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Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis

Yan Ba,1 Haihu Liu,2 Jinju Sun,1,* and Rongye Zheng1

1School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049, China
2Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Received 8 July 2013; published 18 October 2013)

Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature
of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it
is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM
is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In
this model, the perturbation operator based on the continuum surface force concept is introduced to model the
interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase
segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary
condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations
and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the
effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact
angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting
process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical
solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well
as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the
consideration of contact-angle hysteresis.
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I. INTRODUCTION

Microdroplet behavior on a solid surface is of signifi-
cant importance in numerous industrial processes such as
coating technique, ink-jet printers, and multiphase flows in
microchannels, and has attracted the increasing attention and
interest of many researchers. In microdroplet dynamics, the
behavior of the contact-line region plays a crucial role, where
three phases (liquid-vapor-solid or liquid-liquid-solid) coexist,
and the physical mechanism is very complex because of the
microscopic interactions among the fluid and solid phases [1].

In past decades, some numerical methods dealing with
contact-line behavior have been proposed based on macro-
scopic hydrodynamic equations and/or microscopic molecular
dynamics. In the commonly used macroscopic approaches,
e.g., volume of fluid (VOF) [2,3] and level-set methods
[4,5], the interfacial behavior is often obtained by solving a
transport equation of the volume fraction (level-set function)
and implementing an interface reconstruction (reinitialization)
process, which is very complicated and usually difficult to be
implemented. In addition, empirical slip models are required
for such kinds of methods to overcome the stress singularity
problem associated with the traditional no-slip boundary con-
dition. The microscopic methods (e.g., the molecular dynamics
methods, and direct simulation Monte Carlo methods) have
also been applied to multiphase fluid dynamic simulations,
but their requirement for the computational resources will
greatly increase with the number of particles and physical
time scale involved in the problems, which largely restricts
their applications for practical problems [6].

Recently, the lattice Boltzmann method (LBM) has
emerged as a promising approach for modeling the
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microdroplet behavior [7–9]. LBM is a mesoscopic compu-
tational method between the molecular dynamics methods
and the macroscopic hydrodynamic approaches. Instead of
solving the macroscopic continuum equations, LBM solves the
kinetic-based evolution equations of the particle distribution
function that describes the averaged macroscopic behavior of
the molecules, and the macroscopic variables can be calculated
by the moment integrations of the distribution function. Due
to its kinetic nature, LBM can automatically capture the mul-
tiphase interface, and the numerical difficulties in traditional
multiphase simulations such as phase segregation and contact-
line dynamics can be resolved through the incorporation of
intermolecular-level interactions.

Several multiphase LBM models have been developed in
past years. Shan and Chen proposed a pseudopotential model
[10], in which the interparticle forces were incorporated into
the equilibrium velocity to model the interfacial tension and
produce phase separation. The free-energy model proposed
by Swift et al. [11] considered a generalized equilibrium
distribution function derived from the free-energy functional to
model the interfacial dynamics, which can conserve the local
mass and momentum, and is thermodynamically consistent
for describing the interfacial dynamics. The present study
is based on the color-gradient model originally proposed by
Gunstensen et al. [12], which used the red and blue particle
distribution functions to represent two different fluids. In
the color-gradient model of Gunstensen et al., an additional
collision operator (i.e., the perturbation term) is introduced
to generate the interfacial tension, and a recoloring step is
applied to demix the different phases through maximizing
the work done by color gradient. Despite its simplicity in
physical concept and numerical implementation, Gunstensen’s
model suffers from a few shortcomings, such as the existence
of large spurious velocities in the vicinity of the interface,
and equal densities requirement for two-phase flows. Several
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modifications of the original model have been conducted
to eliminate these limitations and improve its accuracy and
efficiency. Latva-Kokko and Rothman [13] replaced the nu-
merical maximization recoloring step of Gunstensen’s model
through a formulaic segregation algorithm, which removes the
lattice pinning problem at the interface region and meanwhile
improves the computational efficiency. Lishchuk et al. [14]
introduced the concept of continuum surface force (CSF) to
model the interfacial tension, which effectively reduces the
spurious velocities in the interface region. The ability of the
model to allow for variations of density and viscosity was
introduced by Grunau et al. [15] through the incorporation
of the freedom of the rest particle equilibrium distribution
function. Reis and Phillips [16] further developed a two-
dimensional (2D) nine-velocity (D2Q9) model for immiscible
fluids with larger density ratio. Recently, Liu et al. [17]
extended the model of Reis and Philips to three-dimensional
cases by deriving a generalized perturbation operator in which
an expression for the interfacial tension parameter is directly
obtained without any additional approximations.

