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The local order units of dense simple liquid are typically three-dimensional (close packed) clusters: hcp, fcc,
and icosahedrons. We show that the fluid demonstrates the superstable tetrahedral local order up to temperatures
several orders of magnitude higher than the melting temperature and down to critical density. While the solid-like
local order (hcp, fcc) disappears in the fluid at much lower temperatures and far above critical density. We conclude
that the supercritical fluid shows the temperature (density)-driven two-stage “melting” of the three-dimensional
local order. We also find that the structure relaxation times in the supercritical fluid are much larger than ones
estimated for weakly interactive gas even far above the melting line.
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I. INTRODUCTION

A supercritical fluid is any substance at a temperature
and pressure above its critical point, where distinct liquid
and gas phases do not exist. In recent years, the increasing
attention in the study of this state of matter has appeared
due to the development of supercritical technologies [1]. The
microscopic mechanism that distinguishes supercritical fluid,
gas, liquid, and solid is one of the central issues that puzzles
physicists [2–4]. The question if “the supercritical region of a
liquid consists of one single state or not” is now the matter of
debates [3–8].

The computer simulation of local order is the high precision
method that allows us to detect subtle changes between slightly
different states of the particle system [9–12] and uncover
effects lately accessible to real experiment [13]. Recently, local
structure physics brought together simulations and experiment
in the nanoplasmonic, quantum optics, soft condensed matter,
and quantum spectroscopy [13–16].

The local order units of dense simple liquid are typ-
ically three-dimensional (close packed) clusters (hcp, fcc,
and icosahedrons) [17–21]. It is intuitively clear that these
clusters, inherent to the liquid state, disappear in the fluid at
high temperatures and low densities; see, e.g., Ref. [19] and
references therein. We confirm that and find out that solid-like
local order dominates in the simple monatomic dense liquid
(hcp, in the Lennard-Jonnes (LJ) liquid) near the melting line
but disappears in supercritical region at temperatures several
times higher than the melting temperature or (and) at densities
less than about 2ρc, where ρc is critical density. The unexpected
issue we see is that small three-dimensional clusters with
higher symmetry survive in fluid at extremely high tempera-
tures and low densities: we see tetrahedra in simple monatomic
supercritical fluid. They survive up to the temperatures several
orders of magnitude higher than the melting temperature and
down to ρc (see Fig. 1). So the supercritical fluid shows
the temperature (density)-driven two-stage “melting” of the
three-dimensional local order (see Fig. 2).

Qualitatively it can be accounted for as follows: at high
enough densities, in the LJ liquid and in the fluid near
the melting line, the number of the nearest neighbors is
12 ± 1. That favors the local clusters with the closed-packed
structure: hcp for LJ system [17,18]. Temperature increase
or (and) density decrease causes the reduction of mean
nearest-neighbor number [see Fig. 6(c)] and the growth of
its fluctuations [see insert in Fig. 6(c)] that destroys the
closed-packed local order but still allows the tetrahedral one.

The local cluster in the fluid already changes its symmetry
when at least one of its particles moves at the distance of the
order of r0δ, where δ � 0.1 ∼ 1/n̄b, n̄b is the mean number
of the nearest neighbors, and r0 is the mean distance between
the nearest neighbors. The correlations between particles in
the fluid are rather weak (compared to the liquid) and so
one can naively estimate the lifetime of the local cluster
as τsctδ, where τsct is the particle mean scattering time. We
show that the local structure in the supercritical fluid, even
at temperatures several orders of magnitude higher than the
melting temperature, survives at the time scales by the order
of magnitude higher than this naive estimate. These data we
extract from the time pair correlation function of the local
structure (bond orientational) order parameters.

A supercritical fluid is typically characterized as the state
“in between” a gas and a liquid. The characteristic property
of a liquid is the existence of the local structure and relative
long structural relaxation time scales (typically larger than
τsct). It follows that the supercritical fluid preserves the local
structure up to very high temperatures. However, this local
structure shows itself only at relatively high-frequency scales
(compared to that in a liquid) ω � 1/τsct. At temperatures
where the fraction of tetrahedra becomes less than 1%, the
tetrahedra lifetime starts approaching toward the naive weakly
interactive gas estimate, τsctδ. This is natural since in this
temperature region the supercritical fluid is already “more gas
than liquid.”

