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Pulling alternating copolymers adsorbed on a striped surface
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We consider a partially directed walk model of a strictly alternating copolymer adsorbing on a striped surface
where the energy is associated with the numbers of the two types of monomers adsorbed on the two types of
surface sites. A force is applied to the last monomer and the polymer responds to this force, sometimes by
desorbing. The force can be applied at various angles, with the surface component parallel or perpendicular (or at
some other angle) to the stripe direction. The desorption behavior is strongly dependent on the force direction and
the response gives information about the shape and direction of the polymer adsorbed on the surface, especially
at low temperatures. In some cases the ground state is degenerate and this also has an important effect on the
temperature dependence of the critical force needed for desorption. We give a complete solution of the problem
using generating function techniques and an approximate treatment that is especially useful at low temperatures
and helps in our physical understanding of the situation.
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I. INTRODUCTION

When polymers in dilute solution adsorb at an impenetrable
planar surface they can be desorbed by increasing the temper-
ature. In this situation the entropy of the desorbed polymer
compensates for the energy term associated with desorption,
and the location of the phase transition (i.e., the transition
temperature) is determined by the energy-entropy balance.
The phase transition is thought to be second order and this can
be proved for some models of the adsorption process [1,2].
The polymer can be subjected to a force, e.g., using atomic
force microscopy [3,4], and this force can cause desorption
of an adsorbed polymer. In this case the location of the phase
transition (i.e., the critical force required for desorption at a
particular temperature) is primarily determined by a balance
of the energy associated with adsorption and the elastic energy
associated with the force, though entropy also plays a role.
The phase transition is expected to be first order and, again,
this can be proved for some models [5].

The polymer has conformational freedom and the model
chosen must reflect this freedom. Various models of the
polymer can be used, including random walks [1,2,6], di-
rected and partially directed walks [7–9], and self-avoiding
walks [10–12]. Both the polymer and the surface can be
homogeneous or heterogeneous and the heterogeneity can be
random [13–16] or regular [17–21]. When the inhomogeneity
is random it can be annealed or quenched [15,16].

When the polymer and the surface are both inhomogeneous
[13,18–21] there are connections to the biological problem
of recognition [18–23]. The basic recognition question is as
follows: Will a particular monomer sequence lead to more
favorable adsorption on a surface with a particular pattern?
Clearly, this is connected to how the polymer is arranged on the
surface in the adsorbed state. It seems that pattern recognition
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is likely to be more effective when the polymer and the surface
both have regular heterogeneity [18–21,23] and experimental
techniques exist for producing regularly patterned surfaces
[24–26]. There is some experimental work on adsorption
on these surfaces, for instance, on the adsorption of DNA
on patterned surfaces [24,26]. Some theoretical work has
been carried out on copolymer adsorption on inhomogeneous
surfaces [13,17–23,27–30]. In this paper we are concerned
with regular inhomogeneity and with the special case of the
adsorption of a strictly alternating copolymer on a regularly
striped surface [21].

When a force is applied, the case that has received the
most attention is that where the force is normal to the surface
[5,12,31,32]. However, pulling parallel to the surface has also
been considered [33] and this promotes adsorption rather than
causing desorption. More generally, the force can be applied
at an angle to the surface [34–38]. This is particularly relevant
when the surface is striped since the surface component of the
force can be parallel or perpendicular (or at some other angle)
to the direction of the stripes and this can have marked effects
on the desorption behavior [38]. The response of the adsorbed
polymer to the applied force (and to the direction in which it
is applied) can give useful information about how the polymer
lies on the surface. This will be especially important for the
case of an alternating copolymer on a striped surface, which
is a prototype for the more general case of adsorption of an
inhomogeneous polymer on an inhomogeneous surface, which
itself is relevant to the recognition process [16,18–20,22,23].