In color-gradient models, the contact angle is usually
considered by directly prescribing a color-function value on
the wall [18–20] or implementing a color-conserving
wetting boundary condition [21] in both static and
dynamic contact-line simulations. For both methods used in
dynamic situations, the classical Navier slip rule [22,23] in
hydrodynamic models between the dynamic contact angle and
contact-line velocity is naturally satisfied without introducing
any assumption due to the nature of the microscopic
dynamics [19], which makes the color-gradient model an
effective tool for the dynamic contact-angle simulations.
However, in these models, the contact-angle hysteresis
behavior, which is essentially inherent to contact-line motion,
has been neglected. The contact-angle hysteresis is known
as a phenomenon in which the contact line remains fixed
at a given position, as the instantaneous contact angle θ is
within the window of θR < θ < θA, where θR and θA are
the limited values for the receding and advancing contact
angles. Generally, the hysteresis window is determined by the
properties of the solid substrates in contact with the droplet
such as surface roughness and nonuniformity [24,25], which
is complicated and has not been fully understood. In numerical
simulations, we focus mainly on the droplet behavior with
a given hysteresis window. The difficulties in numerical
modeling of the contact-angle hysteresis for a given hysteresis
window mainly lies in the determination of an instantaneous

dynamic contact angle θd that satisfies the following condition:
the droplet only deforms naturally within the interval (θR,θA),
beyond which it will move on the solid surface with θd

obeying the Navier slip rule. Several numerical strategies
based on macroscopic multiphase methods have been
developed to simulate the contact-angle hysteresis behavior.
For instance, in the level-set method a feedback deceleration
technique is developed by Park et al. [26] to simulate the
moving contact-line behavior. Dupont et al. [27] proposed
a VOF-based multiphase model to simulate the hysteresis
behavior, in which an iterative method is used to update
the equilibrium contact angle according to the momentum
balance, and the dynamic contact angle is determined by
the updated equilibrium contact angle. The above-mentioned
numerical strategies are restricted to the macroscopic
Navier-Stokes-based multiphase models, and some efforts
and attempts are urgently required to model the contact-angle
hysteresis in the LBMs with their increasing popularity.

In the present study, a dynamic contact-angle model
including hysteresis is developed based on the color-gradient
multiphase LBM model. A perturbation operator based on
the CSF concept is used to model the interfacial tension, and
the recoloring operator originally proposed in Ref. [13] is
introduced to maintain the interface between two fluids. At the
solid surface, the color-conserving wetting boundary condition
[21] is incorporated into the model to describe the dynamic
evolution of the contact line, and a modified numerical strategy
previously used in the VOF-based model [27] is developed to
account for the contact-angle hysteresis. The capability and
accuracy of the proposed model are tested by several typical
flow cases, including the droplet partial wetting process, and
the dynamic behavior of a droplet subjected to a simple shear
flow.

II. MATHEMATICAL MODEL

A. Lattice Boltzmann immiscible two-phase model

The two-dimensional color-gradient model is developed for
immiscible two-phase fluids based on work by Halliday et al.
[28] and Reis et al. [16]. In the model, two immiscible fluids
are represented as a red fluid and a blue fluid, respectively. The
distribution function for each fluid is denoted by fi,k , where
k = red or blue, i = 0, . . . ,8 is velocity directions for a D2Q9
lattice grid, and the total distribution function is defined as
fi=fi,R + fi,B . The lattice velocity vectors on the D2Q9 grid
are given as

ci =

⎧⎪⎨
⎪⎩

(0,0), i = 0

(cos[π (i − 1) /2], sin[π (i − 1) /2]) , i = 1,2,3,4√
2 (cos[π (i − 5) /2 + π/4], sin[π (i − 5) /2 + π/4]) , i = 5,6,7,8.