Recently, the conjecture has been made in Ref. [4] that
liquids in the supercritical region may exist in two qualitatively
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FIG. 1. (Color online) The density plot of the tetrahedra con-
centration Ptetr in the supercritical simple fluid. The color gradients
show ln Ptetr ∈ (−3.5, − 0.5). The snapshots in the insets show the
evolution of the “rigid” part of the fluid. The dashed line schematically
shows the position of the “dynamical line” [4]. The probability to find
a tetrahedral cluster falls below 0.1 in the yellow zone (hcp-clusters
melt in blue-zone). The gray zone corresponds to the state other than
fluid.

distinct dynamical states, different by some fitches of the
molecule motion at small time scales. It would be natural
to expect that the transformation of the local structures of the
fluid follows the dynamical crossover line [23]. But we see a
different situation, as follows from Fig. 1.

II. SIMULATION PROCEDURE

For molecular dynamic (MD) simulations, we have used
DL_POLY molecular simulation package [24] developed at
Daresbury Laboratory.

For simulations we mostly used the LJ pair potential model
in a wide range of parameters and checked the stability of
the main results going to the soft spheres model. For LJ
liquid we apply the standard pair potential [25,26], U (r) =
4ε[(σ/r)12 − (σ/r)6], where ε is the unit of energy, and σ

is the core diameter. In the remainder of this paper we use
the dimensionless quantities: r̃ = r/σ , Ũ = U/ε, temperature
T̃ = T/ε, density ρ̃ ≡ Nσ 3/V , and time t̃ = t/[σ

√
m/ε],

where m and V are the molecular mass and system volume,
correspondingly. As we will only use these reduced variables,
we omit the tildes. For the soft sphere model [27] we apply
U (r) = 4ε(σ/r)12.

FIG. 2. Qualitative evolution of the three-dimensional local sym-
metry of simple monatomic supercritical fluid when temperature
increases or (and) density decreases (starting from the liquid state
near melting line).

For simulations, we have considered the system of N =
30 000 particles that were simulated under periodic boundary
conditions mostly in the Nose-Hover (NVT) and also in NPT
ensembles. The MD time step was t = 0.001 that provides
good energy conservation. The system was studied in the
density region of ρ ∈ (0.32 − 1.0) at temperatures up to T =
100 (that is much higher than the melting line and the critical
temperature). According to equilibrium temperature-density
phase diagram [28–38], this range completely includes the area
corresponding to liquid phase and widely covers the region of
fluid state.

III. LOCAL STRUCTURE

A. The nearest-neighbor list and SANN algorithm

The key problem when studying local order is the de-
termination of the nearest neighbors list for each particle.
The generally accepted way to do it is the fixed-distance
cutoff method when two particles, located at points r1 and
r2, are considered as neighbors if |r2 − r1| < rcut, where rcut

is the cutoff radius. The main problem on this way is the
rcut evaluation. The widespread method is equating cutoff
radius with the location of first minimum of radial distribution
function (RDF) [38] that gives temperature-dependent rcut at
fixed density [Fig. 3(a)]. Unfortunately, this method reveals
unphysical temperature dependencies of different structural
characteristics, such as average nearest neighbors numbers;
see Fig. 3(b). Much better results gives the choice of the
temperature-independent cutoff radius at given density. How-
ever, the method of rcut(ρ) evaluation is still unclear [20].
For LJ system at high enough density (more than triple point
density 0.84), reasonable results can de obtained by equating
rcut with the location of first RDF minimum for corresponding
low-temperature crystal state. But the way of using this trick
in the low-density region is unclear, since there is no stable
homogeneous crystal phase there.