In Sec. II we describe a partially directed walk model
(see Fig. 1) that can be solved exactly by generating function
techniques. The thermodynamics can then be extracted from
the asymptotics of the generating function. We give a general
outline of the model and the procedure in Sec. II and postpone
technical details to Sec. III. In Sec. IV we give an approximate
treatment that is exact at zero temperature and gives a good
approximation at low temperatures, which suggests that this
type of low temperature approximation can be used with
confidence in examining models that are not exactly solvable.
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FIG. 1. (Color online) The convention used for the angles θ and
φ. When the surface component of the force is parallel to the stripe
direction, then φ = 0.

This approach helps to give a physical understanding of some
of the results obtained exactly in Sec. III. We close with a brief
discussion of our results in Sec. V.

We show that the arrangement of the copolymer on
the striped surface can be very different from that of a
homopolymer on a striped surface [38], especially at low
temperatures. The sequence of comonomers is interacting
with the arrangement of surface sites and the copolymer
is recognizing this arrangement. We also show how these
differences in the adsorbed conformations are reflected in the
temperature dependence of the critical force for desorption. In
addition we explore the incidence of degenerate ground states
and how their associated entropy affects the low temperature
behavior of the critical force. The low temperature treatment
developed in Sec. IV is crucial in understanding this behavior.

II. THE MODEL

In this section we describe a partially directed walk model
of the adsorption of a strictly alternating copolymer on a striped
surface and the response of the system to a force applied
at the final vertex of the walk. The force can be applied
in various directions and the results are strongly dependent
on the direction of the force. The approach used will be to
define generating functions for various types of walks and to
use factorization techniques to write down equations relating
these generating functions. The thermodynamic properties
of the model will be determined by the asymptotics of the
generating functions. However, we first describe the model
and define appropriate thermodynamic functions.

Consider the simple cubic lattice Z3 with vertices having
integer coordinates. Attach the obvious coordinate system
(x1,x2,x3). A partially directed walk is a self-avoiding walk
on the simple cubic lattice that starts at the origin and has
steps in the positive x1 and x2 directions and in both the positive
and negative x3 directions, with the final vertex at height h � 0
above the surface x3 = 0. It has the restriction that every vertex
of the walk has non-negative x3 coordinate (so that the walk

lies in or on one side of the impenetrable surface), and the
surface x3 = 0 is the surface at which adsorption can occur.

The surface is striped with two kinds of surface site, a

and b, determined by the parity of the x2 coordinate. That
is, the stripes are in the plane x3 = 0 and run parallel to the
x1 axis. We are interested in the alternating copolymer case
so the walk has alternating vertices of two types A and B.
See Fig 1.

In principle, one could consider different energy terms,
εAa,εAb,εBa,εBb, for the situations where an A vertex is
on an a stripe, etc. We simplify the situation by setting
εAb = εBa = 0, although the more general case could be
handled by an extension of our approach. Without much loss of
generality we set εAa = −1 and consider only −1 � εBb � 0.
We write εBb = γ εAa so that 0 � γ � 1. This is exactly the
CS model discussed in [21], though that paper considered
the pure adsorption problem without an applied force. Notice
that γ = 1 does not correspond to a homopolymer since A

vertices only interact with a stripes and B vertices with b

stripes.
The force is applied at the last vertex of the walk in a

direction characterized by the angles θ and φ. φ is the angle that
the surface component of the force makes with the (positive)
stripe direction and π/2 − θ is the angle between the force
direction and a normal to the surface. See Fig. 1 for a sketch
of these angle definitions. This is the same convention as that
used in [34].

The general approach used is similar to that developed
in [21] but it is complicated by the fact that we need to
keep track of the coordinates of the last vertex. This means
that we need to track steps in the x1 and x2 directions when
we compute the generating function of walks ending in the
plane x3 = 0.