(1)

In each time step, the distribution function of each fluid
undergoes a collision substep and a streaming substep, and
the evolution equation is expressed by

fi,k (x + ciδt ,t + δt ) =fi,k (x,t) + �i,k[fi,k (x,t)], (2)

where x and t are the position and time, δt is the time step,
and �i,k is the collision operator. The collision operator �i,k

consists of three separate parts [16]:

�i,k = (�i,k)(3)[(�i,k)(1) + (�i,k)(2)], (3)
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where (�i,k)(1) is the Bhatnagar-Gross-Krook (BGK) collision
operator, (�i,k)(2) is the perturbation operator which generates
an interfacial tension, and (�i.k)(3) is the recoloring operator
which contributes to maintaining the phase interface.

For each phase, mass conservation and total momentum
conservation are expressed as

ρk =
∑

i

fi,k =
∑

i

f
(eq)
i,k ,

(4)
ρu =

∑
i

∑
k

cifi,k =
∑

i

∑
k

cif
(eq)
i,k ,

where ρk is the density of fluid k, ρ = ρR + ρB is the total
density, and u is the velocity of the fluid mixture.

1. BGK collision operator

In the present study, the BGK collision operator is applied
for each fluid, of which the particle distribution functions are
relaxed toward a local equilibrium with a single relaxation
time, written as

(�i,k)(1) = −ωk

[
fi,k − f

(eq)
i,k

]
. (5)

For a given multiphase flow, the equilibrium distribution
function is defined by [16]

f
(eq)
i,k (ρ,u) = ρk(φi,k + Wi[3ci · u + 4.5 (ci · u)2 − 1.5 (u)2]),

(6)

where Wi is the weight defined as

Wi =
⎧⎨
⎩

4/9, i = 0
1/9, i = 1,2,3,4
1/36, i = 5,6,7,8,

(7)

and φi,k is a parameter related to the density ratio written
as [16]

φi,k=
⎧⎨
⎩

αk, i = 0
(1 − αk) /5, i = 1,2,3,4
(1 − αk) /20, i = 5,6,7,8,

(8)

where 0 � αk � 1 should be satisfied to avoid the unreal
negative value for fluid density. Note that αR and αB should sat-
isfy the constraint γ = ρR/ρB = (1 − αB) / (1 − αR) [16,17],
where γ is the density ratio of red fluid to blue fluid. The
present model has been proved to be valid under different
density ratios [15,16]. For example, in Ref. [16], simulations of
density ratio up to 18.5 were presented. But since our concern
is to model the contact-angle hysteresis, we only choose γ = 1
in this work for the sake of simplicity.

The interface between the two phases is identified by the
constant contours of the phase field function ρN , which is
defined as

ρN (x,t) = ρR (x,t) − ρB (x,t)

ρR (x,t) + ρB (x,t)
. (9)

In the single-phase regions (|ρN |=1), the Chapman-Enskog
expansion is employed for each phase by which the Navier-
Stokes equations are recovered. The relaxation parameter ωk

is a function of fluid kinematic viscosity and given by ωk =
1/ (3νk + 0.5) [17], in which νk is the kinematic viscosity of
fluid k.

In the interface region (|ρN |<1), to ensure the smoothness
of the relaxation parameter and the stability of the interface,
the relaxation parameter is written as [16]

ω =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωR, ρN > δ

gR(ρN ), δ � ρN > 0
gB(ρN ), 0 � ρN > −δ

ωB, ρN < − δ,

(10)

where δ is a free parameter associated with the interface
thickness and taken as 0.1 in the present simulation, and gR

and gB are parabolic functions of ρN written as

gR(ρN ) = χ + ηρN + κ(ρN )2,
(11)

gB(ρN ) = χ + λρN + υ(ρN )2

in which the coefficients are taken as

χ = 2ωRωB/ (ωR + ωB) ,

η = 2 (ωR − χ ) /δ,

κ = −η/ (2δ) , (12)

λ = 2 (χ − ωB) /δ,

υ = λ/ (2δ) .

