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In this Rapid Communication we show that the interplay between the deformation geometric-nonlinearity and
distributions of external charges and dipoles lead to the renormalization of the membrane’s native flexoelectric
response. Our work provides a framework for a mesoscopic interpretation of flexoelectricity and if necessary,
artificially “design” tailored flexoelectricity in membranes. Comparisons with experiments indicate reasonable
quantitative agreement.
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I. INTRODUCTION

There is growing evidence that flexoelectricity provides one
of the key mechanisms that permits biological membranes to
couple mechanical deformation to electrical stimuli. Specifi-
cally, flexoelectricity refers to the development of polarization
upon change in membrane curvature. Mathematically,

PS = γ κn, (1)

where PS is the area density of the electric polarization, γ is
the flexoelectric coefficient, κ is the mean curvature, and n is
the unit normal vector of the surface. While this effect was
first appreciated in liquid crystals [1], parallel developments
have also occurred in crystalline materials (cf. [2], and
references therein). In the context of biological membranes,
the pioneering work is that due to Petrov who has also authored
two review articles on this topic [3,4] that summarize a fair
amount of the literature on this topic.

Recent attention to this phenomenon has primarily been
spurred via the postulated ramifications of flexoelectricity in
various biological functions, e.g., outer hair cell electromotility
and its role in cochlear amplification and sharp frequency
discrimination [5–9], tether formation [10,11] and ion trans-
port [12]. It is also worthwhile to point out a recent work
by Brownell et al. [11] that provides the most compelling
experimental evidence to date of the converse flexoelectric
effect.

In this work we examine the effect of external charges or
dipolar distributions on the apparent flexoelectricity of a lipid
bilayer membrane (Fig. 1). In a naively linearized setting,
external charges do not change the apparent flexoelectricity.
We show, however, that carefully accounting for geometric
nonlinearity and the associated change in the polarization
permits the observation of some nontrivial coupling effects.
Insightful works in this direction have appeared earlier. For
example, Ref. [13] developed a simple model to understand
the contribution of electric double layers on the flexoelectric
coefficient. The focus of the present work is to (i) provide
a rigorous framework to link external charges and dipoles
to flexoelectricity which can then easily be generalized to
complex situations, (ii) show that the external charges and
dipoles renormalize the flexoelectric coefficient because of
the interaction of geometric nonlinearity of deformation and

electrostatics, and (iii) make some simple predictions to
interpret existing experiments showing low and high values of
flexoelectricty for different types of membranes. We empha-
size here that the limited experimental work on flexoelectricity
so far does indicate that flexoelectricity in real living cells is
nonlinear, e.g., [5].

II. THEORETICAL FRAMEWORK

We begin with the three-dimensional theory of flexoelectric
materials and derive the theory for membrane by making some
kinematic assumptions. Let U ⊂ R2 be an open bounded do-
main in the XY plane. Consider a thin dielectric membrane oc-
cupying �R = U (−h/2,h/2) ⊂ R3, where h is the thickness
of the membrane and the subscript R indicates the reference
configuration. Let (χ ,P) : �R → R3 × R3 be the deformation
and polarization describing the thermodynamic state of the
membrane, X = (X,Y,Z) [respectively, χ = (x,y,z)] be the
Lagrangian (respectively, Euler) coordinates, F = Grad χ be
the deformation gradient, C = FT F is the Cauchy-Green strain
tensor, and J = det F be the Jacobian. Also, assume that there
exist external or “extrinsic” polarization Pe

0 : �R → R3 and
charge density ρe

0 : �R → R attached to the material points
of the membrane, and the two surfaces of the membrane
are short-circuited—the reader is referred to [14] regarding
this assumption. In the reference configuration the Maxwell
equation can be written as

Div D = ρe
0, (2)

where D = −ε0JC−1Grad ξ + F−1(P + Pe
0) is the electric

displacement defined in �R , and the potential ξ = 0 on
both the surfaces. Since the membrane is thin, bending is
presumably the dominating mode of deformation and hence
the Kirchhoff hypothesis is enforced [χ = (x,y,z)]:

x = X − Z
∂w(X,Y )

∂X
, y = Y − Z

∂w(X,Y )

∂Y
,

(3)
z = Z + w(X,Y ),

where w(X,Y ) is the out-of-plane displacement of the mid-
plane (Z = 0). Further, we introduce polarization per unit area
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FIG. 1. (Color online) Lipid bilayer inside an electrolyte bath.
The head molecules are charged and due to curvature there will
ensue a net polarization inside the membrane, P (r). Also the ionized
water molecules are attracted by the negative head molecules of the
membrane and make an external dipole layer, P e(r).

as

PS = (
P S

X,P S
Y ,P S

Z

) =
∫ h/2

−h/2
P(X,Y,Z)dZ.

