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(Received 11 September 2013; published 4 November 2013)

Long-range power-law correlated percolation is investigated using Monte Carlo simulations. We obtain several
static and dynamic critical exponents as functions of the Hurst exponent H , which characterizes the degree of
spatial correlation among the occupation of sites. In particular, we study the fractal dimension of the largest
cluster and the scaling behavior of the second moment of the cluster size distribution, as well as the complete
and accessible perimeters of the largest cluster. Concerning the inner structure and transport properties of the
largest cluster, we analyze its shortest path, backbone, red sites, and conductivity. Finally, bridge site growth is
also considered. We propose expressions for the functional dependence of the critical exponents on H .
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I. INTRODUCTION

In percolation on a lattice, each lattice element (site or
bond) is occupied with probability p or empty with probability
1 − p. Occupied sites are connected to their nearest neighbors
and form clusters, the properties of which depend on p [1,2].
There is a threshold value pc such that for p > pc there exists
a cluster spanning between two opposite sides of the lattice. At
p = pc, a continuous transition occurs between this connected
state and the state for p < pc, where there is no spanning
cluster. The spanning cluster is only fractal at p = pc.

Percolation theory and related models have been applied
to study transport and geometrical properties of disordered
systems [3,4]. Frequently the disorder in the system under
study exhibits power-law long-range spatial correlations. This
fact has motivated some studies of percolation models where
the sites of the lattice are not occupied independently, but
instead with long-range spatial correlation, in a process
named correlated percolation [3–16]. The qualitative picture
that emerged from those works is that, in the presence of
long-range correlations, percolation clusters become more
compact and their transport properties change accordingly.
These findings have also been confirmed by experimental
studies of the transport properties of clusters in correlated
invasion percolation [17,18].

The critical exponents of the uncorrelated percolation
transition in two dimensions are known rigorously for the
triangular lattice [19]. In addition, at the critical point, the
correlation length diverges and universality holds, i.e., critical
exponents and amplitude ratios do not depend on short-range
details, such as lattice specifics [1–4,20]. This statement has
been made precise by renormalization group theory, which
predicts that the scaling functions within a universality class
are the same, while the lattice structure only influences the
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nonuniversal metric factors [21,22]. If, by contrast, infinite-
range power-law correlations are present, according to the
extended Harris criterion, the critical exponents can change,
depending on how the correlations decay with spatial distance
[5,7,16,23,24].

Here we investigate a two-dimensional percolation model
where the sites of a lattice are occupied based on power-law
correlated disorder generated with the Fourier filtering method
[6,25–32]. The Hurst exponent H of the disorder is related to
the exponent of the power-law decay of spatial correlations
with the distance; we find that the fractal dimension of
the largest cluster, its perimeter, and the dimension of its
shortest path, backbone, and red sites depend on H .1 A strong
dependence on H is also found for the electrical conductivity
exponent of the largest cluster and the growth of bridge
sites in the correlated percolation model. For two-dimensional
critical phenomena, conformal field theory has been used to
obtain exact values of critical exponents in the form of simple
rational numbers [33–35]. Therefore, we make proposals for
the functional dependence of all measured exponents on the
Hurst exponent H , as being the simplest rational expressions
that fit the numerical data.

This work is organized as follows. Section II defines
the method of generating long-range correlations and the
corresponding correlated percolation model. In Sec. III we
consider the percolation threshold of the used lattice. This
result is applied in Sec. IV to measure the fractal dimension
of the largest cluster and the scaling behavior of the second
moment of the cluster size distribution at the percolation
threshold. The complete and accessible perimeters of the
largest cluster are investigated in Sec. V. Section VI discusses
shortest path, backbone, and red sites of the largest cluster
at the threshold. The conductivity of the largest cluster is
analyzed in Sec. VII. In Sec. VIII we discuss the growth
exponent of bridge sites in the correlated percolation model.
Finally, in Sec. IX we present some concluding remarks.

1We note that the correlation parameter λ in Ref. [6] is related to
the Hurst exponent H used here by λ = 2(H + 1). For the analogous
parameter a of Ref. [5], one has a = −2H .
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II. CORRELATED PERCOLATION

To study correlated percolation on a lattice, it is convenient
to work with a landscape of random heights h, where h(x)
is the height of the landscape at the lattice site at position x
[3,5–7,36,37]. Recently, ranked surfaces have been introduced,
providing the adequate framework to tackle this problem [38].
The ranked surface of a discrete landscape is constructed as
follows. One first ranks all sites in the landscapes according
to their height, from the smallest to the largest value. Then a
ranked surface is constructed where each site has a number
corresponding to its position in the rank. The following
percolation model can then be defined. Initially, all sites of
the ranked surface are unoccupied. The sites are occupied one
by one, following the ranking. At each step, the fraction of
occupied sites p increases by the inverse of the total number
of sites in the surface. By this procedure, a configuration of
occupied sites is obtained, the properties of which depend
on the landscape. For example, if the heights are distributed
uniformly at random, classical percolation with fraction of
occupied sites p is obtained [39–41].

