2s−1 α

×
∫ α

0
dβ cosh2(s−1) β, s = 0, ± 1, ± 2, ± 3, . . . .

(7.4)

Here λ is the Lyapunov exponent, or the same, dimensionless
inverse localization length d/Lloc ≡ λ (see details, e.g., in
Ref. [2]).

We would like to note that, strictly speaking, expression
(7.4) cannot be derived for the discrete models like our model
with the wells and barriers. The reason is that for continuous
potentials for which the expression has been derived, the
resonances similar to those we are discussing here, are absent.
It is known that for the standard tight-binding Anderson model
the existence of the resonances do not allow to develop general
analytical approach valid for any value of the energy of incident
waves. The famous example is the band center for which the
standard perturbation theory fails and one needs to use specific
methods (see discussion and references in Ref. [2]).

However, recently the expression (7.4) has been tested for
the Anderson model for nonresonant values of energy, and a
perfect correspondence between the analytical predictions and
numerical data has been manifested for two first moments
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FIG. 7. (Color online) Average transmittance vs phase shift ϕ:
(a) N = 300, (b) N = 5000, (c) N = 50 000. Continuous curves
correspond to the analytical expression (7.4) complemented by
Eq. (6.1), circles represent the numerical simulation. Squares stand for
the analytical Eq. (7.4) with λ numerically computed from Eq. (7.5).
Inset (a1) is a zoom of the resonant region at ϕ = π , inset (b1) is a
zoom of the resonant region at ϕ = 2π . The intensity of disorder is
σ 2 = 0.1.

of TN [31]. Thus, our idea here is to explore the validity
of the above expression for both nonresonant and resonant
values of ϕ. In view of the results obtained in Ref. [31] we
also expect that away from the resonances, where the phase
distribution is flat, the formula (7.4) gives the correct result.
Indeed, the data in Figs. 7 and 8 display an excellent agreement
of the curves depicted with the use of Eq. (7.4) containing the
Lyapunov exponent (3.4) with the numerical results calculated
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FIG. 8. (Color online) Transmittance variance vs ϕ. We use the
same notations as in Fig. 7.

via Eq. (7.1) in the regions of the phase shift ϕ where phase
distribution is flat.

On the other hand, our data have shown that in narrow
regions of energy close to the resonances ϕ = π and ϕ = 2π ,
the expression (7.4) completely ignores the presence of the res-
onances and gives incorrect results, provided the localization
length is obtained by assuming the phase distribution is flat.
Thus, our key point is to explore whether the same expression
(7.4), however, with the correct Lyapunov exponent can serve
both for non-resonant and resonant values of ϕ.

The idea to combine the standard expression (7.4) with the
Lyapunov exponent (6.1) valid both in the nonresonant and
resonant regions was found to be very fruitful. Indeed, the
data in Figs. 7(b) and 7(c) and 8(b) and 8(c) demonstrate an
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excellent agreement with our analytical predictions not only
for the mean value of TN , but also for the variance Var{TN } ≡
〈T 2

N 〉 − 〈TN 〉2.
Note, however, that our approach does not work if the value

of N is not large enough. This fact is clearly seen in Figs. 7(a)
and 8(a) where N = 300. The estimate of the Lyapunov
exponent λ for the chosen strength of disorder σ 2 = 0.1 shows
that for both resonances the localization length Lloc is much
larger than the system size Nd, this corresponds to the ballistic
regime. As one can see, a good correspondence between the
data and our analytical approach occurs in a strongly localized
regime, Figs. 7(c) and 8(c), and in the intermediate regime
where the localization length Lloc is of the order of Nd.

Again, we have to recall that the analytical expression (7.4)
works well for any ratio between the localization length and
system size, provided the disorder is described by continuous
potentials for which there are no resonance effects. The
failure of our approach in the ballistic regime is due to the
nonstationarity of the phase distribution as we explain below.

A closer inspection of Eq. (3.2) describing the evolution of
phase θ shows that at the resonances the filling of the whole
range [0,2π ] by the phase is due to the terms containing the
disorder, and not due to the constant drift due to nonresonant
values of ϕ. Therefore, the length Ncr for the emergence of a
stationary distribution for θ can be very large, in contrast with
what happens out of resonances. Indeed, a rough estimate of
this critical length Ncr gives Ncr ≈ 8ϕ2/σ 2. Thus, we have
Ncr ≈ 800 and Ncr ≈ 3600 for the resonances ϕ = π and
ϕ = 2π , respectively. These estimates explain the discrepancy
which can be seen in Figs. 7(a) and 7(b) and 8(a) and 8(b).
According to Eq. (6.1) the localization length at the resonances
is Lloc/d = 8ϕ4/σ 2. As one can see, the ratio between Lloc and
Ncrd is ϕ2, the estimate which gives an additional information
about the role of resonances in our model.

As the next step towards a better agreement between the
analytical description and numerical data, we can suggest
to use the size-dependent Lyapunov exponent λN defined as
follows

λN = − 1

2N
〈ln TN 〉. (7.5)

Then, one can try to use it in the integral formula (7.4),
instead of the stationary Lyapunov exponent λ. In such a
phenomenological approach the value of λN can be found
numerically. Our data, indeed, demonstrate that with this
procedure a quite good agreement occurs between analytical
expressions for first two cumulants of the transmittance and
numerical data, as Figs. 7(a) and 8(a) show.

As one can see, the analysis of the ballistic regime (λN 	
1) in the vicinity of the resonances where ϕ ≈ jπ requires
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FIG. 9. (Color online) Resonant size-dependent Lyapunov expo-
nent λN at ϕ = π vs system size N . Circles show λN numerically
calculated from Eqs. (7.1) and (7.5), straight line presents λ(π ) =
σ 2/8ϕ4 defined by analytical Eq. (6.1). The system length N is
rescaled by λ(π ). The intensity of disorder is σ 2 = 0.1.

two definitions, Eqs. (2.12) and (7.5), for the Lyapunov
exponent. The first (standard) definition (2.12) is given for
an infinite system, therefore, the stationary θ distribution
is always achieved. On the other hand, Eq. (7.5) is the
prelimit counterpart of the first one, and, therefore, depends
on the system size N . Thus, Eq. (7.5) automatically takes
into account an actual phase distribution and provides quite
good results even in the resonant ballistic regime, where the
phase distribution is nonstationary. Figure 9 demonstrates
that the size-dependent Lyapunov exponent (7.5) is saturated
and becomes equivalent to the size-independent one (2.12) at
λN � 1. Consequently, at this system length the stationarity
of θ distribution is successfully reached, and the analytical
expression (6.1) is valid. Indeed, the numerical simulations
originated from Eqs. (7.1) and (7.5) are in excellent agreement
with analytical equations (7.4) and (6.1). This fact is clearly
seen in Figs. 7(b), 7(c), 8(b) and 8(c). Thus, our results
demonstrate that the formulas (6.1) and (7.4) provide quite
good analytical description of the transport properties in
comparison to numerical simulation even at the resonant
energies.
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