2. Perturbation operator

In the perturbation operator, the CSF model [28] is used to
model the interfacial tension, which has been demonstrated to
effectively reduce the spurious velocities [14]. The interface
force acts centripetally normal to the local interface and its
magnitude is proportional to the gradient of the phase field
function (i.e., color gradient) ∇ρN . The local curvature of the
interface is given by

K = −∇S · n, (13)

where ∇S = (I − nn) · ∇ is the surface gradient operator and
n = −∇ρN/|∇ρN | is the outward-pointing unit normal vector
of the interface. In two dimensions, the curvature of the
interface can be expressed by

K = nxny

(
∂

∂y
nx + ∂

∂x
ny

)
− n2

x

∂

∂y
ny − n2

y

∂

∂x
nx. (14)

To minimize the discretization errors, the derivatives in
Eq. (14) are calculated numerically through the nine-point
isotropic finite difference approximation for a variable ψ ,

∇ψ (x,t) = 3
∑

i

wiciψ (x + ci ,t). (15)

The interfacial tension force is then obtained by

F = − 1
2σK∇ρN, (16)

where σ is the interfacial tension which is applied only at the
lattice sites where the two fluids coexist.

The interfacial tension force can be incorporated into LBM
using different models. In the present study, the body force
model of Guo et al. [29] is employed for its high accuracy
in modeling a spatially varying body force and capability
in reducing effectively the spurious velocities. According to
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Guo et al., the perturbation operator (�i)
(2) =

(�i,R)(2)+(�i,B)(2) is written as

(�i)
(2) = Wi

(
1 − w

2

)
[3 (ci − u) + 9 (ci · u)] · F, (17)

where the velocity is redefined to include some of the effect of
external body force

ρu =
∑

i

∑
k

cifi,k+1

2
F. (18)

Then the interfacial tension contribution is assigned to each
phase, and the perturbation operator of fluid k is given by

(�i,k)(2) = AkWi

(
1 − w

2

)
[3 (ci − u) + 9 (ci · u) ci] · F,

(19)

where Ak is the fraction of interfacial tension contributed by
the fluid k, and satisfies

∑
k Ak = 1.

3. Recoloring operator

In this work, the recoloring algorithm proposed by Latva-
Kokko and Rothman [13] is used to promote phase segregation
and to maintain a reasonable interface. This algorithm allows
the red and blue fluids to mix moderately at the tangent of
the interface, and at the same time keeps the color distribution
symmetric with respect to the color gradient. Thus, it can
further reduce the spurious velocities and remove the lattice
pinning problem produced by the original recoloring operator
of Gunstensen et al. [12]. The algorithm is written as

(�i,R)(3)(fi,R) = ρR

ρ
f ′

i + β
ρRρB

ρ2

× cos (ϕi) |ci |
∑

k

f
(eq)
i,k (ρk,0,αk),

(20)
(�i,B)(3)(fi,B) = ρB

ρ
f ′

i − β
ρRρB

ρ2

× cos (ϕi) |ci |
∑

k

f
(eq)
i,k (ρk,0,αk),

where f ′
i is the post-perturbation value of the total distribution

function; ϕi is the angle between the color gradient ∇ρN and
the lattice direction ci ; and β is a free parameter associated
with the interface thickness and takes a value between zero
and unity. In this study, β is taken as 0.7 to maintain a steady
interface [28], which has a thickness of four to five lattices.
In addition, a previous study also showed that this choice is
necessary to reproduce correct droplet dynamics [20].

B. Numerical implementation of wetting boundary condition

The physical mechanism for microdroplet motion on a
solid surface remains poorly understood mainly due to the
complexity of the contact-line dynamics. In this section, we
aim to develop a color-gradient wetting boundary condition
that allows one to achieve accurate simulation of the contact-
line dynamics including hysteresis. To achieve this goal, a
color-conserving scheme [21] is employed at the wetting
boundary to model the dynamics of the contact line with
improved accuracy and minimized spurious velocities. In
addition, the contact-angle hysteresis is included by an iterative

6 2 5

1

847

3
0

dΩ
Ω

known Ri, Bi

unknown Ri, Bi

u0

FIG. 1. Illustration of a D2Q9 lattice node on the bottom
boundary of a 2D domain (at propagation step).

algorithm based on the numerical strategy of Dupont and
Legendre [27], but some modifications are introduced since
the original model of Dupont and Legendre is designated for
the macroscopic VOF-based methods.

