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Mauricio S. Ribeiro,1,* Constantino Tsallis,1,2,3,† and Fernando D. Nobre1,2,‡
1Centro Brasileiro de Pesquisas Fı́sicas

2National Institute of Science and Technology for Complex Systems
Rua Xavier Sigaud 150-Urca, Rio de Janeiro, Rio de Janeiro 22290-180, Brazil
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

(Received 10 July 2013; published 6 November 2013)

Under the assumption that the physically appropriate entropy of generic complex systems satisfies thermody-
namic extensivity, we investigate the recently introduced entropy Sδ (which recovers the usual Boltzmann-Gibbs
form for δ = 1) and establish the microcanonical and canonical extremizing distributions. Using a generalized
version of the H theorem, we find the nonlinear Fokker-Planck equation associated with that entropic functional
and calculate the stationary-state probability distributions. We demonstrate that both approaches yield one and
the same equation, which in turn uniquely determines the probability distribution. We show that the equilibrium
distributions asymptotically behave like stretched exponentials, and that, in appropriate probability-energy
variables, an interesting return occurs at δ = 4/3. As a mathematically simple illustration, we consider the
one-dimensional harmonic oscillator and calculate the generalized chemical potential for different values of δ.
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I. INTRODUCTION

Since the proposal of Boltzmann-Gibbs (BG) statistical
mechanics, systems with long-range interactions are con-
sidered out of the scope of this theory due to a divergent
canonical partition function (see, e.g., Refs. [1–4]). Later,
other restrictions, many of them appearing within the class of
the so-called complex systems, like long-time memory and/or
strong correlations among its particles, were also realized to
yield difficulties for the BG theory. Considering that statistical
mechanics may be formulated by starting from a given
statistical entropy [4,5], many entropic forms were introduced
in the last decades, as attempts to generalize the standard BG
formulation; among those, we may mention the entropy Sq [6],
associated with nonextensive statistical mechanics [5,7], as
well as the proposals by Curado [8], Anteneodo-Plastino [9],
and Kaniadakis [10], the recent two-parameter Sq,δ entropy
[11], as well as the Hanel-Thurner Sc,d entropy [12], which
recovers some of the above examples as particular limits.
From these, the most investigated so far has been the entropy
Sq , whose associated probability distributions, known as q

exponentials and q Gaussians, have emerged in many natural
systems [5,7].

For an appropriate matching with thermodynamics, a given
complex system should be described by means of an extensive
entropy. In order to know which entropy is suitable for a
given system, it is important to know how the total number of
microstates W , within a microcanonical-ensemble description,
scales with N , the total number of constituents. Therefore, the
usual connection between the microscopic and macroscopic
worlds follows from an appropriate definition of its statistical
entropy. In the case of weakly interacting constituents, W (N )
usually increases exponentially with N , so that the BG entropy
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represents the correct choice,

W (N ) ∼ aξN ;

SBG(N ) = kB ln W (N ) ∼ kBN ln ξ (1)

(a > 0; ξ > 1; N → ∞),

yielding a linear increase with N , thus satisfying thermody-
namical extensivity. Now, if we consider a system character-
ized by strong correlations, W (N ) may behave like a power of
N , namely,

W (N ) ∼ bNρ (b > 0; ρ > 0; N → ∞), (2)

in such a way that the BG entropy is not extensive. In this case,
one verifies that the q entropy, for q = 1 − 1/ρ, satisfies the
desired requirement of extensivity,

Sq(N ) = k lnq W (N ) ∝ N (N → ∞), (3)

where lnq x = (x1−q − 1)/(1 − q) [5].
However, intermediate situations can occur in nature; e.g.,

a system may present correlations among its elements that
are not strong enough to be characterized by Eq. (2), neither
sufficiently weak to be described by Eq. (1). As an example,
one has

W (N ) ∼ cνNζ

(c > 0; ν > 1; 0 < ζ < 1; N → ∞). (4)

Recently, a new entropy was proposed [5,7] as a candidate for
this class of systems, namely,

Sδ = k

W∑
i=1

pi

(
ln

1

pi

)δ

(δ > 0). (5)