Suppose that cn(vAa,vBb,s1,s2,h) is the number of partially
directed n edge walks that start at the origin, have vAa

A vertices on a stripes and vBb B vertices on b stripes,
with span in the x1 direction equal to s1, span in the x2

direction equal to s2, and height of the last vertex above the
surface equal to h. The partition function of the model is
given by

Zn =
∑

vAa,vBb,s1,s2,h

cn exp[−H/kT ], (1)

where cn = cn(vAa,vBb,s1,s2,h) and

H = vAaεAa + vBbεBb − f1s1 − f2s2 − f3h. (2)

f1, f2, and f3 are the components of the force in the three
coordinate directions, k is Boltzmann’s constant, and T is the
absolute temperature.

In Sec. III we require a variety of different generating
functions for walks with various constraints but the general
principles used are always the same. In the simplest case we can
define a generating function G = ∑

n Znz
n and the thermody-

namics of the model can be extracted from the singularities
of G. The thermodynamic limit limn→∞ n−1 ln Zn ≡ κ exists
and the generating function can be written as

G =
∑

n

eκn+o(n)zn. (3)
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This converges when zeκ < 1, diverges when zeκ > 1, and
so is singular when z = e−κ . Therefore, if zc is the dominant
singularity of G, then κ = − ln zc.

III. GENERATING FUNCTIONS AND
THERMODYNAMIC PROPERTIES

In this section we give the technical details of the com-
putation of the generating function and the extraction of
thermodynamic results from the singularities of the generating
function.

A. Alternating copolymers adsorbing on a striped surface

This section is devoted to the calculation of the generating
function of partially directed walks that end in the plane
x3 = 0 (which we calls loops), keeping track of both Aa

and Bb visits and of the numbers of steps in the x1 and x2

directions.
First, consider walks that start and end in the plane x3 = 0

with no energy terms. Let ln(s1,s2) be the number of loops with
n steps, with spans s1 and s2 in the x1 and x2 directions. If y1

and y2 are conjugate to the spans of the walk in the x1 and x2

directions and z is conjugate to the total number of steps, the
generating function Q(y1,y2,z) is given by

Q(y1,y2,z) =
∑

s1,s2,n

ln(s1,s2)ys1
1 ys2

s zn (4)

and satisfies the equation

Q = 1 + (y1 + y2)zQ + z2(Q − 1) + z3(y1 + y2)(Q − 1)Q.

The walk can be a single vertex, contributing 1, or its first
step can be in the x3 = 0 surface and then be continued as any
loop, or its first step can be out of the surface. In this case
the walk can return to the surface for the first time on its last
step, contributing z2(Q − 1), or after returning to the surface
for the first time, it can take a step in the surface and then be
continued as a loop. Each of the horizontal steps can be taken
in either the x1 or the x2 direction. The factorization scheme
is sketched in Fig. 2. The generating function Q has a square

root singularity at

z = z1 =
−1 − y12 +

√
y2

12 + 6y12 + 1

2y12
, (5)

where y12 = y1 + y2. When y1 = y2 = 1 this reduces to z1 =
(
√

17 − 3)/4 [5]. The singularity z1 dominates in the free
phase where the walk is neither adsorbed nor ballistic.

We shall need separate generating functions for walks with
a total number of steps that are even (E) or odd (O) and
that have an even (e) or odd (o) number of steps in the x2

direction. We write QEe, etc., for these generating functions.
Write QE(y1,y2,z) = [Q(y1,y2,z) + (Q(y1,y2, − z)]/2 and
QO(y1,y2,z) = Q(y1,y2,z) − QE(y1,y2,z) for the generating
functions of walks having an even or odd total number of steps.
Then

QEe(y1,y2,z) = QE(y1,y2,z) + QE(y1, − y2,z)

2
,

QEo(y1,y2,z) = QE(y1,y2,z) − QEe(y1,y2,z),

QOe(y1,y2,z) = QO(y1,y2,z) + QO(y1, − y2,z)

2
,

and

QOo(y1,y2,z) = QO(y1,y2,z) − QOe(y1,y2,z).