Here we study the case where the heights h have long-range
spatial correlations. Such a power-law correlated disorder can
be generated using the Fourier filtering method (FFM) [6,16,
25–32,42], which is based on the Wiener-Khintchine theorem
(WKT) [25,43]. The WKT states that the autocorrelation of a
time series equals the Fourier transform of its power spectrum,
i.e., of the absolute squares of the Fourier coefficients. This fact
is exploited in the FFM by imposing the following power-law
form of the power spectrum S(f) of the disorder:

S(f) ∼ |f|−βc =
(√

f 2
1 + f 2

2

)−βc

, (1)

where βc defines the Hurst exponent H via βc = 2(H + 1).
By the WKT, this gives the following correlation function c(r)
of the heights h:

c(r) = 〈h(x)h(x + r)〉x ∼ |r|2H , (2)

where the power-law decay of the spatial correlation is
described by the Hurst exponent H . For correlated percolation,
one considers the range −1 � H � 0 [3,5–7]. Here H = −1
corresponds to βc = 0, such that the power spectrum in Eq. (1)
is independent of the frequency, and the landscape profile
is white noise. This limit recovers uncorrelated percolation.
Since H � 0, as H increases towards zero, the correlation
function decays more slowly. In simulations, for a desired
value of H one can generate random Fourier coefficients of
the heights h with amplitudes according to the power spectrum
in Eq. (1) and then apply an inverse fast Fourier transform to
obtain h(x) [6,25–32,42].

The extended Harris criterion, as formulated in Refs. [5,7,
16,23,24], states that for the range −d/2 < H < 0 the corre-
lations do not affect the critical exponents of the percolation
transition if H � −1/νuncorr, where νuncorr is the correlation-
length critical exponent and for d = 2, νuncorr

2D = 4/3 [1,19],
whereas for −1/νuncorr

2D < H < 0 the critical exponents are
expected to depend on the value of H . The quantitative
dependence of the critical exponents on H , in this regime,
is not yet entirely clear. Concerning the correlation-length
critical exponent for the correlated case νH , the analytical

works in Refs. [5,7,23] predict that νH = −1/H . In the case
of Weinrib and Halperin [5,23] this is a conjecture based
on renormalization group calculations; Schmittbuhl et al. [7]
found the same result by analyzing hierarchical networks.
Therefore, in both analytical approaches, it is not certain
that νH actually behaves as conjectured and there is some
controversy regarding this question, as discussed, e.g., in the
field-theoretic work of Prudnikov et al. [44,45]. For correlated
percolation, the relation νH = −1/H has been supported
by the numerical work in Refs. [16,46,47]. Agreement has
also been reported by Prakash et al. [6], however only
approximately for the range −1/νuncorr

2D � H � −0.5. Finally,
for H > 0 there is no percolation transition [7,48]. In the
following, we consider values of the Hurst exponent in the
range −1 � H � 0.

III. PERCOLATION THRESHOLD

We consider the correlated percolation model defined in
Sec. II on triangular lattice stripes of length L and aspect ratio
A, consisting of N = AL2 sites (see Fig. 1). To investigate
critical correlated percolation, one first needs to determine the
percolation threshold pc of this lattice. For site percolation on
the triangular lattice, it is possible to show that pc = 1/2 [1].
The argument of Sykes and Essam [49,50] is as follows: For
certain lattices, one can find their corresponding matching
lattice. In the context of Refs. [49,50], this is related to
matching expansions of the mean number of clusters for
high and low p. A more visual explanation of the concept
of matching lattice is the following [3]. Suppose that for a
lattice G1 there exists a different lattice G2 such that each site
in lattice G1 is uniquely related to one site in G2 and the other
way around. Also, assume that if a site is occupied in one of
the lattices, its partner in the other one cannot be occupied.
Now, if the presence of a cluster spanning G2 in one direction
prevents any cluster spanning G1 in the perpendicular direction
and, conversely, there can only be a percolating cluster in G1

if there is no percolation in G2, then G1 and G2 are matching
lattices. For example, the triangular lattice is its own matching
lattice, called self-matching, while the square lattice is matched
by the star lattice [50]. Sykes and Essam argued, based on the
uniqueness of the threshold pc [49–51], that for any lattice G1

and its matching one G2, the sum of the thresholds of both
equals unity:

pG1
c + pG2

c = 1. (3)