Considering W (N ) as in Eq. (4), one notices that Sδ(N )
becomes

Sδ(N ) = k(ln W )δ ∼ k(ln ν)δNζδ, (6)

leading to an extensive entropy for the choice δ = 1/ζ > 1.
A well-known and rather curious situation occurs in the case

of Schwartzschild black holes, where the BG entropy scales
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as L2, i.e., proportional to its area, and not to its volume L3

(herein, L denotes a characteristic linear length of the system).
In a similar way, a wide class of strongly quantum-entangled
d-dimensional systems follows the so-called area law [13],
for which SBG is proportional to Ld−1, instead of Ld (d > 1).
These results violate the expected extensivity requirement of
the thermodynamical entropy of a d-dimensional system. The
entropy Sδ of Eq. (5) has emerged recently as appropriate
for reconciling this difficulty [11]; indeed, Sδ=d/(d−1) ∝ Ld .
Since in most cases the comparison of theoretical results
with experimental and observational verifications are carried
through probability distributions, the main motivation of the
present study is to analyze the distributions associated with the
entropic form Sδ .

In what follows we concentrate on its associated meso-
scopic dynamics, usually defined, as we shall see, by a
nonlinear Fokker-Planck equation (NLFPE). In the next
section we find the class of NLFPEs associated with Sδ , from
which we will define the simplest NLFPE to be investigated;
we show that its stationary probability distribution follows
a transcendental equation. In Sec. III, using the well-known
Lagrangian multipliers method, we extremize the entropic
form under microcanonical and canonical constraints, obtain-
ing in this latter case an equation for the probability distribution
which, interestingly enough, can be precisely identified with
the one derived from the NLFPE approach. Then we solve
the transcendental equation for some typical cases and show
that the probability distributions asymptotically are stretched
exponentials, thus opening the door to applications in physical
systems where such distributions are frequently found. In
Sec. IV, we consider the Einstein’s model for a solid as a
mathematical illustration, compute the Lagrange multiplier μ,
called herein “generalized chemical potential,” that recovers
the usual form for δ → 1, and suggest an unified expression
for its temperature dependence. As a second illustration, we
also solve the transcendental equation for an external harmonic
potential and compute the associated equilibrium (stationary
state, generically speaking) probability distributions for typical
values of δ. Finally, in Sec. V we present our conclusions.

II. ASSOCIATED NONLINEAR
FOKKER-PLANCK EQUATION

The H theorem represents one of the most important results
of nonequilibrium statistical mechanics, guaranteeing that a
system will approach an equilibrium state, after a long-time
evolution. The proof of the H theorem making use of NLFPEs
was developed in many works in recent years [14–21]; in
the case of a system in the presence of a confining external
potential, φ(x), this theorem corresponds to a well-defined sign
for the time derivative of the free-energy functional,

F [P ] = U [P ] − γ S[P ]; U [P ] =
∫

dx φ(x)P (x,t), (7)

where P (x,t) is the density distribution, U [P ] stands for
the internal-energy functional, and γ represents a positive
parameter with dimensions of temperature. One should notice
that the energy is defined herein in the standard (linear) way,
instead of in the q-expectation form [5]. The entropy may be

considered as very general,

S[P ] = k

∫
dx g[P (x,t)];

(8)

g(0) = g(1) = 0;
d2g

dP 2
� 0,

where k is a positive constant with dimensions of entropy and
the functional g[P (x,t)] should be at least twice differentiable.

Considering a form for the NLFPE [20–23],

∂P (x,t)

∂t
= −∂{A(x)
[P (x,t)]}

∂x

+ ∂

∂x

{
�[P (x,t)]

∂P (x,t)

∂x

}
, (9)

where A(x) = −dφ(x)/dx represents an external force,
whereas 
[P ] and �[P ] are positive functionals of P (x,t),
the H theorem is satisfied, provided that the following relation
holds [20,21]:

d2g[P ]

dP 2
= − 1

kγ

�[P ]


[P ]
. (10)

The equation above relates the functionals �[P ] and 
[P ] of
the NLFPE with g[P ] of the entropy, associating the entropy
with a mesoscopic dynamics defined by Eq. (9).