Define P Aa(a,b,y1,y2,z) to be the generating function of
walks that start with an A vertex on an a stripe, where a is
conjugate to A visits to a stripes, b is conjugate to B visits
to b stripes, y1 is conjugate to steps in the x1 direction, y2 is
conjugate to steps in the x2 direction, and z is conjugate to
the total number of steps. As usual, the first vertex does not
contribute to the energy. In a similar way, define P Ab, P Ba ,
and P Bb for the generating functions of walks starting with
an A vertex on a b stripe, etc. [These generating functions
are defined in an analogous way to the definition of Q in (4)
but keeping track of additional variables.] Using factorization
arguments similar to those appearing in Fig. 2 one can show
that these generating functions satisfy the set of simultaneous
equations

P Aa = 1 + by2zP
Bb + y1zP

Ba + az2(QEe − 1)(1 + by2zP
Bb + y1zP

Ba)

+ bz2QOo(1 + ay2zP
Aa + y1zP

Ab) + z2QEo(1 + y2zP
Ba + by1zP

Bb) + z2QOe(1 + y2zP
Ab + ay1zP

Aa), (6)

P Ab = 1 + y2zP
Ba + by1zP

Bb + z2(QEe − 1)(1 + y2zP
Ba + by1zP

Bb)

+ z2QOo(1 + y2zP
Ab + ay1zP

Aa) + az2QEo(1 + by2zP
Bb + y1zP

Ba) + bz2QOe(1 + ay2zP
Aa + y1zP

Ab), (7)

P Ba = 1 + y2zP
Ab + ay1xP Aa + z2(QEe − 1)(1 + y2zP

Ab + ay1zP
Aa)

+ z2QOo(1 + y2zP
Ba + by1zP

Bb) + bz2QEo(1 + ay2zP
Aa + y1zP

Ab) + az2QOe(1 + by2zP
Bb + y1zP

Ba), (8)

P Bb = 1 + ay2zP
Aa + y1zP

Ab + bz2(QEe − 1)(1 + ay2zP
Aa + y1zP

Ab)

+ az2QOo(1 + by2zP
Bb + y1zP

Ba) + z2QEo(1 + y2zP
Ab + by1zP

Aa) + z2QOe(1 + y2zP
Ba + by1zP

Bb). (9)

These four generating functions each have the same
two physically relevant singularities, a square root sin-
gularity at z = z1(y1,y2), given by (5), and a pole at

z = z2(a,b,y1,y2). When y1 = y2 = 1 these singularities
agree with those found for the CS model in [21]. The singu-
larity z2 dominates in the adsorbed phase where the (infinite)
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FIG. 2. (Color online) A general factorization argument for loops interacting with a surface.

walk has a nonzero fraction of its vertices in the adsorbing
line.

B. Alternating copolymers subject to a force

In this section, to investigate the effect of an applied force,
we relax the condition that the walk ends in the plane x3 = 0.
The walk can

(1) have its last vertex in the x3 = 0 surface,
(2) have vertices in the surface but not end in the surface, in

which case there is a last time that the walk is in the surface,
or

(3) leave the surface on its first step and never return.
Suppose that the first vertex is an A vertex on an a

stripe. Let T Aa(a,b,y1,y2,y3,z) be the generating function
of such walks where the variable y3 is conjugate to the
x3 coordinate of the last vertex of the walk. We can turn
off the interaction with the surface by setting a = b = 1
and we write T Aa(1,1,y1,y2,y3,z) = T 0(y1,y2,y3,z). Then
T Aa(a,b,y1,y2,y3,z) is given by

T Aa = P Aa + [(y1z + by2z)P Aa,Aa

+ (by1z + y2z)P Aa,Ab + (ay1z + y2z)P Aa,Ba

+ (y1z + ay2z)P Aa,Bb + 1]y3zT
0, (10)

where P Aa,Aa is the generating function of loops that start
with an A vertex on an a stripe and end with an A vertex on
an a stripe, and P Aa,Ab, etc., are defined analogously. These
generating functions can be computed directly from P Aa . For
instance,

P Aa,Aa(a,b,y1,y2,z)

= 1
4 [P Aa(a,b,y1,y2,z) + P Aa(a,b,y1,y2, − z)

+P Aa(a,b,y1, − y2,z) + P Aa(a,b,y1, − y2, − z)].