Recently, a universal parameter-free algorithm was pro-
posed to determine the neighbor list for particle systems [39].
This solid-angle-based nearest-neighbor algorithm (SANN)
attributes to each possible neighbor a solid angle and deter-
mines the cutoff radius by the requirement that the sum of the
solid angles is 4π [39]. We note that this algorithm gives weak
temperature dependence of cutoff radius for dense LJ liquid
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FIG. 3. (Color online) (a) The temperature dependence of the first
RDF minimum location for Lennard-Jones system at density ρ = 1.
(b) The mean nearest-neighbor numbers determined by equating
cutoff radiuses with the first RDF minima shown in (a).
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FIG. 4. (Color online) (a) The temperature-dependence of the
nearest-neighbor cut-off radius rcut obtained using the SANN algo-
rithm for different densities. It follows that rcut slightly depends on
T . (b) The comparison of the temperature dependencies of fraction
of the tetrahedral clusters obtained using the fixed distance cutoff
method and the SANN algorithm correspondingly.

as well as for low-dense fluid [see Fig. 4(a)]. Moreover, for
dense liquid, mean SANN radius is practically the same as the
location of first RDF minimum for corresponding crystal state
[Fig. 4(a)]. The results of local order analysis also coincide for
both methods [Fig. 4(b)]. It suggests that SANN is valid for
systems with arbitrary density and so all our results concerning
the local structure were obtained using this algorithm.

B. Cluster symmetry determination

With the nearest-neighbor lists one can perform the local
order analysis. The main characteristics we are interested in
are the fractions of atoms, possessing the certain type of local
structure, and their spatial distributions. As the candidates for
the structural units we choose close packed clusters (hcp, fcc,
and icosahedron) and the tetrahedron as the most compact (and
stable) unit for system with isotropic potential.

As the basic tool for determination of local structure we use
bond orientational order parameters ql(r) defined as [17,18,20]

q2
l (r) = 4π

2l + 1

l∑
m=−l

∣∣∣∣∣
1

nb(r)

∑
bonds

Ylm(θ,ϕ)

∣∣∣∣∣
2

. (1)

Here (θ,ϕ) are, respectively, polar and azimuthal angles of
the nearest-neighbors radius vectors for the particle located
at point r; nb(r) is the number of nearest neighbors for this
particle; Ylm(θ,ϕ) are spherical harmonics. The sign

∑
bonds

means the sum over nearest neighbors of given particle. The
values of order parameters Eq. (1) are explicitly determined
for any ideal geometrical figure and do not depend on spatial
cluster orientation that allows using them as local structure
indicators. Among the parameters Eq. (1), the q6 is typically
one of the most informative ones, so we use it basically in this
work.

The criterions we use to define the atom r and their nearest
neighbors as close packed cluster are

∣∣ql(r)/q(id)
l − 1

∣∣ � δ, nb(r) = 12, (2)

where q
(id)
l is the bond-order parameter value for correspond-

ing ideal cluster. Similarly, we treat each group of four atoms
[triangle pyramid with the vertex at point r] as tetrahedron if
they are nearest neighbors of each other and each of vertex
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FIG. 5. (Color online) (a) The dependencies of probability to
cause an error in local structure recognition on δ; (b) The temperature
dependencies of the fractions of fcc-ordered atoms on δ. The prob-
ability functions: (c) and the probability densities (d) for tetrahedral
clusters distorted with the parameter δ. It follows that the probability
has an extremum at certain δ.

angle φk(r) (k = 1,2,3) satisfies the criterion

|φk(r)/φ(id) − 1| < δ, (3)

where φ(id) = π/3 is the vertex angle for regular tetrahedron.
Let us discuss the criteria we have used to distinguish the

nearest-neighbor clusters (the choice of δ). For perfect clusters,
each symmetry exactly corresponds to particular value of ql .
If the clusters are slightly disordered (imperfect), then one
can plot the histogram for ql and determine the symmetry
by the maxima of the histogram. However, with the increase
of the disorder, the ql histogram fails to distinguish the
nearest-neighbor symmetry because of the “symmetry overlap
problem” [18]. If the imperfection of the clusters are larger than
some critical value, then ql criteria cannot well distinguish
the cluster symmetry, so choosing δ we kept in mind this
critical disorder. Figure 5(a) shows the dependencies of the
probability to cause an error in local structure recognition
on δ. We see that there is a kink at δ ≈ 0.85 corresponding to
drastic overlap increasing. In Fig. 5(b) we see the consequence
of this overlapping: the fraction of fcc-ordered atoms starts to
decrease at this value of δ. So we choose δ = 0.05 slightly
below this threshold.