Within this framework, we are concerned with the contin-
uous form of the entropy Sδ ,

Sδ[P ] = k

∫
P (x,t)

[
ln

1

P (x,t)

]δ

dx (δ > 0), (11)

from which the inner functional is readily identified,

g[P (x,t)] = P (x,t)

[
ln

1

P (x,t)

]δ

. (12)

Substituting the above expression into Eq. (10) and taking the
derivative twice, one obtains the relation

�[P ]


[P ]
= kγ

P

[
δ

(
ln

1

P

)δ−1

− δ(δ − 1)

(
ln

1

P

)δ−2]
. (13)

It is important to notice that the ratio between the functionals
�[P ] and 
[P ] defines a family of of NLFPEs associated
with the same entropy [20]. The simplest possible choice
corresponds to 
[P ] = P (x,t), in which case the functional
�[P ] follows immediately from Eq. (13). Now, defining the
coefficient of the diffusion term as D = kγ (in analogy to the
linear case [24]) and substituting these functionals into Eq. (9),
one obtains

∂P (x,t)

∂t
= − ∂{A(x)P (x,t)}

∂x
+ Dδ

∂

∂x

{([
ln

1

P (x,t)

]δ−1

− (δ − 1)

[
ln

1

P (x,t)

]δ−2)
∂P (x,t)

∂x

}
, (14)

which represents a NLFPE associated with the entropy Sδ .
Although the above equation may seem unusual, one should
notice that similar NLFPEs have been introduced in the
literature recently, as appropriate for a description of several
natural phenomena (see, e.g., Refs. [14,15,19]. On the right-
hand side of Eq. (14), the second term corresponds to a
nonlinear (anomalous) diffusion contribution, whereas the first
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one represents a standard drift term, responsible for driving
the system towards its stationary state. Therefore, after a
sufficiently long time, one expects to reach a stationary state
at which the probability distribution Pst(x) does not depend on
time; setting (∂P/∂t) = 0 in Eq. (14), one obtains

lnδ

(
1

Pst

)
− δ lnδ−1

(
1

Pst

)
− 1

D
[φ(x) − φ0] = 0, (15)

where φ0 is a constant representing the zero-energy scale.
The solutions of the transcendental Eq. (15) represent the

stationary probability distributions, which characterize the
system under study. In principle, one cannot find an explicit
solution for general values of δ; however, this may be done
for some special values of δ, whereas, in other cases, numerical
solutions can be computed. In the next section we show that
Eq. (15) can also be obtained through the maximum-entropy
principle and we solve it for typical values of δ.

III. MAXIMUM-ENTROPY PRINCIPLE AND
EQUILIBRIUM DISTRIBUTIONS

For a system with an entropic functional S[P ] and internal
energy U [P ], the equilibrium probability distributions Peq may
be obtained by maximizing S under certain constraints, using
the Lagrangian multipliers method [4]. For that, the concavity
requirement, (d2S[P ]/dP 2 < 0), guarantees that a maximum
of the entropy corresponds to an equilibrium distribution.

Let us then consider the entropic form of Eq. (11); first, we
work in the microcanonical ensemble, where W (E) represents
the volume of phase space occupied by a system with energy
in the interval E and E + �. Extremizing the dimension-
less entropy (Sδ[P ]/k) of Eq. (11) under the probability-
normalization constraint,

∫
Peq(x)dx = 1, one obtains

lnδ

(
1

Peq

)
− δ lnδ−1

(
1

Peq

)
− α = 0, (16)

where α is the associated Lagrangian multiplier. It is straight-
forward to see that the solution of Eq. (16) corresponds
to Peq = constant and that normalization mandates equal
probabilities, Peq = 1/W for all values of δ, as expected for a
microcanonical ensemble.