To model the flexoelectric effect, we postulate that the
internal or stored energy of the membrane is given by

U [χ ,P] =
∫
U

[
1

2
kb(	w)2 + f P S

Z	w + 1

2
a|PS |2

]
, (4)

where 	(·) = ∂2(·)
∂X2 + ∂2(·)

∂Y 2 is the in-plane Laplace operator with
respect to the Lagrangian coordinates, and kb, f , and a are
material constants. In particular, the first term is the classical
Helfrich-Canham bending energy, the second gives rise to
flexoelectric coupling, and the last term describes the dielectric
property of the membrane. By the principle of minimum free
energy we claim that the equilibrium state of the membrane is
determined by the minimization problem

min
(χ ,P)

{F [χ ,P] := U [χ ,P] + Eelect[χ ,P]}, (5)

where Eelect is the electric energy associated with the electric
field and boundary devices [16]

Eelect[χ ,P] = ε0

2

∫
�R

J |F−T Grad ξ |2.

To find the Euler-Lagrange equations associated with (5), we
now consider the variations of displacement and polarization:

w → wδ = w + δw̃, P → Pδ = P + δP̃.

Then the first variation of the total free energy shall vanish for
any (w̃,P̃):

d

dδ
F [χ δ,Pδ]

∣∣∣∣
δ=0

= 0.

By tedious yet standard calculation and keeping only the
leading order terms [17], we obtain the following Euler-

Lagrange equations on the midplane U :

aP S
X + ξ,X = 0, aP S

Y + ξ,Y = 0,

f 	w + aP S
Z + ξ,Z = 0, (6)

	
(
kb	w + f P S

Z

) − f elect
Z = 0,

where

f elect
Z =

∫ h/2

−h/2

[
�MW

31 − �MW
13

]
,X + [

�MW
32 − �MW

23

]
,Y dZ

is the Z component of the electrostatic force and

�MW = −ε0

2
J |grad ξ |2F−T − grad ξ ⊗ D (7)

is the Piola-Maxwell stress. We remark that Eqs. (6) and
(7), together with the Maxwell equation (2) for electrostatics
form a closed system with five equations and five unknowns
ξ,w,P S

X,P S
Y ,P S

Z . Analytical solutions to the above set of
nonlinear differential equations promises to be an interesting
albeit challenging endeavour and not addressed in this Rapid
Communication.

In this Rapid Communication we will study a simple
problem to assess the role of external charges and dipoles
on the “apparent flexoelectricity” of a membrane. To this
end, we conduct a thought experiment and redefine the
flexoelectric coupling coefficient f in terms of change of
electric displacement. Consider a flat membrane with zero
curvature which is referred to as the initial state, whereas
the final state of our experiment is a bent membrane having
a net polarization. We denote by Di and Df the electric
displacement of the initial and final states in the reference
configuration, respectively. For simplicity, suppose that the
in-plane components of the polarization are negligible and
the membrane is under one-dimensional uniform bending—
fairly reasonable assumptions for small curvatures. Since the
potential difference across the thickness of the membrane is
zero and the polarization density is constant along the thickness
of the membrane, then from the third equation of (6) we obtain
P S

Z = − f κ

a
, where κ = 	w = const. We further assume that

the polarization density is constant along the thickness and
obtain the polarization (per unit volume) P = PS

h
. The mea-

surable quantity is the electric current in this process. Recall
that the electric displacement in the reference configuration is
given by D = −ε0JC−1Grad ξ + F−1(P + Pe). We denote by
D

f

Z and Di
Z , the final and initial out-of-plane components of

the electric displacement, respectively. By an ammeter we can
measure the change in the electric displacement in two stages
as below:

Q =
∫ ∞

0
I (t)dt = (

D
f

Z − Di
Z

)∣∣∣∣
Z=0

A,

where A is the area of the membrane. Now, in the absence
of external charges and polarization, i.e., Pe

0 = ρe
0 = 0, the

solution to the electrostatic problem (2) is clearly given by

ξ = 0 in �R , and therefore, D
f

Z − Di
Z = P S

Z

h
, and hence

f = − Q

κA
ah = −D

f

Z − Di
Z

κ
ah. (8)

Since the current (or charge Q) is the quantity that is measured
in experiments, we now define the “apparent” or effective
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fleoxelectric constant, pristine or with external charges and
dipoles, by the above equation. Before proceeding further, it is
instructive to examine the relation between the flexoelectric
constant in our model f to the one often found in the
literature and cited in the Introduction (1): γ . In our theoretical
framework, for a homogenous membrane and in the absence
of an external electric field, the third equation of (6) implies
that P = − f

a
κ . In view of (1), we obtain that γ = − f

a
.