By setting a = b = 1 in (10) we can calculate T 0 and
then substitute this back into (10) to obtain T Aa . T Aa

has three physically relevant singularities, z = z1 [see (5)],
and two poles, z = z2(a,b,y1,y2) and z = z3(y1,y2,y3). The
singularities are independent of whether the first vertex is A or
B and whether the walk starts on an a or a b stripe. z1 dominates
in the free phase, z2 dominates in the adsorbed phase, and
z3 dominates in the phase where the walk is ballistic, i.e.,
where the distance of the last vertex from the surface scales
with the first power of the number of vertices in the walk.
The phase boundary for the adsorption-desorption transition
with a force (i.e., the critical force needed for desorption as
a function of temperature) is given by the solutions of the
equation z2(a,b,y1,y2) = z3(y1,y2,y3).

Converting to the appropriate physical variables, we make
the substitutions

yi = exp(fi/kT ), i = 1,2,3 (11)

and

a = exp(1/kT ) b = exp(γ /kT ), (12)

where k is Boltzmann’s constant, f1 = f cos θ cos φ, f2 =
f cos θ sin φ, f3 = f sin θ , and f is the force applied in the
direction (θ,φ).

When θ = π/2 the walk is being pulled normal to the
surface and there is no φ dependence. In Fig. 3 we show
the critical force as a function of temperature for γ = 1 (top
curve), 1/2 (middle curve), and zero (bottom curve). When
γ = 0 the limiting slope at T = 0 is positive, indicating
that there is entropy in the ground state. See Sec. IV for
further discussion. For γ = 1/2 and 1 the curves are monotone
decreasing with zero limiting slope.

It is interesting to compare these results with those for
homopolymer adsorption on a striped surface (see [38], Fig. 6).
When θ = π/2 the critical force at T = 0 is independent of γ

for the homopolymer case but depends on γ for the alternating
copolymer case. Compare Fig. 6 in [38] and Fig. 3 in this paper.
Hence, the ground state depends on γ for the copolymer but

FIG. 3. (Color online) Plot of the critical force as a function of
the temperature when pulling normal to the surface, θ = π/2. The
results are given in units where k = 1. The solid curves are for
the exact treatment given in Sec. III and the dashed curves are
for the low temperature approximation described in Sec. IV. The
three sets of curves (top to bottom) are for γ = 1, 1/2, and zero.
Note the positive limiting slope when γ = 0, indicating that the
ground state is degenerate.
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(a) θ = 5π/16 and φ = 0 (b) θ = π/3 and φ = 0 (c) θ = 7π/16 and φ = 0

(d) θ = 5π/16 and φ = π/2 (e) θ = π/3 and φ = π/2 (f) θ = 7π/16 and φ = π/2

FIG. 4. (Color online) Temperature dependence of the critical force as a function of the angles θ and φ. The rows correspond to different
values of φ and the columns to different values of θ . In each case the three solid curves are for γ = 1, 1/2, and zero (top to bottom) and the
broken curves are the corresponding results for the low temperature treatment developed in Sec. IV.

not for the homopolymer. The limiting (T → 0) slope df/dT

is positive for γ = 1 for the homopolymer and positive for
γ = 0 for the copolymer. This implies that the ground state
is degenerate for the homopolymer when γ = 1 and for the
copolymer when γ = 0. All of these differences reflect the
differences in how the homopolymer and the copolymer adsorb
on the striped surface, especially at low temperatures.