In the canonical ensemble, an additional Lagrangian
multiplier β related with the mean-energy constraint, U =∫

Peq(x)φ(x)dx, is introduced. Extremizing (Sδ[P ]/k) of
Eq. (11) under these two constraints, one finds

lnδ

(
1

Peq

)
− δ lnδ−1

(
1

Peq

)
− α − βφ(x) = 0. (17)

One notices that the equation above, obtained from entropy
maximization, is identical to Eq. (15), calculated for the
NLFPE stationary state, if one chooses appropriately the
Lagrangian multipliers, i.e., α = −φ0/D and β = D−1 =
(kγ )−1. From now on, we consider Eq. (17) [or equivalently,
Eq. (15)] as the transcendental equation for the equilibrium
distribution Peq(x). For computational purposes, we write this

equation as

lnδ

(
1

Peq

)
− δ lnδ−1

(
1

Peq

)
= h(x); [h(x) ≡ α + βφ(x)].

(18)

Some important points concerning the equation above are dis-
cussed next. (i) By solving Eq. (18) one will obtain Peq[h(x)],
which is not normalized in the h variable,

∫ ∞
−∞ Peq(h)dh �= 1.

Only by specifying a physical system, i.e., the form of the po-
tential φ(x), is that one may calculate the probability distribu-
tion Peq(x) = Peq[h(x)](dh/dx), such that

∫ ∞
−∞ Peq(x)dx = 1.

(ii) In many situations the Lagrangian parameter α [that
appears in h(x)] cannot be directly eliminated by imposing
the normalization constraint; the normalization has to be done
numerically in some cases. (iii) Although Eq. (18) does not
present analytical solutions for general values of δ, one can
solve it in the asymptotic limit h � 1. Since δ > 1, one has in
this limit

lnδ

(
1

Peq

)
� δ lnδ−1

(
1

Peq

)
⇒ lnδ

(
1

Peq

)
≈ h, (19)

leading to a stretched exponential, Peq(h) ∼ exp(−h
1
δ )

(h � 1). This result opens the possibility of applications
for the entropy Sδ , since stretched-exponential distributions
are currently found in nature. (iv) Equation (18) can be
solved analytically in some particular limits. By defining
the variable y = lnδ−1(1/Peq), one can solve the cases δ =
{1,(4/3),(3/2),2,3,4}; some of these solutions are discussed
below.

(i) δ = 1. Considering δ = 1 in Eq. (17), one finds the
Boltzmann weight as expected,

Peq(x) = exp[−(1 + α) − βφ(x)]

= exp[−βφ(x)]∫
dx exp[−βφ(x)]

, (20)

where, as usual, the Lagrangian parameter α was chosen by
imposing probability normalization.

(ii) δ = 2. In this case, Eq. (18) becomes a quadratic
equation,

ln2

(
1

Peq

)
− 2 ln

(
1

Peq

)
= h, (21)

that presents the following solution:

Peq(h) = exp{−[1 + (1 + h)
1
2 ]}. (22)

This illustrates a peculiarity which occurs indeed for all δ > 1,
namely the fact that no function of the Lagrangian parameter
α [that appears in h(x)] can be factorized by imposing the
normalization constraint. This is precisely what happens, as
well known, with the chemical potential in Fermi-Dirac and
Bose-Einstein statistics. In the present case, such a difficulty
comes as a direct consequence of the nonlinear aspect of the
distribution Peq(h) above, and as usually happens in nonlinear
equations, one has generically to make use of numerical
procedures. This restriction is often found in generalized-
entropy formalisms (see, e.g., Ref. [25]), where one needs
to compute numerically the value of α in order to normalize
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FIG. 1. (Color online) Equilibrium distributions Peq[h(x)] versus h(x), as computed from Eq. (18), are presented in the linear [panels (a)
and (c)] and log-linear [panels (b) and (d)] representations, for typical values of δ in the range 1 � δ � 4. The full lines are guides for the eye.

the distribution. As expected, in the asymptotic limit (h � 1),
one has a stretched exponential Peq(h) ∼ exp(−h

1
2 ).

(iii) δ = 3. The case δ = 3 yields the cubic equation

ln3

(
1

Peq

)
− 3 ln2

(
1

Peq

)
= h, (23)

from which just one of its roots presents the expected require-
ments for a probability distribution. This solution is given by

Peq(h) = exp

{
−

[
1 +

(
2

2 + h + √
h2 + 4h

)1/3

+
(

2 + h + √
h2 + 4h

2

)1/3]}
, (24)

yielding in the asymptotic limit (h � 1) the stretched expo-
nential, Peq(h) ∼ exp(−h

1
3 ).