III. FLEXOELECTRIC COEFFICIENT IN THE PRESENCE
OF EXTERNAL CHARGES AND DIPOLES

The primary constituent of most biomembranes is a
molecule with two different subdomains. One is hydrophilic,
usually negatively charged, and therefore tends to attract the
positive charges inside the electrolyte, while the other part
is hydrophobic. When these molecules are exposed to water,
they arrange themselves into two sheets in a way that the
hydrophobic tails group points towards the midplane of the
bilayer, while the hydrophilic head molecules tend to be in
contact with the ionized water molecules. During deformation,
the density of charges and dipoles inside and on the surfaces of
the membrane alters and results in a nonzero net polarization
[18]. For simplicity, here we consider a small part of a
cylindrically deformed lipid membrane inside an electrolyte
bath (Fig. 2). Lipid molecules may carry dipoles or charges
either along the thickness of the membrane or on the surfaces.
These dipoles and charges might be “external” or the intrinsic
properties of the lipid molecules. The former may be due
to proteins and ion channels, for instance. In the following
section, we consider the simplest possible case, in which the
distributions of the charges and dipoles are radial neglecting
any angular variation. The simplifying assumption is useful
for illustration, however, the framework described earlier can
be used for more general cases also. Consider a cylindrically
deformed membrane of radius R, as shown in Fig. 2. Let ρe

0,P
e
0

be the external charge density and the out-of-plane polarization
in the reference configuration that are independent of in-plane
positions. Assume that the induced out-of-plane polarization P

is also independent of in-plane positions. Then in the current
configuration, the external and induced polarization (pe,p)

FIG. 2. (Color online) Lipid bilayer under external charges and
dipoles.

together with the external charge density ρe, to the leading
order, orient radially. They can only be a function of r , and for
r ∈ (r1,r2),

p(r) = P (r − rm)/J, pe(r) = P e
0 (r − rm)/J,

(9)
ρe(r) = ρe

0(r − rm)/J,

where r1, r2, and rm are the radii of the inner, outer, and
middle surfaces, respectively, and r2 − r1 = h is the thickness
of the membrane. Cylindrical symmetry dictates that the
electric potential is also radial: ξ = ξ (r). Then in the current
configuration and polar coordinates, Eq. (2) can be written as

1

r

d

dr

{
r

[
− ε0

d

dr
ξ + p(r) + pe(r)

]}
= ρe(r). (10)

Let d(r) = −ε0
d
dr

ξ + p(r) + pe(r) be the radial electric dis-
placement in the current configuration. Imposing the short-
circuit condition, we obtain

d(r1) = 1

h

∫ r2

r1

[
p + pe − 1

r

∫ r

r1

r ′ρ(r ′)dr ′
]
dr. (11)

To assess the change in dielectric displacement, we subtract
the electric displacement at zero curvature. Based on the small
curvature assumption, we have J (r) = r

rm
.

We denote by di and df the initial and final electric
displacements in the current configuration, respectively. Let
ε = κ(r − rm). Then the change in the out-of-plane electric
displacement is

df (r1) − di(r1)

= 1

h

∫ r2

r1

(
P0(r) − εP e

0 (r)

J
+ 1

r

∫ r

r1

r ′ ερ
e
0(r ′)
J

dr ′
)

dr

= −κ

{
rmf

r1ah
+ 1

h

∫ r2

r1

(
rm(r − rm)

r
P e

0 (r)

− 1

r

∫ r

r1

rm(r ′ − rm)ρe
0(r ′)dr ′

)
dr

}
.

As before, we need to evaluate the change of electric displace-
ment in the reference configuration. Noting that D = JF−1d
and neglecting the higher order terms, we obtain

Df (r1) − Di(r1) = r1

rm

[df (r1) − di(r1)]. (12)

Using Eq. (8), we obtain an expression for the apparent
flexoelectric coefficient:

feff = −Df (r1) − Di(r1)

κ
ah =: f + f e

P + f e
C,

where f e
P and f e

C , given by

f e
P = a

∫ r2

r1

r1(r − rm)

r
P e

0 (r)dr, (13)

f e
C = −a

∫ r2

r1

1

r

∫ r

r1

r1(r ′ − rm)ρe
0(r ′)dr ′dr, (14)

are the flexoelectric coefficients due to external polarization
and charge distributions, respectively. We now consider, in
turn, as also discussed in Petrov [3], the dipolar and monopole
charge contributions to the effective flexoelectricity.
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IV. RESULTS AND DISCUSSION

A. Contribution of external charges to the effective
flexoelectricity

In this part we estimate − f e
C

a
. The charges may be either

due to the negative head of the lipid molecules or positive ions
of electrolyte which are attracted by the fully hydrated head
groups or the ion pump channels along the thickness of the
membrane, as shown in Fig. 2. For simplicity, we only focus
on the first case—the charges are distributed over the inner and
outer surfaces of the membrane. After deformation, the charge
densities on both sides differ in an opposite sense. The outer
surface charge density will be smaller due to stretching of the
surface, while the converse is true for the inner surface due to
compression. Also we can estimate the ion per head lipid to be
a few units of the electron charge, −1.6 × 10−19C. Assuming
that the thickness of the membrane is about 5 nm, we evaluate
Eq. (14) and obtain − f e

C

a
= 2.85 × 10−18C. This value is of

the same order of magnitude as the experimental results.