In Fig. 4 we show the critical force-temperature curves
for θ = 5π/16, π/3, and 7π/16, for φ = 0 and π/2, and for
γ = 1, 1/2, and zero. All of the cases shown have zero limiting
slope, indicating that there is no ground state entropy. In spite
of this, several of the curves are reentrant. The system in
the adsorbed state has entropy at low temperatures though
not at zero temperature, and this entropy is lost under the
influence of the force. Reentrance with zero limiting slope
has been observed in other systems [39,40]. When φ = 0 (i.e.,
when the surface component of the force is parallel to the
stripe direction) the three curves show the same critical force
at zero temperature for θ = 5π/16 and π/3, so the ground
state is independent of the value of γ and suggests that the

walk follows an a stripe. At θ = 7π/16 the zero temperature
forces are different so the ground state energy depends on
γ . This is discussed in detail in Sec. IV and the occurrence
of degenerate ground states is discussed in Sec. IV C. For
φ = π/2 the ground state energy depends on γ for all the
values of γ shown and the walk is perpendicular to the stripes
in the ground state. In Sec. IV we develop a low temperature
approximation which helps to explain physically the disparity
of shapes for the curves in Figs. 3 and 4 and the differences in
behavior are discussed in more detail in that section.

There are interesting similarities to (and differences from)
the corresponding curves for the case of homopolymer adsorp-
tion on a striped surface [38]. When θ = 7π/16 the critical
force at T = 0 is independent of γ for the homopolymer
case but depends on γ for the copolymer. Compare Fig. 5
in [38] and Fig. 4 in this paper. When θ = 7π/16 and φ = 0
the curve is reentrant when γ = 1 for the homopolymer and
for γ = 0,1/2, and 1 for the copolymer. For θ = 7π/16 and
φ = π/2 the curves are reentrant for γ = 0,1/2, and 1 for the
homopolymer and for γ = 0 for the copolymer.
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FIG. 5. Plot of the order parameter ρAa as a function of the
temperature when θ = π/3, φ = 0, and γ = 1/2. The two curves
are for f = 0.25 (solid line) and 0.75 (dashed line).

There are several possible order parameters for the model.
Define

ρAa = lim
n→∞〈vAa〉/n (13)

and

ρBb = lim
n→∞〈vBb〉/n. (14)

In Fig. 5 we plot ρAa as a function of temperature when
θ = π/3, φ = 0, γ = 1/2, and f = 0.25 and 0.75. We choose
these two values for the force because it will turn out that
the ground state at the point when desorption occurs will
be different. The order parameter ρAa is 1/2 at T = 0 and
gradually decreases as the temperature increases until the
desorption temperature at that force is reached and ρAa drops
discontinuously to zero. The behavior is similar at the two
values of the force although, of course, the desorption occurs
at different temperatures. When f = 0.75 the value of ρAa

is slightly larger than when f = 0.25 at temperatures a little
below the desorption temperature. At the larger value of the
force there is a larger surface component of force tending to
pull A vertices into the a stripes.

In Fig. 6 we plot ρBb as a function of temperature for the
same parameter values. Now the shape of the order parameter
curve is dramatically different at the two values of the force.
When the force is small, ρBb is 1/2 at T = 0 while for the
larger value of the force ρBb = 0 at T = 0. This means that
the ground state is different for the two force values. When
f = 0.25 the walk is a straight line perpendicular to the stripe
direction so that A vertices are in a stripes and B vertices are
in b stripes. When f = 0.75 the component of the force along
the stripe direction (recall that φ = 0) is sufficient to change
the ground state to a walk following an a stripe.

This suggests that conditions can be found where the two
ground states are degenerate and this is explored further in
Sec. IV C.

FIG. 6. Plot of the order parameter ρBb as a function of the
temperature when θ = π/3, φ = 0, and γ = 1/2. The two curves
are for f = 0.25 (solid line) and 0.75 (dashed line).