In Fig. 1 we present probability distributions Peq(h),
obtained from Eq. (18), in both linear [panels (a) and
(c)] and log-linear [panels (b) and (d)] representations, for
typical values of δ in the range 1 � δ � 4. In the cases

δ = {1,(4/3),(3/2),2,3,4} the distributions were calculated
analytically, whereas those for δ = {1.1,1.8,2.5,3.5} were
computed numerically. In the log-linear plots, the curves
approach straight lines as δ → 1, up to the exponential limit
(δ = 1), where the distribution becomes effectively a straight
line in this representation. Additionally, in the log-linear plots
one notices that the significant weight of the tails appears
clearly for increasing values of δ, whereas the asymptotic
stretched exponential predicted in Eq. (19) is also suggested;
strong numerical evidence of this latter behavior is provided
below in Fig. 3.

Except for the case δ = 1, one sees cutoffs h∗ in the
curves presented in Fig. 1. These cutoffs, which appear always
for h(x) < 0, represent lower-limit points up to which the
distributions Peq(h) remain real and positive. From Figs. 1(a)
and 1(c) one notices that h∗ → −∞, whereas Peq(h∗) → 0 as
δ → ∞. Moreover, by increasing δ a rapid decay of Peq(h) for
h � h∗ is verified, followed by significant weights in the tails.
The coordinates of these cutoffs are plotted in Fig. 2, where we
represent Peq(h∗) versus −h∗. One notices a curious return for
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FIG. 2. (Color online) Coordinates of the lower-limit points of
the distributions Peq(h) presented in Fig. 1 are exhibited as Peq(h∗)
versus −h∗, for typical values of δ. One notices an interesting return
occurring for δ = 4/3 (see arrow). At the BG limit (δ → 1), we verify
[Peq(h∗),h∗] = (1,−1). The full line is a guide for the eye.

δ = 4/3; if one considers the identification done in Ref. [11]
(related to the area law in strongly quantum-entangled d-
dimensional systems), namely δ = d/(d − 1), this return point
occurs for dimension d = 4. According to this identification,
the BG limit (δ → 1) occurs for d → ∞; this is analogous
to what happens in conformal quantum-field theory, where the
central charge c → ∞ corresponds to the BG limit [26]. Notice
also that, by indefinitely increasing δ, one approaches one-
dimensional quantum-entangled systems. Since h∗ represents
a lower limit for the variable h(x) = α + βφ(x) up to which
the distribution Peq(h) is defined, the plot of Fig. 2 shows that
the Lagrange parameters α and β should be defined together
with the external potential φ(x) to yield appropriate probability
values of Peq(h) for any given value of δ. Since 0 � Peq(h) � 1

and h > h∗ define the allowed region for the probabilities, the
line shown in Fig. 2 separates the physically accessible region
(to the left of the curve) from the physically inaccessible
one (to the right of the curve). One sees that the cutoffs
h∗ tend to disappear for d → 1, which corresponds to the
dimension where SBG changes its scaling from Ld−1 to ln L.
However, in the interval 1 � δ � 2, i.e., 2 � d < ∞, there are
two different values of δ with the same cutoff h∗ (which varies
slightly around h∗ = −1), presenting an effect very similar to
a reentrance found in some phase diagrams, e.g., in disordered
magnetic systems. Within this interval, only at the turn point
δ = 4/3 (d = 4) does that one have a single value for h∗;
this curious effect may hide some elusive physical property
associated with d = 4.

The approximation carried in Eq. (19) applies for h � 1,
but fails for h ≈ 0, or h < 0. In Fig. 3 we reinforce the
validity of the assumption considered in Eq. (19), by presenting
numerical evidence that the stretched-exponential behavior
always occurs for any δ > 1. In Fig. 3(a) we present log-
log plots of the distributions Peq(h) versus h, particularly
exhibiting the tails of the distributions. One sees that the
distribution decay becomes weaker, by increasing δ; i.e., one
gets fat tails in this limit. In Fig. 3(b) we represent Peq(h) versus
[h(x)]1/δ , where the stretched exponentials should appear as
straight lines; one verifies such a behavior in the large h limit,
as expected. This result suggests that the entropy Sδ might be
particularly relevant, since stretched-exponential distributions
have been observed in many natural phenomena (see, e.g.,
Ref. [27]), such as luminescence decays [28], anomalous
diffusion associated with fractional-diffusion equations [29],
and turbulent flows [30], among others. Moreover, it has also
been associated with the entropy of Anteneodo and Plastino [9]
and found within the context of superstatistics [31].