1. Color-conserving boundary condition

To model the fluid-surface interactions, we employ the
color-conserving wetting boundary condition proposed by
Hollis et al. [21] with some modifications according to the our
collision operator �i,k , in which the boundary closure scheme
is applied to ensure the mass conservation for each phase, and
a variant of the recoloring operator is designed to maintain the
reasonable interface at the solid boundary.

Figure 1 represents a lattice node on the bottom wall, which
moves at the velocity of u0 = (u0x,u0y). Assume that the node
just lies in the interface of the red and blue fluids. At this lattice
node, the post-propagation value of fluid distribution function
fi,k exists only for i �= 2,5,6, thus, the total distribution
function that propagates into the fluid domain at the node for
each phase is written as Fk

in = ∑
i �=2,5,6 fi,k . On the other hand,

the post-perturbation value of the distribution function f ′
i,k

needs to be considered only for live links, i.e., i �= 4,7,8, since
the post-perturbation distribution functions with i = 4,7,8 will
propagate out of the fluid domain. Therefore, the effective
mass for each phase after collision is given as

∑
i �=4,7,8 f ′

i,k . To
ensure mass conservation for each phase, the post-propagation
and post-perturbation effective mass of each phase must be
equal. Thus, the color conservation can then be expressed as

Fk
in =

∑
i �=4,7,8

f ′
i,k. (21)

According to the lattice Boltzmann equation, i.e., Eq. (2),
the distribution function of each phase after the collision can
be written as

f ′
i,k = f

(0)
i,k (ρ ′

k,u0) + (�i,k)(2) + (1 − ω) f
(1)
i,k , (22)

where ρ ′
k represents the auxiliary boundary density determined

by the color conservation. The subtotal of the higher-order
component of the distribution functions f

(1)
i,k on the live links

is assumed to be zero, and the subtotal of the perturbation
operator (�i,k)(2) [defined by Eq. (19)] on the live links disrupts
the conservation by

�Mk =
∑

i �=4,7,8

(�i,k)(2) =
∑

i �=4,7,8

AkWi

(
1 − w

2

)

× [3 (ci − u0) + 9 (ci · u0) ci] · F �= 0. (23)

043306-4



COLOR-GRADIENT LATTICE BOLTZMANN MODEL FOR . . . PHYSICAL REVIEW E 88, 043306 (2013)

Thus, the subtotal of the equilibrium distribution function
f

(0)
i,k (ρ ′

k,u0) can be derived using Eq. (22), and written as

Fk
in − �Mk =

∑
i �=4,7,8

f
(0)
i,k (ρ ′

k,u0). (24)

Then, the auxiliary boundary density ρ ′
k is obtained by

introducing the equilibrium distribution function into the
above equation:

ρ ′
k = Fk

in − �Mk∑
i �=4,7,8 f

(0)
i,k (1,u0)

= Fk
in − �Mk(

0.7 + 0.3αk+0.5u0y − 0.5u2
0y

) .

(25)

In the present study, the y component of wall velocity is zero,
i.e., u0y = 0, and thus we get

ρ ′
k = Fk

in − �Mk

0.7 + 0.3αk

. (26)

The higher-order distribution function f
(1)
i,k should satisfy the

following constraints as given in Ref. [21]:∑
i �=4,7,8

f
(1)
i,k = 0,

∑
i

f
(1)
i,k ciα = 1

2
Fα, (27)

∑
i

f
(1)
i,k ciαciβ = −2

3
ρ ′

kSαβ/w,

where Sαβ is the strain rate tensor and defined as [21]

Sαβ = 1

2
(∂αuβ + ∂βuα) + 3w

4ρ
(Fαuβ + Fβuα). (28)

Solving the underspecified Eq. (27) (because the number of
unknowns is more than the number of equations) by the
singular value decomposition (SVD) method [30], we obtain
f

(1)
i,k as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
(1)
0,k

f
(1)
1,k

f
(1)
2,k

f
(1)
3,k

f
(1)
5,k

f
(1)
6,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

36

⎛
⎜⎜⎜⎜⎜⎝

0 −5 −12 −2 0
3 −2 6 −8 0
0 1 −12 10 0

−3 −2 6 −8 0
3 4 6 4 9

−3 4 6 4 −9

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

δtFx

δtFy

−2ρ ′
kSxx/ (3w)

−2ρ ′
kSyy/ (3w)

−2ρ ′
kSxy/ (3w)

⎞
⎟⎟⎟⎟⎟⎠ . (29)

Then, the post-perturbation distribution function of each phase
on the boundary can be obtained by Eq. (22).