IV. A LOW TEMPERATURE APPROXIMATION

In this section we develop an approximate treatment that
is exact at zero temperature and is a very good approximation
at low temperatures. In particular, it reproduces the shape of
the f -T curves at low temperatures. We use this treatment
in Sec. IV C to explore the occurrence of degenerate ground
states at the critical force for adsorption.

The essential approximation is to consider the walk
under the action of the force as having its first n − m edges
entirely in the surface and its final m edges out of the surface.
In addition the approximation assumes that in the last m edges,
there are no steps towards the surface. These approximations
are expected to be reliable at low temperatures and large forces.

We first consider walks that lie entirely in the surface
and solve this problem exactly. Let SAa(a,b,y1,y2,z) be the
generating function of walks that start with an A vertex on an
a stripe. The quantities a and b are conjugate to the number of
A visits to a sites and to the number of B visits to b sites, y1

and y2 are conjugate to the numbers of steps in the x1 and x2

directions, and z is conjugate to the total number of edges in the
walk. The generating functions SAb, etc., are defined similarly.
These four generating functions satisfy the four simultaneous
equations

SAa = 1 + by2zSBb + y1zSBa, (15)

SBa = 1 + y2zSAb + ay1zSAa, (16)

SAb = 1 + y2zSBa + by1zSBb, (17)

and

SBb = 1 + ay2zSAa + y1zSAb. (18)

Solving these equations we find that all four generating
functions have the same denominator. The thermodynamics
is determined by the poles of the generating functions, i.e., by
the zeros of the denominator. We are only interested in real
positive zeros (so that the free energy is real). Let zc(a,b,y1,y2)
be the appropriate zero. Then the free energy of an n − m step
walk in the surface is given by F1 = (n − m)kT ln zc.
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For the part of the walk out of the surface we can write the
partition function as

Z2 = (y1 + y2 + y3)m, (19)

where y3 is conjugate to the number of steps in the x3 direction.
Recall that we are assuming that there are no steps towards the
surface. The free energy of a walk of m edges out of the surface
is then F2 = −kT ln Z2. The total free energy is F = F1 + F2

and to optimize the free energy we differentiate F with respect
to m and set the derivative equal to zero. This determines the
temperature dependence of the critical force for desorption.
We convert to physical variables using (11) and (12).

A. Pulling normal to the surface

When θ = π/2 the results are independent of φ. The
force-temperature curves are shown in Fig. 3 and compared
to the results from the full treatment in Sec. III. The three
curves are for γ = 0, 1/2, and 1. When γ > 0 the ground state
corresponds to the walk being a straight line in the surface,
perpendicular to the stripe direction, so as to optimize Bb

visits. The force-temperature curves have zero limiting slope
as T → 0, since there is no entropy in the ground state. When
γ = 0 the energy of a walk following an a stripe is equal
to that of a walk perpendicular to the stripe direction so we
have a doubly degenerate ground state and the limiting slope
is positive, reflecting the loss of entropy when the walk is
desorbed. See Sec. IV C for further discussion of this issue.

B. Pulling at an angle

When θ < π/2 the results depend strongly on the value
of φ. In Fig. 4 we show the force-temperature curves for
θ = 5π/16, π/3, and 7π/16; φ = 0 and π/2; and γ = 0,
1/2, and 1. The agreement between the low temperature
approximation and the full treatment is excellent. In particular,
the low temperature treatment reproduces the zero temperature
forces, the limiting (T → 0) slopes, and the re-entrance of
some of the curves.

All of the curves shown have zero limiting slope (but see
Sec. IV C for exceptions). When φ = π/2 the zero temper-
ature force depends on γ , indicating that the ground state
corresponds to walks crossing the stripes. When φ = 0 and θ

is relatively small the zero temperature force is independent of
γ so the component of the force along the stripe direction is
large enough to compensate for the energetic advantage of Bb

visits. At larger values of θ the component of the force along
the stripe direction is insufficient to compensate and the ground
state changes. This suggests that there is an intermediate value
of θ where the ground state is degenerate and this is explored
in Sec. IV C. The curves are reentrant at some angles but not
at others and the low temperature approximation faithfully
reproduces this behavior.