B. Contribution of external dipoles and integral proteins to the
effective flexoelectricity

In this case, we refer to Fig. 2, in which a membrane is
endowed with uniform external dipole layers on the inner
and outer surfaces. First we estimate the external polarization
density (per area). According to [19] the thickness of the
fully hydrated region is about 0.5 nm and the area per lipid
head is about 70 Å

2
. Based on these values, we obtain the

polarization density (per area) as P S = 1.14 × 10−10 C m−1.
Integrating Eq. (13) over the thickness of the membrane results
in − f e

P

a
= 5.7 × 10−19 C. Here we note that experimentally the

value of − f e
P

a
has been measured to be a few times of 10−18 C

[3]. The results obtained above depend on the magnitude of
the dipoles on the surface. The thickness of the dipole layers
is between 0.3 and 1 nm. Therefore, the resultant flexoelectric
coefficient can be larger by a factor of 2. Our model allows us
to approximately assess the effect of dipole carrying proteins
on the effective flexoelectricity. Proteins often carry very large
dipole moments, e.g., the following have been measured: 480D

for chymotrypsin and 637D for carboxypeptidase A [20]. A
detailed boundary value solution for an embedded protein is
left for future work, however, a simple approximation that
the protein dipole moment is uniformly smeared across the
membrane can readily yield analytical results. While this
approximation will ignore a geometrical effect, our model,
however, can then be used trivially to obtain an estimate via
the expression for f e

P . To this end we need to estimate the
dipole density due to the integral proteins along the thickness
of the membrane. The diameter of the protein’s structure is also
a few nanometers. Using P p = 500D = 1667.8 × 10−30 C m
for the dipole moment of the protein, Ap = π × 10−18 m2

for the area of the protein and h = 5 × 10−9 m, we obtain
1.3 × 10−18 C for the flexoelectric coefficient.

As can be seen from the above calculation, the effect of
the dipole carrying integral proteins is fairly substantial and
explains the large values that are sometimes experimentally
observed [3].

C. Curvature-dependent flexoelectric coefficient

While flexoelectricity relates changes to the development
of membrane polarization, the flexoelectric coefficient itself,
f or γ , is considered to be curvature independent. In this
section we show that this is not necessarily correct. To simplify
Eq. (11) for d(r1) we assumed that the ratio of h/rm � 1. This
condition is definitely violated in several biologically relevant
cases. In the presence of some proteins, lipid membranes
may undergo very large curvatures, even comparable to the
thickness of the membrane, [21]. As Ref. [21] catalogs, several
bionanostructures exist with large curvatures. In such cases the
exact solution for d(r1) may have to be modified:

d(r1) = f (r1)

h

∫ r2

r1

(
p + pe − 1

r

∫ r

r1

r ′ρ(r ′)dr ′
)

dr, (15)

in which f (r1) = h

r1 ln(1+ h
r1

)
≈ 1 + h

2rm
+ h2

6r2
m

+ · · · . Accord-

ingly, the flexoelectric coefficient depends nonlinearly on the
curvature:

f e
P =

(
1 + h

2rm

+ h2

6r2
m

+ · · ·
)

a

∫ r2

r1

r1(r − rm)

r
P e

0 (r)dr,

f e
C = −

(
1 + h

2rm

+ h2

6r2
m

+ · · ·
)

× a

∫ r2

r1

1

r

∫ r

r1

r1(r ′ − rm)ρe
0(r ′)dr ′dr. (16)

If we assume that h/rm ≈ 1/2, the correction can be as
large as 30%. More importantly, the nonlinear dependence of
flexoelectricity on the curvature provides an interesting avenue
for further research on electromechanical stability analysis of
high-curvature bio-nano structures.

V. CONCLUSIONS

The key conclusion of the present work is that it is the in-
terplay between the geometrically nonlinear deformation and
electrostatics that lead to the renormalization of flexoelectricity
in the presence of external charges and dipoles—this effect
will not be seen in a purely linearized setting where careful
distinction is not made between reference and deformed
configurations. Our framework is general and can be used
to examine the flexoelectric response for membranes with
complex electrostatic environment (albeit the calculations may
have to proceed numerically). Using simple approximations,
we are, however, able to provide illustrative and transparent
analytical solutions to several cases and make reasonable
estimates of the flexoelectric response of different types of
membranes. Interestingly, our results point also to the prospect
of artificially designing high or low flexoelectricity in model
membrane systems.
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