A modified recoloring step is needed for the boundary nodes
to maintain the interface after the collision process. Based on
the color conservation, the post-segregation densities assigned

to the live links should satisfy∑
i �=4,7,8

Ri = FR
in ,

∑
i �=4,7,8

Bi = FB
in ,

∑
i �=4,7,8

fi = FR
in + FB

in ,

(30)

where Ri (Bi) represent the post-segregation distribution
function of red (blue) fluid.

We define ρR and ρB as the densities of red and blue fluids
at the boundary nodes, and ρ = ρR + ρB as the total density.
To obtain an equation of ρR and ρB , we substitute Eq. (20)
into Eq. (30) and have

ρR

ρR + ρB

(
FR

in + FB
in

) + β
ρRρB

(ρR + ρB)2 n

·
⎛
⎝ ∑

i �=4,7,8

{[
R

eq
i (R′,0,αR)+B

eq
i (B ′,0,αB )

]
ci

}⎞⎠ |ci | = FR
in ,

(31)

which can be further written as

ρR

ρR + ρB

(
FR

in + FB
in

) + β
ρRρB

(ρR + ρB)2 ny

×{0.3 [ρR(1 − αR) + ρB(1 − αB)]} = FR
in , (32)

where ny is the y component of the interface normal vector n.
The conservation of total mass requires

ρ =
∑

k

ρ ′
k. (33)

Combining Eqs. (32) and (33), we obtain a cubic equation with
respect to ρR:

k (αR − αB) ρ3
R + k (−αR + 2αB − 1) ρρ2

R

+ [(
FR

in + FB
in

)
ρ + kρ2 (1 − αB)

]
ρR − FR

in ρ2 = 0, (34)

where k = 0.3βny . Equation (34) can be solved by an iterative
method, e.g., the Newton-Raphson method, and Ri can then
be calculated using the following segregation formula:

Ri = ρR

ρR + ρB

(f ′
i ) + β

ρRρB

(ρR + ρB)2 cos(ϕi) |ci |

× [
R

(eq)
i (ρR,0,αR) + B

(eq)
i (ρB,0,αB)

]
. (35)

2. Numerical implementation of constant contact angle

The gradient of the phase field at the boundary nodes is
calculated differently from the interior fluid nodes due to the
lack of information of their adjacent nodes and the necessity
for introducing the contact angle. Without losing generality,
we choose a bottom boundary node to illustrate its calculation
procedure.

For a specified contact angle θ , the gradient of phase field
∇ρN at the boundary node should satisfy

∇ρN

|∇ρN | = n =
{

sin θex + cos θey, if ∂ρN

∂x
< 0

− sin θex + cos θey, if ∂ρN

∂x
> 0.

(36)
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Then, we can obtain a relation for x and y components of
∇ρN : (

∂ρN

∂y

)
x,1

sin θ = −
∣∣∣∣∂ρN

∂x

∣∣∣∣
x,1

cos θ. (37)

In our present algorithm, (∂ρN∂x)x,1 is determined by the
central difference scheme(

∂ρN

∂x

)
x,1

= [(ρN )x+1,1 − (ρN )x−1,1]/2. (38)

The value of (∂ρN/∂y) is then obtained using Eq. (37).
Thus, the specified contact angle is implicitly imposed by the
gradient of phase field.

3. Implementation of dynamic contact angle

As mentioned in Sec. I, in most previously reported color-
gradient models, the hysteresis of the contact line has not yet
been considered. In order to reproduce the droplet behavior
correctly, it is necessary to develop a contact-angle hysteresis
model. Based on the numerical strategy previously proposed in
a macroscopic VOF model [27], we present a color-gradient-
based algorithm to account for the contact-angle hysteresis,
in which an iterative procedure is incorporated to obtain an
equilibrium contact angle, and the dynamic contact angle is
determined by the updated equilibrium contact angle.