Then, since the triangular lattice is self-matching, one has
pG1

c = pG2
c and it follows that pc = 1/2. The question of

FIG. 1. (Color online) Triangular lattice stripe of size L = 4 and
aspect ratio A = 2.
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FIG. 2. (Color online) Convergence of the percolation threshold
estimator pc,J . The difference between the estimator and the threshold
|pc,J − 1/2| is shown as a function of the lattice size L for H = −1,
−0.7, −0.4, and −0.1. The data are shifted vertically to improve
visibility. Results are averages over 105 samples. We keep track of
the cluster properties with the labeling method proposed by Newman
and Ziff [39,40], as in Ref. [65].

which pairs of lattices match each other is independent of the
statistical properties of the heights h that determine the cluster
properties. Therefore, the site percolation threshold of the
triangular lattice is pc = 1/2, also for correlated percolation.
We also checked this statement numerically by measuring pc

for different values of the Hurst exponent H , finding that it
is compatible with 1/2, within error bars. We also determined
p

square
c of the square and pstar

c of the star lattice for various
values of H and found that, in contrast to the behavior of
the triangular lattice, the percolation threshold does depend
on H . Our results for p

square
c (H ) of the square lattice agree,

within error bars, with the ones reported in Ref. [6]. We also
have, within error bars, p

square
c (H ) + pstar

c (H ) = 1, consistent
with the matching property. Besides pc = 1/2, an additional
advantage of the triangular lattice is that the cluster perimeters
(see Sec. V) are well defined, avoiding common problems
encountered on the square lattice [52–55].

As a first check of the theory presented in Refs. [5,7,23]
regarding the dependence of νH on H , we consider here the
convergence of a threshold estimator, namely, the value pc,J

at which the maximum change in the size of the largest cluster
smax occurs [56–63]. The expected scaling behavior [58,64] is

|pc,J (L) − pc| ∼ L−1/νH , (4)

where pc = 1/2. Figure 2 shows |pc,J (L) − pc| as a function
of the lattice size L for different values of H . Within error bars,
the data are compatible with 1/νH = −H for the considered
values of H .

IV. MAXIMUM CLUSTER SIZE AND SECOND MOMENT

At the threshold p = pc, the largest cluster is a fractal of
fractal dimension df , i.e., its size smax scales with the lattice
size L as

smax ∼ Ldf . (5)

This is also related to the order parameter P∞ of the percolation
transition, which is defined as the fraction of sites in the largest
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FIG. 3. (Color online) (a) Fraction of sites in the largest cluster
smax/N as function of the lattice size L for different values of H .
(b) Second moment of the cluster size distribution M ′

2 as function of
L for the same values of H as in (a). The data is shifted vertically to
improve visibility. Solid black lines are guides to the eye. Results are
averages over at least 104 samples.

cluster,

P∞ = smax/N, (6)

and is expected to scale at p = pc as

P∞ ∼ L−β/ν = Ldf −d , (7)

where β is the order parameter critical exponent and
d = 2 is the spatial dimension [1]. For uncorrelated
percolation, β = 5/36 and ν = νuncorr

2D = 4/3 such that
df = 91/48 ≈ 1.8958 [1]. To measure df as function of H ,
we considered the scaling of the size of the largest cluster smax

with the lattice size [see Fig. 3(a) and Eq. (5)]. For different
values of H , we measured smax(L) and calculated the local
slopes df (L) of the data (see, e.g., Ref. [66]),

df (L) = log[smax(2L)/smax(L/2)]/ log(4). (8)

Finally, df (L) is extrapolated to the thermodynamic limit
L → ∞ to obtain df (H ) [see Fig. 4(a)]. The fractal dimension
is, within error bars, independent of H , for H � −1/3. For
H approaching zero, the value of df does increase. While this
behavior is in agreement with Ref. [6], it is in strong contrast to
the behavior of all other fractal dimensions considered in this
work, whose values depend strongly on H . Based on the data,
we propose the following dependence of df on H (in the range
−1/3 � H � 0) as being the simplest rational expression that
fits the numerical data:

df (H ) = 91
48 + 13

80

(
1
3 + H

)
. (9)
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FIG. 4. (Color online) (a) Fractal dimension of the largest cluster
df and critical exponent ratio γH /νH as a function of the Hurst
exponent H , where γH is the susceptibility critical exponent and
νH is the correlation-length critical exponent. For H > −1/3, the
solid lines show the expressions of Eqs. (8) and (14). (b) With
df = d − βH /νH , where βH is the order parameter critical exponent,
the hyperscaling relation reads 2 = d = γH /νH + 2βH /νH [1]. One
observes that the data agree, within error bars, with the hyperscaling
relation.