In the next section we study in further detail the Lagrangian
parameter α associated with the normalization of the distribu-
tion, by relating it to a chemical potential μ, similar to what is
done in BG statistical mechanics.
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FIG. 3. (Color online) Probability distributions are shown for different entropic indexes δ, emphasizing the large h limit. (a) Log-log plots
of the distributions Peq(h) versus h. (b) Probability distributions exhibited in the representation Peq(h) versus [h(x)]1/δ , particularly useful for
identifying the asymptotic stretched-exponential behavior. The full lines are guides for the eye.
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IV. NORMALIZATION AND CHEMICAL
POTENTIAL ANALYSIS

In the previous section we studied equilibrium probability
distributions Peq(h) for typical values of δ > 1, by introducing
a variable h(x) = α + βφ(x), related to the two Lagrangian
parameters α and β, as well as to the external confining
potential φ(x) acting on the system [cf. Eq. (18)]. Due to
its generality, the distributions presented were not normalized;
for that, one needs to specify the form of φ(x), in such a way
that the normalization comes from a particular choice of the
Lagrangian parameter α.

In this section we work with normalized probability distri-
butions by introducing a quantity μ related to the parameter
α. Moreover, we restrict the present analysis to two cases for
which the equilibrium distribution is solvable analytically from
Eq. (18), namely, δ = 2 and δ = 3. As shown next, the quantity
μ plays a role similar to the chemical potential of BG statistical
mechanics; for this purpose, we postulate the relation

(δ − 1) + α = −βμ, (25)

which recovers the standard definition in the case δ = 1.
First, we consider Einstein’s model for a solid, described in

terms of noninteracting one-dimensional harmonic oscillators,
each with energy spectrum Ei = nih̄ω, where {ni} represent
the usual quantum numbers, and we have subtracted off
the zero-point energy. This interesting mathematical exercise
provides some insight on μ(β) for values of δ �= 1. Besides
that, we are motivated by previous investigations on systems
of noninteracting particles using the q entropy, which by ad-
justing a value q �= 1 were able to describe complex behavior
of long-range-interacting physical systems in agreement with
experiments, e.g., those found in the study of manganites [32].

In a second example we use an external harmonic confining
potential, which is commonly considered in the study of prob-
ability distributions [24]. In some cases, one can approach a
given complex system in the presence of a confining harmonic

potential φ(x) by means of a coarse-graining approximation
on its equations of motion, leading to a NLFPE [like the
one in Eq. (14)]. In this equation, the contribution due to the
interactions among particles result in the anomalous-diffusion
term, particularly in its diffusion coefficient D [33,34];
therefore, the harmonic potential φ(x) that appears in Eq. (15)
plays a crucial role in the associated probability distributions.

Let us then consider the first example, namely, the en-
ergy spectrum Ei = nih̄ω. For that, one needs to extremize
(Sδ/k) in its discrete form [cf. Eq. (5)]; considering the
constraints of normalization,

∑W
i=1 pi = 1, and mean energy,

Ē = ∑W
i=1 piEi , one obtains

lnδ

(
1

pi

)
− δ lnδ−1

(
1

pi

)
− α − βEi = 0, (26)

which coincides with Eqs. (17) and (18) if one replaces pi →
Peq and Ei → φ(x). Therefore, solving analytically Eq. (26)
one obtains discrete sets of probabilities {pi} presenting
solutions similar to those of Sec. III, which in the limit of
sufficiently large sets should approach a continuous probability
distribution. Then one calculates numerically the value of μ

such as to normalize these distributions for a given value of β.
It is important to mention that the normalization procedure
depends strongly on the value of β. As β gets smaller
the associated distribution exhibits heavier tails, so that a
larger number of points is necessary to ensure probability
normalization; we have generated sets {pi} from Eq. (26),
with typically (300/β) probabilities for each value of β.