To fix the tetrahedrons we have used similar ideas. It is
impossible to tile the 3D space by perfect tetrahedra; however,
the ensemble of enough distorted tetrahedra can tessellate
the 3D space. Figures 5(c) and 5(d) show the probability
functions and the probability densities for tetrahedral clusters
distorted with the distortion parameter δ. It follows that the
probability has extremum at certain δ corresponding to its
mean value. We see that the dispersions of these distributions
increase with temperature that makes the mean value of δ

ill-defined at temperatures much higher than the melting point.
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So our choice of δ, when we distinguish perfect and imperfect
tetrahedra, approximately corresponds to the maximum of
the probability density at temperature corresponding to the
melting line. It should be noted that the probability densities
for tetrahedral clusters are expected to be Gaussian-shaped and
so the additional maxima and bends we see in Fig. 5(d) are
probably the numeric differentiation effects.

C. Local order analysis

Using Eq. (1) we calculated mean fractions of atoms with
different types of local structure in wide ranges of temperatures
and densities (see Fig. 6). We see that close-packed local order
is mainly presented by hcp clusters, the fraction of fcc clusters
is less on the order of magnitude [see insert in Fig. 6(a)] and
there are no icosahedra at all. The solid-like local order (hcp,
fcc) is pronounced only for dense liquid and disappears in
the fluid at temperatures of the order of the 2–3 the melting
temperature [Fig. 6(a)] or (and) densities ρ � 2ρc. On the other
hand, the tetrahedral order is much more stable and survives
up to the temperatures several orders of magnitude higher than
the melting temperature and down to ρc [Fig. 6(b)].

In Fig. 6(c) we show that in the dense LJ liquid (and in the
dense fluid near the melting line) the number of the nearest
neighbors nb is 12 ± 1. That favors the local clusters with
the close-packed structure (hcp for LJ system) [17,18]. In
Fig. 6(c) we show that the temperature increase or (and) density
decrease leads to the reduction of nb and the growth of its
fluctuations [see insert in Fig. 6(c)]. The local order with large
nb is more sensitive to nb fluctuations. So tetrahedron appears
to be one of the most stable and tight element of the local
structure and so it effectively plays the role of the structural
“quantum” of the fluid. Qualitatively, the tetrahedral local
order can be presented in fluid regardless of any parameters
like δ: by angular distribution function of fluid particles. Such
distribution for Lennard-Jones system was first calculated
30 yeas ago by Belashenko [40]. We reproduced results of
Belashenko in order to make more accurate and smooth curves
(see Fig. 7). We see that, at high densities, there is a clear
maximum near perfect tetrahedral angle π/3 that demonstrates
strong tendency to tetrahedral formation. The distribution
at the density ρ = 0.316 does not have pronounced feature
at 60◦. However, the absence of the pronounced maxima
in the angle distribution does not automatically mean the
absence of tetrahedra. We emphasize that the concentration
of tetrahedra is rather small at this density. However, the
fluctuation of the concentration is still much smaller than the
concentration.

D. The spatial distribution of local order clusters

Another interesting issue is the spatial distribution of
the clusters with different types of local order. To study
these clusters we color atoms in accordance with the local
ordering. For close-packed clusters the atom r and its nearest
neighbors are colored if the value of q6(r) satisfies the criteria
Eq. (2). It is clear that some atoms can simultaneously belong
to different types of local order and so we called them
“contested” atoms and paint special color. Figure 8 shows the
configuration shapshots with atoms colored this way. Green
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FIG. 6. (Color online) (a) Main frame: the temperature depen-
dencies of hcp-ordered atoms fractions at different densities. Upper
insert: the comparison of temperature dependencies of hcp-ordered
(bullets) and fcc-ordered (squares) atoms fractions at ρ = 1.0. Lower
insert: the snapshots of atom structure at ρ = 1.0, T = 1.4. The
hcp-ordered atoms are green, the fcc-ordered ones are red, and the
remainder are gray. (b) Main frame: the temperature dependencies of
tetrahedrally ordered atoms fractions at different densities. Snapshot
inserts show the atom structure at ρ = 1.0 and temperatures indicated
by arrows. The atoms with tetrahedral order are colored green and
the remainder are gray. (c) The temperature dependencies of mean
nearest-neighbor numbers (main frame) and their fluctuations (inset)
at different densities. For all graphs: (red) bullets, ρ = 1; (blue)
squares, 0.9; (cyan) triangles, 0.84 (triple point); (magenta) diamonds,
0.7; (black) stars, 0.316 (critical point).
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FIG. 7. (Color online) Angular distribution for Lennard-Jones
system at ρ = {1.0,0.84,0.316} and different temperatures. The insert
in (b) explains the meaning of the the angle.

color denotes hcp clusters, red denotes fcc, and yellow denotes
the contested ones. The atoms with the structureless local
order are completely removed for visual clarity. We see that
the structurally ordered atoms are not uniformly distributed
but rather tend to associate in branched “superclusters” with
(possible) fractal structure. The detailed investigation of this
issue is a matter for separate work.