The hyperscaling

d = γ

ν
+ 2

β

ν
= γ

ν
+ 2(d − df ) (10)

relates the fractal dimension df to the susceptibility critical
exponent γ and the correlation-length critical exponent ν

[1]. For uncorrelated percolation, γ = 43/18 and therefore
γ /νuncorr

2D = 43/24 ≈ 1.7917 [1]. To test the validity of Eq. (10)
for different values of H , we measure γH /νH , where γH and νH

are the susceptibility and correlation length critical exponents
for a certain H , by considering the scaling behavior of the
second moment M ′

2, defined as

M ′
2 = M2 − s2

max/N, (11)

where

M2 =
∑

k

s2
k /N, (12)

and the sum goes over all clusters with sk being the number
of sites in cluster k. At p = pc, the following scaling with the
lattice size L is expected [1,67]:

M ′
2 ∼ LγH /νH . (13)

In Fig. 3(b), one sees M ′
2 as a function of L for different values

of H . Figure 4(a) shows γH/νH , while γH/νH + 2βH /νH is
plotted in Fig. 4(b) for different values of H . One observes
that the hyperscaling relation (10) is fulfilled, within error
bars. Based on this result, we propose that the functional
dependence of γH/νH on the Hurst exponent H , in the range
−1/3 � H � 0, is the simplest rational expression that fits the
numerical data:

γH

νH

= (76 + 13H )/40. (14)

V. CLUSTER PERIMETERS

Here we consider triangular lattice stripes of aspect ratio
A = 8 (Fig. 1). For every largest cluster that spans the lattice
vertically (between the long sides of the lattice, Fig. 1) and
does not touch its vertical boundaries, there are two contours
that can be defined: the complete and accessible perimeters
[36,52,68–77]. Figure 5 shows the definition of the two
perimeters, which exist on the honeycomb lattice, in the case
of the triangular lattice. The complete perimeter consists of all
bonds of the honeycomb lattice that separate sites belonging to
the spanning cluster from unoccupied sites that can be reached
from the vertical boundaries of the lattice without crossing
sites belonging to the largest cluster. If, in addition, fjords
of the perimeter with diameter less than

√
3/3 (lattice units)

are inaccessible, the accessible perimeter is obtained. Figure 6
shows the left-hand side complete and accessible perimeters of
a percolating cluster on a lattice of size L = 128. In the upper
inset of Fig. 7, the length of the complete perimeter MCP is

FIG. 5. (Color online) Complete and accessible perimeter. The
blue (filled) sites of the triangular lattice are part of the largest cluster,
while the white (empty) sites are unoccupied. Bonds of the dual
lattice are shown as dashed lines. Assume that the largest cluster
percolates in the vertical direction and does not touch the left or right
boundaries of the lattice. Consider a walker starting on the bottom
left side of the lattice, which never visits a bond twice and traces
the complete perimeter, turning left or right depending on which
of the two available bonds separates an occupied from an empty site.
The complete perimeter is fully determined when the top side of the
lattice is reached. Performing the same walk but with the additional
constraint that fjords with diameter �

√
3/3 (in lattice units) are not

accessible yields the accessible perimeter. The solid green (thick)
lines on the honeycomb lattice form the accessible perimeter, while
dashed green (thick) lines indicate bonds that are part of the complete
perimeter but not of the accessible one. A similar walk yields the two
perimeters on the right-hand side of the cluster.
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(a) H = − )b(1 H = −0.5

(c) H = −0. )d(52 H = 0

FIG. 6. (Color online) Snapshots of typical complete and accessible perimeters. The accessible perimeter is shown in bold solid blue lines.
In addition, the parts of the complete perimeter that do not belong to the accessible perimeter are drawn with thin black lines. The snapshots
are taken for (a) H = −1, (b) −0.5, (c) −0.25, and (d) 0, on a lattice of (vertical) length L = 128.