For completeness, we considered the case δ = 1 as well,
for which the analytical result is known exactly [35],

μ = (1/β) ln{1 − exp[−(βh̄ω)]}
∝ −(1/β) ln{1/(βh̄ω)} (β → 0), (27)

and we have written above the high-temperature limit (β → 0)
of the chemical potential explicitly. This chemical poten-
tial is presented in Fig. 4 versus (βh̄ω)−1 [Fig. 4(a)] and

(a) (b)

FIG. 4. (Color online) The chemical potential μ is represented versus convenient variables in the case δ = 1. (a) Dimensionless quantity
μ/(h̄ω) versus (βh̄ω)−1; (b) dimensionless quantity μ/(h̄ω) versus [1/(βh̄ω)] ln[1/(βh̄ω)]. The red curve is a linear regression, with μ/(h̄ω) =
[1/(βh̄ω)] ln[1/(βh̄ω)] − 0.49.
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(a) (b)

(c) (d)

FIG. 5. (Color online) The chemical potential μ is exhibited versus convenient variables for the cases δ = 2 [panels (a) and (b)] and δ = 3
[panels (c) and (d)]. (a) Dimensionless quantity μ/(h̄ω) versus (βh̄ω)−1; (b) dimensionless quantity μ/(h̄ω) versus [1/(βh̄ω)]{ln[1/(βh̄ω)]}7/4.
(c) Dimensionless quantity μ/(h̄ω) versus (βh̄ω)−1; (d) dimensionless quantity μ/(h̄ω) versus [1/(βh̄ω)]{ln[1/(βh̄ω)]}13/7. The red lines are
linear regressions.

[1/(βh̄ω)] ln[1/(βh̄ω)] [Fig. 4(b)]. In the latter case the
straight-line behavior confirms the high-temperature behavior
of Eq. (27).

We have carried similar procedures for the variable μ

defined according to Eq. (25), in the cases δ = 2 and δ = 3,
for which the equilibrium distributions were calculated exactly
for a general φ(x) in the previous section [cf. Eqs. (22)
and (24), respectively]. Then, imposing normalization of
the distributions for each value of β, one obtains μ(β) for
δ = 2 and δ = 3. The corresponding results are exhibited
in Fig. 5, where in panels (a) and (c) one sees that the
plots μ/(h̄ω) versus (βh̄ω)−1 show a qualitative behav-
ior similar to the case δ = 1 [cf. Fig. 4(a)]. Actually, in
Figs. 5(b) and 5(d) one verifies that μ/(h̄ω) scale as powers
of ln[1/(βh̄ω)], where red lines represent linear regressions

leading to

μ/(h̄ω) ∝ (βh̄ω)−1{ln[1/(βh̄ω)]}7/4 (δ = 2), (28)

μ/(h̄ω) ∝ (βh̄ω)−1{ln[1/(βh̄ω)]}13/7 (δ = 3). (29)

From Eqs. (27)–(29) we propose the following generalization
for the chemical potential μ,

μ = a(1/β)(ln{1 − exp[−(βh̄ω)]})b + c, (30)

where a, b, and c are all δ dependent. However, according to
Figs. 5(b) and 5(d), in the limit β → 0, one should have

μ ∝ −(1/β)(ln{1/(βh̄ω)})b (β → 0), (31)
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FIG. 6. (Color online) Normalized probability distributions
Peq(x), considering a harmonic potential φ(x) = −x2/2, for δ = 2
[from Eq. (22)] and δ = 3 [from Eq. (24)]. In each case, a
Gaussian regression is exhibited, by adjusting the central region,
for comparison.

where we conjecture b(δ) = (6δ − 5)/(3δ − 2). These results
show that μ plays a role very similar to the chemical potential
in BG statistical mechanics.