For tetrahedra visualization we use similar ideas. In this
case we have the only local structure element—tetrahedron,
and so there is no need for special coloring. So we just delete

FIG. 8. (Color online) Snapshots of the local ordered particles in
LJ liquid at the density ρ = 1 and the temperatures T = 1.4, 2.0, 4.0.
Green color denotes hcp clusters, red denotes fcc, and yellow denotes
the other locally ordered atoms that may belong to both structures (the
bond order parameters slightly overlap for these atoms). The atoms
with the structureless local order are completely removed.
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FIG. 9. (Color online) Snapshots of the tetrahedrally ordered
particles in LJ liquid at the density ρ = 1 and the temperatures
T = 10. The atoms with the nontetrahedral local order are completely
removed.

the atoms with nontetrahedral order and connect the remaining
ones by bonds (Fig. 9). For visual clarity we show the snapshots
corresponding to high enough temperature T = 10, at which
the tetrahedra fraction relatively small. We see that, despite
high temperature, the formation of the polytetrahedral clusters
takes place (see inserts in Fig. 9).

IV. CHARACTERISTIC TIME SCALES

Another important issue is the local order lifetime. We
extract it from the autocorrelation function of the local
structure:

Gl(t) = 〈ql(t + τ,r)ql(τ,r)〉τ,r − 〈ql(τ,r)〉2
τ,r

〈q2
l (τ,r)〉τ,r − 〈ql(τ,r)〉2

τ,r
, (4)

where 〈. . .〉τ,r is the average over coordinates and time. Using
the relation Gl(τstr) = 1/e we obtain the structure relaxation
time τstr that determines the desired local order lifetime.

The graphs of G6(t) at ρ = 1 and different temperatures are
shown in Fig. 10(a). The decay of G6(t) is almost exponential
at long times and relaxation time τstr demonstrates predictable
decrease with temperature [Fig. 10(b)]. We see that the local
structure correlations survive at time scales that appear to be
of the order of scattering time τsct [Fig. 10(b)]. The value
of τsct we extract from the estimation τsct 
 Tvib/4, where
Tvib = 2π/�0 is the period at which the tagged particle
would vibrate in the “cage” of its nearest neighbors [26]. The
corresponding frequency �0, which is the effective Einstein
vibration frequency, can be obtained for system with pair
potential as [26]

�2
0 = ρ

3m

∫
∇2U (r)g(r)dr, (5)

where g(r) is the radial distribution function.
The effective Einstein vibration period that we relate

with τsct is expected to be τsct ≈ τstr at the melting line.
To investigate the difference between these time scales at
larger temperatures we normalized τsct making the graph, so
τsct = τsct exactly at the melting line [Fig. 10(b)]. The lower
curve in this graph shows τsctδ—the estimate of the cluster

0.01 0.1 1
0.0

0.3

0.6

0.9

1 10 100

0.01

0.1

G
6(

t)

time, t

T = 1.4
T = 3.0
T = 10
T = 40
T = 100

(a)

tim
e

temperature

τ
sct

δ

τ
str

 τ
sct

(b)

FIG. 10. (Color online) (a) The order parameter correlation
function G6(t) at temperatures T = 1.4–100. The characteristic decay
time we identify with τstr. (b) Temperature evolution of the local
order lifetime, τstr. On the same graph we show the effective Einstein
vibration period that we relate with τsct. At the melting line τsct ≈ τstr.
To investigate the difference between these time scales at larger
temperatures we normalized τsct making the graph, so τsct = τstr

exactly at the melting line. The lower graph shows τsctδ—the estimate
of the cluster lifetimes in the supercritical fluid obtained within the
weakly interactive gas model.

lifetimes in the supercritical fluid obtained within the weakly
interactive gas model, where δ � 0.1 ∼ 1/n̄b. It follows that
at temperatures larger than 100 melting temperatures, the
structural lifetime develops with temperatures toward τsctδ.