observed to scale with the lattice size L as

MCP ∼ LdCP , (15)

where for the uncorrelated case, given by H = −1, it is known
that dCP = 7/4 [68,69,73,74]. In addition to considering the
scaling of MCP with L, we also determined the fractal
dimension dCP using the yardstick method [82,83], in which
one measures the number of sticks S(m) of size m needed to
follow the perimeter from one end to the other. Figure 8 shows
that, for intermediate stick lengths, S(m) scales as

S ∼ m−dCP . (16)

We measured the value of the fractal dimension with this
method for different lattice sizes L (see Fig. 8) and then
extrapolated the results to L → ∞ to obtain dCP. The fractal
dimension dCP(H ) determined by this method is compatible
with the one obtained from the scaling of the length of the
perimeter [see Eq. (15)] and we combined both measurements
for the final estimates. In Fig. 7, one sees the fractal dimension
of the complete perimeter as a function of the H . For H

approaching zero, dCP decreases and finally converges towards
3/2, in agreement with previous results [36,76,77].

The fractal dimension of the accessible perimeter dAP is
defined by the scaling of the length of the accessible perimeter
MAP with L (see the lower inset of Fig. 7),

MAP ∼ LdAP . (17)

For uncorrelated percolation the fractal dimension of the
accessible perimeter is known to be dAP = 4/3 [53,73,74,78].
Figure 7 shows dAP(H ), determined using the scaling of MAP

and the yardstick method.
For the critical Q-state Potts model [84], Duplantier [80,85]

established the following duality relation between the fractal
dimension of the complete perimeter dCP and of the accessible
perimeter dAP:

(dAP − 1)(dCP − 1) = 1
4 . (18)

The case Q = 1 corresponds to uncorrelated percolation [86].
Having measured dCP and dAP as functions of H , we see
in Fig. 9 that the duality relation of Eq. (18) holds, within
error bars, for −1 � H � 0. Therefore, taking the known
results for H = −1 and 0 into account, we propose the
following functional dependence of the complete perimeter
fractal dimension on H [in the range −1/νuncorr

2D � H � 0 (see
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FIG. 7. (Color online) Fractal dimension of the complete perime-
ter dCP and of the accessible perimeter dAP as a function of
the Hurst exponent H . For H = −1 (uncorrelated), our results
dCP = 1.75 ± 0.02 and dAP = 1.34 ± 0.02 are in agreement with
values previously reported [53,68,69,72,78–80]. With increasing
H , both fractal dimensions seem to approach 3/2, which is
compatible with the data of Kalda et al. [36,76,77,81]. In the
range −1/νuncorr

2D � H � 0, the solid lines show the expressions
dCP = 3/2 − H/3 and dAP = (9 − 4H )/(6 − 4H ). The insets show
the length of the complete and of the accessible perimeter as a function
of the lattice size L for the values of H shown in the main plot.

Ref. [77])]:

dCP = 3

2
− H

3
, (19)

which, assuming the validity of the duality relation also for
correlated percolation, implies the following form of the
accessible perimeter fractal dimension:

dAP = 9 − 4H

6 − 4H
. (20)
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FIG. 8. (Color online) Yardstick method to measure the fractal
dimension of the complete perimeter. The number of sticks needed
to follow the perimeter S is shown as a function of the stick length
m, for different lattice sizes L, and H = 0. The numerical value of
the complete perimeter fractal dimension dCP(H ) obtained with the
yardstick method, dCP(0) = 1.49 ± 0.03, agrees, within error bars,
with the results of the analysis of the local slopes of the perimeter
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cluster perimeters, (dAP − 1)(dCP − 1) = 1/4 [80,85], as function of
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VI. SHORTEST PATH, BACKBONE, AND RED SITES

For uncorrelated percolation, the shortest path between two
sites in the largest cluster is a fractal of dimension dSP ≈ 1.131
[87–90]. For a given configuration, it can be identified using
the burning method [87]: On the cluster spanning the lattice
vertically [with aspect ratio A = 1 (see Fig. 1)], we select one
cluster site in the top row and one in the bottom row, such that
their Euclidean distance is minimized, and find the number of
sites MSP in the shortest path between them. The following
scaling of the length with the lattice size L is observed:

MSP ∼ LdSP , (21)

which can be used to determine the fractal dimension dSP(H )
using the local slopes [see Eq. (8)], shown in Fig. 10. These
results are also compatible with the ones obtained using the
yardstick method (not shown). For increasing correlation,
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FIG. 10. (Color online) Fractal dimension of the shortest path dSP

of the largest cluster as a function of the Hurst exponent H . The inset
shows the number of sites in the shortest path as a function of the lat-
tice size L for the same value of H as in the main plot. For uncorrelated
disorder, i.e., H = −1, we find dSP = 1.130 ± 0.005, in agreement
with the literature [87–90]. With increasing Hurst exponent, dSP

approaches unity [91]. This behavior is due to the backbone becoming
increasingly compact as H approaches 0 (see Fig. 11). The solid
line is the graph of the proposed behavior of the shortest path frac-
tal dimension dSP(H ) = 147/130 − (3/4 + H )/(195/34 + H ), for
−3/4 � H � 0, and dSP(−1 � H � −1/νuncorr

2D ) = dSP(−1/νuncorr
2D ).
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dSP deceases and is compatible with unity for H = 0, as also
reported in Ref. [91]. Using this observation and the literature
results for uncorrelated percolation [87–90], we propose the
following dependence of dSP on the Hurst exponent H (in the
range −1/νuncorr

2D � H � 0):

dSP(H ) = 147

130
− 3/4 + H

195/34 + H
. (22)

In addition to measuring the length of the shortest path
between two sites in the largest cluster, one can also ask which
sites would carry nonzero current if the occupied sites would be
resistors and a potential difference were applied between these
two sites. This subset of sites of the largest cluster is called
the backbone and it is the union of all non-self-crossing paths
between these two sites [1,66,87,89,92–95]. Some sites of the
backbone are singly connected, i.e., the connectivity between
the two ends of the backbone is broken if any one of these
sites is removed. These sites are called red sites [38,96,97].
Algorithmically, for a given cluster, the backbone and its red
sites can be found with the burning method [87]. The total
number of sites in the backbone Mbb scales with the lattice
size L,

Mbb ∼ Ldbb , (23)

where dbb is the backbone fractal dimension (see inset of
Fig. 11). With increasing H , dbb increases and is compatible
with the fractal dimension of the largest cluster for H

approaching zero. Similarly to Ref. [6], for the functional
dependence of dbb on H , we propose to interpolate linearly
between the best known value for uncorrelated percolation
dbb(−1) = 1.6434 ± 0.0002 [95] and the fractal dimension of
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FIG. 11. (Color online) Fractal dimension of the backbone dbb

as a function of the Hurst exponent H . With increasing H , the
backbone becomes more compact and, consequently, dbb increases,
while the fractal dimension of the shortest path (see Fig. 10)
decreases [6]. For uncorrelated disorder H = −1, we measure
dbb = 1.64 ± 0.02, which is compatible with the results reported
in Refs. [66,87,89,92,93,95]. The solid line is the graph of the
following interpolation: dbb(H ) = 39/20(1 + H ) − 166/101H . The
inset shows the backbone size as a function of the lattice size L for
the same values of H as in the main plot.
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FIG. 12. (Color online) Fractal dimension of the red sites dRS as a
function of the Hurst exponent H . Based on the result by Coniglio [38,
96,97], the data (squares) are compared to the theoretical prediction
for 1/νH as a function of H , where νH is the correlation-length crit-
ical exponent of two-dimensional percolation: for H < −1/νuncorr

2D ,
1/νH = 1/νuncorr

2D = 3/4 and for −1/νuncorr
2D � H < 0, 1/νH = −H

[5,7,23]. We note that these results are similar to measurements in
Refs. [6,7,16,47,98]. The inset shows the number of red sites as a
function of the lattice size L for the values of H shown in the main
plot.

the largest cluster for H = 0 [see Eq. (9)]:

dbb(H ) = 39
20 (1 + H ) − 166

101H. (24)

The backbone becomes more compact with increasing
correlation, which is also compatible with the fact that the
shortest path fractal dimension is decreasing in this limit
(see Fig. 10). For the same reason, one would expect the
fractal dimension of the set of red sites dRS to decrease with
increasing H . Coniglio [96] has shown that the red site fractal
dimension is related to the correlation-length critical exponent
νuncorr

2D by dRS = 1/νuncorr
2D . To test the theoretical predictions

in Refs. [5,7,23] for 1/νH , we measured the red site fractal
dimension dRS as a function of H (see Fig. 12). Although
for H approaching zero the finite-size effects become more
severe (see the inset of Fig. 12), the relation seems to be
compatible with the data, in agreement with the results in
Refs. [6,7,16,46,47]. This is consistent with the finite-size
scaling in the percolation threshold estimation (see Sec. III).