C. Degenerate ground states

There are two obvious candidates for the ground state, one
in which the walk follows the stripe and the other in which the
walk is a straight line normal to the stripe direction. In the first
case the free energy is

F‖ = −n/2 − nf cos θ cos φ (20)

and in the second

F⊥ = −n(1 + γ )/2 − nf cos θ sin φ. (21)

These two free energies are equal when

f = γ

2 cos θ (cos φ − sin φ)
. (22)

If a force is applied while the walk is in the first of these two
ground states, then the free energy, in this model, is given by

F = −(n − m)/2 − (n − m)f cos θ cos φ − mf sin θ, (23)

where m is the number of vertices out the surface. The critical
force for adsorption at zero temperature is given by the solution
of ∂F/∂m = 0, i.e.,

f = 1

2(sin θ − cos θ cos φ)
, (24)

(a) θ = 5π/16 and φ = π/4 (b) θ = π/3 and φ = π/4 (c) θ = 7π/16 and φ = π/4

FIG. 7. (Color online) Temperature dependence of the critical force for φ = π/4 and various values of the angle θ . In each case the three
solid curves are for γ = 1, 1/2, and zero (top to bottom) and the broken curves are the corresponding results for the low temperature treatment
developed in Sec. IV. Note the positive limiting slopes as T → 0 when γ = 0.
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so the the ground state is doubly degenerate at the desorption
transition when the force given by (22) is equal to this critical
force, that is, when

γ = cos φ − sin φ

tan θ − cos φ
. (25)

A similar calculation starting with (21), of course, gives the
same result.

For instance, when φ = 0 (so that the surface component
of the force is parallel to the stripe direction) and γ = 1 the
ground state is degenerate at the critical value of the force when
tan θ = 2. Similarly, when φ = 0 and γ = 1/2 the critical
angle is given by tan θ = 3. This degeneracy is present exactly
at the critical value of the force at zero temperature and is lifted
when the force increases and the walk is pulled off the surface.
There is a loss of entropy and an additional entropic term
resisting desorption. This entropic term results in a positive
derivative, df/dT , at T = 0. If we restrict to θ > π/4 (recall
that γ � 0) then φ must be at least π/4 for degeneracy [see
(25)]. When φ = π/4 the ground state is degenerate when
γ = 0. This feature can be seen in the positive limiting slope
of the force-temperature plots as T goes to zero in Fig. 7
whenever γ = 0.

V. DISCUSSION

We have considered a partially directed walk model of a
strictly alternating copolymer adsorbing on a striped surface
where monomers of type A interact with stripes of type a,
monomers of type B interact with stripes of type b, and
there are no Ab or Ba interactions. In addition, the walk is

subject to a force, tending to desorb the walk, and this force
can be applied at various angles. We have solved the model
completely at the level of generating functions and extracted
the thermodynamics from the asymptotics of the generating
functions. We have also developed a relatively simple low
temperature treatment that is exact at zero temperature and
gives a good approximation at low temperatures. This ap-
proximation faithfully reproduces the shapes of the critical
force-temperature curves at low temperatures.

The model shows a number of interesting features including
reentrance behavior and switches of the ground state when
parameters are changed. In particular, we investigated when
the ground state is degenerate and observed interesting effects
on the force-temperature curves. Observing the temperature
dependence of the critical force can give useful information
about the orientation of the polymer on the surface, especially
at low temperature.

There are some interesting extensions and questions that
deserve attention. What happens if the stripes are of width
greater than one [17]? What happens if the regular surface
heterogeneity consists of a checkerboard pattern instead
of stripes [17]? Can the treatment be extended to other
regular copolymers such as AAB or AABB [41]? These
are interesting extensions and would throw further light on
recognition questions as well as being of interest as topics in
polymer adsorption.
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