V. DISCUSSION

A. Comparison with soft spheres model

To test our main results we use the soft sphere model.
First, we concentrate on parameter domain far from the critical
region of the LJ-particle system (soft spheres do not have the
critical point). We show here that both hcp and tetrahedra local
structure obtained in the frames of LJ model is qualitatively
the same as in the soft sphere model; see Fig. 11. At the
critical density we do not observe hcp in both models. We
also check that NVT and NPT ensembles produce similar
results for the local cluster concentration in the density region
0.316 � ρ � 1; see, e.g., Fig. 11(a). We also calculated the
dispersion of the tetrahedra concentration [smaller or equal to
the point-size in Fig. 11(a)] in both ensembles and found that
even at ρ = 0.316 it is by the order of magnitude smaller than
the average concentration. We obtained similar results for hcp
fraction; see Fig. 12. We see in Fig. 12 that the fraction of hcp
clusters at high temperatures in the soft sphere model deviates
from LJ stronger than that for tetrahedra in Fig. 12(b). This
is possibly because the attractive part of the potential is more
important for hcp formation than for tetrahedra.

Going to the critical region in the LJ system we still observe
no hcp clusters but see the tetrahedra with fluctuating sizes
[inset in Fig. 11(b), where again the dispersion of the tetrahedra
fraction is smaller or equal to the point size]; the results
obtained there within NPT and NVT ensembles give different
tetrahedra concentration but of the same order. For example,
T = 1.33 and ρ = 0.316 corresponds to P = 0.14 and the
tetrahedra fraction in NPT and NVT are equal to 6.4% and
5.8%, respectively. We leave the overwhelming examination
of the local structure closer to the critical point where the
fluctuations exceed 15% for the forthcoming paper.
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FIG. 11. (Color online) (a) Tetrahedral fraction vs. temperature
for ρ = 1 (upper three curves) and for (LJ-critical density) ρ = 0.316
(lower three curves). Particles interact via LJ and soft sphere
potentials obtained from LJ by removing the attractive part, type
2, and adjusting the core in addition, type 1 (b). The tetrahedral
fraction in the NPT-ensemble (LJ-potential) is shown by the dash-dot
curve. For example, at T = 1.362, the pressure corresponds to the
density ρ = 1; the intersection of the corresponding NVT and NPT
concentration curves in (a) at that point demonstrates the stability of
the local order with the respect to the ensemble choice far from the
LJ-critical point with strong density fluctuations. The same applies
for the second (“low density”) intersection in the lower-right corner
of (a). (b) Main frame: interparticle potentials. Inset: the tetrahedra
size fluctuations; they strongly increase in the critical region.

It follows that strong tetrahedral order stability is not just
a model-dependent effect but rather a universal feature of
simple liquids related mostly to the repulsive shoulder of the
intermolecular potential.

B. Virial expansion and tetrahedral contribution to fluid
thermodynamics

Let us discuss the contribution of tetrahedral clusters to
fluid thermodynamic. We can try to uncover this problem
investigating the virial expansion of the equation of state
for system with pair potential U (r) (see, for example,
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FIG. 12. (Color online) Hcp fraction at density ρ = 1 in LJ and
soft spheres, type 2 [see soft spheres potentials in (b)].

Refs. [41,42]):

P

Pid
= βP

ρ
= 1 +

∞∑
i=2

Bi(T )ρi−1, (6)

where is β = 1/kT ; Pid = ρ/β is the ideal gas pressure. The
virial coefficients Bi(T ) are defined as B1 = 1,

Bi+1 = − i

i + 1
βi, i � 1,

where the coefficients βi are the irreducible “cluster
integrals” [41]:

B2 = −1

2
β1 = −1

2

∫
f (r)dr

B3 = −2

3
β2 = −2

3

∫
f (r)f (r ′)f (|r − r′|)drdr′. (7)

. . .