VII. CLUSTER CONDUCTIVITY

At the percolation threshold, the backbone of the largest
cluster is a fractal and the conductivity C between its ends has
a power-law dependence on the Euclidean distance r of the
end sites,

C(r) ∼ r−tH /νH , (25)

where tH is the conductivity exponent and we call tH /νH the re-
duced conductivity exponent [6,66,99–105]. For uncorrelated
percolation, tuncorr

2D /νuncorr
2D = 0.9826 ± 0.0008 [66]. As the

backbone becomes more compact with increasing correlation
(see Sec. VI), one might expect the conductivity to decay
more slowly with the spatial separation and, consequently,
that tH /νH decreases [6,106].
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FIG. 13. (Color online) Reduced conductivity exponent tH /νH as
a function of the Hurst exponent H . For increasing value of H , as
the backbone becomes more compact (see Fig. 11), tH /νH decreases.
For uncorrelated disorder, we find tH /νH (−1) = −0.992 ± 0.027, in
agreement with Ref. [66]. The solid line corresponds to the expression
tH /νH = 16/41 − H − 7H 2/25 in the range −1/νuncorr

2D � H � 0
and tH /νH = t/νuncorr

2D for −1 � H � −1/νuncorr
2D . The inset shows

the conductivity C as a function of the lattice size L for the same
values of the Hurst exponent H as in the main plot.

To measure the conductivity C of the backbone, we solved
Kirchhoff’s laws and obtained for every site i in the backbone∑

k

(Vi − Vk) = 0, (26)

where the sum runs over the nearest neighbors k belonging to
the backbone of site i and the conductivity is unity between
neighboring sites. The boundary conditions are chosen such
that V = N on the top end of the backbone and V = 0 on
its bottom end. Solving the sparse linear system of equations
one obtains the conductivity and the value of the potential at
each site of the backbone (for details, see, e.g., Ref. [105]).
The inset of Fig. 13 shows the conductivity C as a function
of the lattice size L for different values of H . Since in our
setup the distance between the end points r ∼ L, we use
this scaling to determine the reduced conductivity exponent
tH /νH (see Fig. 13). Our result for uncorrelated percolation
agrees with the literature and one observes tH /νH to decrease
with increasing H . We propose the following functional
dependence of the reduced conductivity exponent on H (in
the range −1/νuncorr

2D � H � 0):

tH

νH

= 16

41
− H − 7H 2

25
. (27)

VIII. BRIDGE SITE GROWTH

To explore further the impact of correlations on the structure
of percolation clusters, we analyze the bridge sites, which
are related to red sites, at the percolation threshold [38,96,
107]. Consider the following modification of the percolation
model. While the sites are sequentially occupied, starting from
the empty lattice, if a site would lead to the emergence of
a spanning cluster between the top and bottom sides of the
lattice, this site does not become occupied and is labeled as
a bridge site [38,64,108]. While the fraction of occupied sites
p is lower than the percolation threshold pc, the set of bridge
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FIG. 14. (Color online) Number of bridge sites Mbr as a function
of the control parameter p, for different values of the Hurst exponent
H , on a lattice of size L = 4096. Results are averages over 104

samples.

sites is empty since there would be no percolating cluster
in classical percolation for p < pc [1]. At the threshold, the
number of bridge sites Mbr behaves identically to the number
of red sites and diverges with the lattice size as

Mbr ∼ L1/ν, (28)

where ν is the correlation-length critical exponent of perco-
lation [38,96,97]. For uncorrelated disorder, at p > pc, the
number of bridge sites grows as a power law with the distance
from the threshold

Mbr ∼ (p − pc)ζ , (29)

where ζ = 0.50 ± 0.03 [38] is called the bridge growth
exponent (see also Fig. 14). When p goes to unity, the set
of bridge sites merges to a singly connected line, spanning the
lattice horizontally, which is the watershed of the landscape
of considered heights h, if the top and bottom sides of the
lattice would be connected to water outlets [109–114]. For
uncorrelated landscapes, this watershed is a fractal path of
dimension dbr = 1.2168 ± 0.0005 [107].