Another illustrative example concerns a complex system
subjected to an external harmonic potential, φ(x) = x2. Then,
substituting the definition of Eq. (25) in h(x) as introduced in
Eq. (18), one obtains

h(x) = β[φ(x) − μ] − (δ − 1)

= β(x2 − μ) − (δ − 1). (32)

In the following analysis we use the expression above in
Eqs. (22) and (24) in order to obtain normalized distributions
for the cases δ = 2 and δ = 3, respectively. In the first case
one has

Peq(x) = exp(−{1 + [β(x2 − μ)]
1
2 }). (33)

In Fig. 6 we present the distribution of Eq. (33), called herein a
δ Gaussian (characterized by an exponent 1/δ = 1/2), where
we have used μ = −21.25 and β = 0.1. Additionally, the
δ = 3 distribution of Eq. (24) is also exhibited and normalized
by using the parameters μ = −41.65 and β = 0.1. In each
case, Gaussian fits are presented for comparison, showing a
good agreement in the central region, but diverging strongly for
large values of x. In agreement with the results of the previous
section, namely Eq. (19) and Fig. 3(b), both δ-Gaussian
distributions shown in Fig. 6 approach stretched exponentials,
Peq(x) ∼ exp[−(βx2)1/δ], in the asymptotic limit. Since these
distributions are Gaussian-like in their central region, with long
tails following stretched-exponential behavior, they appear
as candidates for anomalous-diffusion processes described in
terms of fractal-derivative equations, where both behaviors
have been found [29].

V. CONCLUSIONS

We have investigated properties of the probability distribu-
tion associated with the recently proposed entropic form Sδ

(which recovers the usual BG form for δ = 1). By considering
a generalized version of the H theorem, we have found
a NLFPE related to the Sδ entropy, whose stationary-state
solution follows a transcendental equation. This later equation
was precisely the same obtained by extremizing the entropy,
a procedure which yields equilibrium distributions. Such a
transcendental equation was solved for typical values of δ > 1,
analytically for special values of δ, as well as numerically in
other cases.

First, we have analyzed the equilibrium distributions Peq(h)
in terms of a general variable, h(x) = α + βφ(x), where α

and β are Lagrange multipliers and φ(x) represents a general
confining potential. In this case, we have shown that the
equilibrium distributions approach stretched exponentials in
the asymptotic regime for all δ > 1. Moreover, cutoffs h∗
were introduced, given by lower-limit points up to which
the distributions Peq(h) remain real and positive. A plot
of the coordinates of such points, Peq(h∗) versus −h∗ for
several values of δ, has shown a curious effect at the
value δ = 4/3, characterizing a return point of the associated
curve.

As an illustration, we have solved the transcendental
equation by considering the energy spectrum of a quantum
one-dimensional harmonic oscillator. In this case, by impos-
ing probability normalization, we have found a generalized
chemical potential μ(β) in terms of the Lagrange parameter β,
considering values of δ for which the transcendental equation
is solved analytically, namely δ = 1, 2, and 3. The qualitative
behavior of μ(β) in the cases δ = 2 and 3 is very similar to the
one in the BG particular case.

Recently, the entropy Sδ was shown to be an appropriate
choice for the thermodynamics of black holes, as well as for
strongly quantum-entangled systems [11]. In these systems
the BG entropy SBG does not present the scaling expected
for an appropriate thermodynamical framework. Considering
L as a characteristic linear length of the system, SBG scales
as L2 (and not as L3) in the case of a black hole, whereas
it scales as Ld−1 (and not as Ld ) for d-dimensional strongly
quantum-entangled systems (d > 1). In the present study we
have defined its associated mesoscopic dynamics, following a
NLFPE, and have analyzed its stationary-state distributions.
Since in most cases the comparison of theoretical results
with experimental and observational verifications are done
by means of probability distributions, the present analysis
is expected to be useful for this purpose. Additionally, the
fact that these distributions decay asymptotically as stretched
exponentials suggests its applicability for many other phenom-
ena in which such a behavior has already been verified, like
luminescence decays, anomalous diffusion associated with
fractional-diffusion equations, and turbulent flows. Moreover,
very recently it has been advanced [36] that Sδ appears to be
relevant to the discussion of the dark energy of the universe
in connection with the observational luminosity-redshift data
available today.
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