Here, f (r) = exp[−βU (r)] − 1 is the so-called Mayer func-
tion. The Mayer function (like the pair potential) is far
from zero only when particles are situated nearby. So local
clustering of particles favors the Mayer cluster integrals.
More precisely, the integrands in Bi are noticeably different
from zero only if i atoms are close to each other. So Bi

represents the contributions of i-particle collisions in system
thermodynamics.

In order to examine the role of many-particle interactions,
we compare the virial expansion Eq. (6) with exact equation
of state that can be calculated for system with pair potential
U (r) as

βP

ρ
= 1 − 2

3
πβρ

∫ ∞

0
r3g(r)

dU (r)

dr
dr, (8)

where g(r) is the radial distribution function. For virial
expansion we use the first five Bi coefficients calculated in
Ref. [43].

Direct calculation shows (see Fig. 13) that contribution of
many-particle interactions is essential for supercritical fluids
at even low densities and high temperatures where we see
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FIG. 13. (Color online) (a) The equations of state for Lennard-
Jones system calculated by both the exact Eq. (8) and virial expansion
(up to B5); (b) the comparison of exact equation of state with first
n = 2, 3, 4, 5 terms of virial expansion at critical density ρ = 0.316.

local tetrahedra. At low densities, where virial expansion
converges to exact state equation very well, we can even extract
the four-particle virial B4 defining the contribution from
single tetrahedra. We see [Fig. 13(b)] that this contribution is
noticeable, though small enough, at even high temperatures. It
is obvious that tetrahedral contribution is even more essential
at high densities, where finite virial expansion fails and so
infinite series of Mayer diagrams, including multitetrahedral
configurations, must be taken into account.

So, with regard to our results concerning local structure,
when we have high enough concentration of local tetrahedra,
we can conclude that they play a significant role in the virial
coefficients. We believe that this qualitative conclusion can
help our understanding of fluid physics.

C. Low-dimensional clusters: trimers and dimers

At low density (high temperature) the tetrahedral clus-
ters are mostly destroyed, but two-dimensional and one-
dimensional symmetric clusters, trimers and dimers, may
still survive. In this sense, we can in principle introduce
other stages of local order destruction when three-dimensional
local symmetry changes to two-dimensional, and so on—hcp-
tetrahedra-trimers-dimers-atoms—instead of the sequence
hcp-tetrahedra-atoms we used. We should emphasize that
according to the angular distribution plots, Fig. 7, perfect
triangles should be destroyed more or less at the same
temperature (density) as tetrahedra do. Moreover, it seems
to us that for a 3D one-particle system with isotropic potential,
the three-dimensional local order (tetrahedron) is the matter of
prime concern.

VI. CONCLUSIONS

In conclusion, we uncover the nature of simple supercritical
fluid on nanoscales. We show that temperature increase (or/and
density decrease) cause two-stage transformation of local order
in fluid. In the first stage, at temperatures several times higher
than the melting temperature, the solid-like order disappears.
But the fragments of the close-packed clusters—tetrahedra—
survive at temperatures up to several orders of magnitude
higher than the melting temperature. We show that the local
density fluctuations in the rare fluid effectively preserve the
local symmetry but induce the local cluster size fluctuations.
The second stage of the local order transformation corresponds
to the total disappearing of tetrahedral clusters and takes place
only in the ideal gas limit. We show that the superstability of
the tetrahedra clusters in the fluid is not just a model-dependent
effect but rather a universal feature.
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[27] D. M. Heyes and A. C. Brańka, Mol. Phys. 107, 309 (2009).
[28] B. Smit, J. Chem. Phys. 96, 8639 (1992).
[29] R. Agrawal and D. A. Kofke, Mol. Phys. 85, 43 (1995).
[30] Yu. V. Kalyuzhnyi and P. T. Cummings, Mollecular Phys. 87,

1459 (1996).
[31] Shiang-Tai Lin, M. Blanco, and W. A. Goddard, J. Chem. Phys.