To determine how the bridge site growth depends on H ,
we measured the number of bridge sites Mbr as a function
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FIG. 15. (Color online) Rescaled number of bridge sites Mbr/L
dbr

as a function of the distance to the percolation threshold p − pc,
with H = −0.85, for different lattice sizes L. Here we use
dbr(−0.85) = 1.211 [30,42,107]. The inset shows the rescaled num-
ber of bridge sites MbrL

−1/νuncorr
2D as a function of the scaling variable

(p − pc)Lθ , with θ = 0.72. The solid line is a guide to the eye with
slope 0.64.
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0.3, as a
function of (p − pc)L0.3.

of p, for different values of H (see Fig. 14). For values of
H � −1/νuncorr

2D , we observe that the data for different lattice
sizes collapse, when rescaled by Ldbr(H ), for all values of
p > pc (see Fig. 15). This suggests that the same crossover
scaling as in the uncorrelated case [38] can be applied to extract
the growth exponent ζ :

Mbr(p,L) = L1/νuncorr
2D F [(p − pc)Lθ ], (30)

where the scaling function F [x] ∼ xζ for large x and the
power-law behavior of Mbr in the lattice size L and p yields

θ = (
dbr − 1/νuncorr

2D

)
/ζ. (31)

For H = −0.85, the rescaled data are shown in the inset of
Fig. 15 and the growth exponent is ζ (−0.85) = 0.64 ± 0.06,
which is larger than for H = −1. The corresponding value of
θ yielding the best collapse of the data is θ = 0.72 ± 0.08,
in agreement with the scaling relation of Eq. (31), given the
known dependence of the watershed fractal dimension dbr on
H [30,42,107].

For H � −1/νuncorr
2D , the behavior of bridge sites is qual-

itatively different from the uncorrelated case. The rescaled
number of bridge sites Mbr(p)/Ldbr(H ) does not overlap for
different lattice sizes L for any value of p > pc, except when
the complete fractal line has emerged, i.e., for p → 1. An
example of this behavior, for H = −0.1, is shown in Fig. 16.
To analyze this size effect in more detail, we plot in Fig. 17 the
number of bridges Mbr as a function of the lattice size L, for
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FIG. 17. (Color online) Number of bridge sites Mbr, for
H = −0.1, as a function of the lattice size, for different values of
the fraction of occupied sites p = pc = 0.5, 0.6, 0.7, 0.8, 0.9, and
unity. The solid lines are guides to the eye. The estimated slopes are
indicated on the right-hand side of the figure.

different values of p � pc. One observes that, in contrast to the
uncorrelated case [38], for p > pc, there is no crossover to the
fractal dimension of the continuous bridge line dbr. Precisely
at the critical point, the expected behavior Mbr ∼ L1/νH is still
observed.

IX. FINAL REMARKS

Concluding, we studied percolation with long-range corre-
lation in the site occupation probabilities, as characterized by
the Hurst exponent H . The site percolation threshold of the
triangular lattice was argued to be 1/2, which is independent
of H . For H approaching zero the fractal dimension of the
largest cluster, as well as the exponent ratio γH/νH , was
found to increase in accordance with the hyperscaling relation.
The fractal dimensions of the complete and the accessible
perimeter were observed to approach 3/2 for H → 0, while
the duality relation between both exponents seems to hold
independently of the value of H . As H increased, the backbone
of the largest cluster was observed to become more compact,
consistent with the scaling behavior of shortest path, red
sites, and conductivity. Finally, we found the bridge growth
exponent to increase with increasing H . While the qualitative
picture is consistent with previous studies in the literature,
we proposed quantitative relations for the dependence of the
critical exponents of the percolation transition on H as being
the simplest rational expressions that fit the numerical data.
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[95] Y. Deng, H. W. J. Blöte, and B. Nienhuis, Phys. Rev. E 69,

026114 (2004).
[96] A. Coniglio, Phys. Rev. Lett. 62, 3054 (1989).
[97] O. Scholder, Int. J. Mod. Phys. C 20, 267 (2009).

[98] S. Roux, in Non-linearity and Breakdown in Soft Condensed
Matter, edited by K. K. Bardhan, B. K. Chakrabarti, and
A. Hansen, Lecture Notes in Physics Vol. 437 (Springer, Berlin,
Heidelberg, 1994), pp. 235–247.

[99] D. C. Hong, S. Havlin, H. J. Herrmann, and H. E. Stanley,
Phys. Rev. B 30, 4083 (1984).

[100] B. Derrida and J. Vannimenus, J. Phys. A 15, L557 (1982).
[101] J. G. Zabolitzky, Phys. Rev. B 30, 4077 (1984).
[102] J.-M. Normand, H. J. Herrmann, and M. Hajjar, J. Stat. Phys.

52, 441 (1988).
[103] C. J. Lobb and D. J. Frank, Phys. Rev. B 30, 4090 (1984).
[104] D. J. Frank and C. J. Lobb, Phys. Rev. B 37, 302 (1988).
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