119, 11792 (2003).
[32] E. A. Mastny and J. J. de Pablo, J. Chem. Phys. 127, 104504

(2007).
[33] A. Ahmed and R. J. Sadus, J. Chem. Phys. 131, 174504 (2009).
[34] S. A. Khrapak, M. Chaudhuri, and G. E. Morfill, Phys. Rev. B

82, 052101 (2010).
[35] S. A. Khrapak and G. E. Morfill, J. Chem. Phys. 134, 094108

(2011).
[36] Y. Asano and K. Fuchizaki, J. Chem. Phys. 137, 174502

(2012).
[37] H. Watanabe, N. Ito, and Chin-Kun Hu, J. Chem. Phys. 136,

204102 (2012).
[38] D. Frenkel and B. Smit, Understanding Molecular Simulation:

From Algorithms to Applications (Academic Press, San Diego,
CA, 2001).

[39] J. A. van Meel, L. Filion, C. Valeriani, and D. Frenkel, J. Chem.
Phys. 136, 234107 (2012).

[40] D. K. Belashenko, Izvestia Akademii Nauk SSSR, Metally 2, 54
(1983) (in Russian).

[41] T. L. Hill, Introduction to Statistical Thermodynamics (Addison-
Wesley, London, 1960).

[42] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic Press, London, 2005).

[43] K. M. Dyer, J. S. Perkyns, and B. M. Pettitt, Theor. Chem. Acc.
105, 244 (2001).

052101-9

http://dx.doi.org/10.1103/PhysRevE.78.051503
http://dx.doi.org/10.1103/PhysRevE.78.051503
http://dx.doi.org/10.1103/PhysRevE.56.4179
http://dx.doi.org/10.1063/1.1526469
http://dx.doi.org/10.1063/1.1526469
http://dx.doi.org/10.1088/0953-8984/13/37/201
http://dx.doi.org/10.1088/0953-8984/13/37/201
http://dx.doi.org/10.1038/35048652
http://dx.doi.org/10.1103/PhysRevLett.91.195501
http://dx.doi.org/10.1103/PhysRevLett.109.195703
http://dx.doi.org/10.1103/PhysRevLett.109.195703
http://dx.doi.org/10.1103/PhysRevLett.110.086105
http://dx.doi.org/10.1103/PhysRevLett.110.086105
http://dx.doi.org/10.1126/science.1232450
http://dx.doi.org/10.1038/nature03383
http://dx.doi.org/10.1038/nature03383
http://dx.doi.org/10.1038/ncomms2459
http://dx.doi.org/10.1038/ncomms2459
http://dx.doi.org/10.1063/1.3691601
http://dx.doi.org/10.1016/0375-9601(82)90106-2
http://dx.doi.org/10.1016/0375-9601(82)90106-2
http://dx.doi.org/10.1016/0378-4371(88)90158-6
http://dx.doi.org/10.1016/0378-4371(88)90159-8
http://dx.doi.org/10.1080/00150199008223846
http://dx.doi.org/10.1021/jz301006j
http://dx.doi.org/10.1103/PhysRevB.28.784
http://dx.doi.org/10.1103/PhysRevB.28.784
http://dx.doi.org/10.1103/PhysRevB.24.363
http://dx.doi.org/10.1103/PhysRevLett.98.235504
http://dx.doi.org/10.1103/PhysRevLett.98.235504
http://dx.doi.org/10.1016/S0263-7855(96)00043-4
http://dx.doi.org/10.1098/rspa.1924.0082
http://dx.doi.org/10.1080/00268970802712563
http://dx.doi.org/10.1063/1.462271
http://dx.doi.org/10.1080/00268979500100921
http://dx.doi.org/10.1080/00268979600100981
http://dx.doi.org/10.1080/00268979600100981
http://dx.doi.org/10.1063/1.1578996
http://dx.doi.org/10.1063/1.1578996
http://dx.doi.org/10.1063/1.2753149
http://dx.doi.org/10.1063/1.2753149
http://dx.doi.org/10.1063/1.3253686
http://dx.doi.org/10.1103/PhysRevB.82.052101
http://dx.doi.org/10.1103/PhysRevB.82.052101
http://dx.doi.org/10.1063/1.3561698
http://dx.doi.org/10.1063/1.3561698
http://dx.doi.org/10.1063/1.4764855
http://dx.doi.org/10.1063/1.4764855
http://dx.doi.org/10.1063/1.4720089
http://dx.doi.org/10.1063/1.4720089
http://dx.doi.org/10.1063/1.4729313
http://dx.doi.org/10.1063/1.4729313
http://dx.doi.org/10.1007/s002140000205
http://dx.doi.org/10.1007/s002140000205