Generally, the hysteresis phenomenon of contact line can
be defined as follows [31]:

Ucl > 0 if θd = θA,

Ucl < 0 if θd = θR,

Ucl = 0 if θR < θd < θA,
(39)

where θd is the dynamic contact angle, and θR and θA are,
respectively, the limited values of the receding and advancing
contact angle. The hysteresis window (θR,θA) is determined by
the properties of the solid substrates in contact with the droplet
such as surface roughness and nonuniformity [24,25]. In the
present simulation, we focus on the droplet behavior with a
given hysteresis window. For a given hysteresis window, to
model the contact-angle hysteresis behavior, at each time step,
we need to obtain an instantaneous dynamic contact angle
θd that satisfies the following condition: the droplet deforms
properly within the interval (θR,θA), beyond which the droplet
will move on the solid surface with θd obeying the Navier slip
relationship.

To achieve this goal, we first implement an iterative
procedure (e.g., bisection method) for the contact-line nodes
at both receding and advancing sides to find the equilibrium
contact angle θe, at which the x component of the fluid
momentum ux will be canceled locally, i.e., ux (θe) = 0.

FIG. 2. Equilibrium droplet shapes for θs = 20◦,50◦,90◦,
120◦,150◦. Dashed lines: theoretical shapes. Solid lines: equilibrium
shapes by the present LBM.

o

o

FIG. 3. Dimensionless wet length L/R0 and height e/R0 of the
droplet at equilibrium as a function of the static contact angle θs at
different grid resolutions.

Specifically, the algorithm of finding θe can be described as
follows:

(1) Give an initial range of equilibrium contact angle,
(θmin,θmax), which is chosen to satisfy ux (θmin) ux (θmax) � 0.

(2) Set θe = (θmin + θmax) /2 and calculate ux (θe). If
ux (θmin) ux (θe) � 0, then we take θmax = θe; otherwise, we
take θmin = θe.

(3) Repeat step 2 until the solution θe satisfies the given
convergence condition, e.g., |ux (θe)| < 10−10.

Subsequently, the dynamic contact angle θd is determined
by the following rules based on the calculated equilibrium
contact angle:

o

FIG. 4. Dimensionless pressure difference R0�P/σ of the
droplet at equilibrium as a function of the static contact angle θs

at different grid resolutions.
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FIG. 5. Evolution of droplet shape. Time τ0: initial shape. Time
τ∞: equilibrium shape. Dimensionless time is taken as τ = 0, 4.2,
14.1, 28.8, and 1700.

(1) If θR < θe < θA, the dynamic contact angle θd is directly
assigned as θd = θe, and θd is then used to calculate the
derivatives of the phase field at the solid wall. Thus, the
momentum is locally canceled, and the contact line remains
stationary on the solid wall.

(2) If θe < θR or θe > θA, the equilibrium is disrupted and
the droplet starts to move over the solid surface. The dynamic
contact angle θd is determined such that it satisfies the well-
known Navier slip relationship [23], i.e.,

cos θr = cos θR + 9 Caclln (r/ lm) for θe < θR,
(40)

cos θa = cos θA + 9 Caclln (r/ lm) for θe > θA,

where θr (θa) is the obtained dynamic contact angle at receding
(advancing) side, Cacl is the contact line Capillary number
defined by Cacl = μRUcl/σ , r is the intermediate length scale,
and lm is the microscopic length scale. To guarantee the
slip relationship, i.e., Eq. (40), empirical slip-length models
are usually required in macroscopic models [27]. However,
previous numerical simulations [19] in color-gradient models
show that, the Navier slip relationship is naturally satisfied
due to the nature of intermolecular interactions of LBM when
the θR (or θA) is appointed as the dynamic contact angle θd .
Based on this argument, we can simply take θd as θR (or θA)
when θe is beyond the hysteresis window, and the obtained
θd in simulation will vary automatically with Cacl according
to Eq. (40). Therefore, no additional models or assumptions

are required in our implementation, leading to greater ease in
modeling hysteresis.

Following the above-mentioned method, the real contact-
line motion can be described naturally: For the equilibrium
contact angle within (θR,θA), it remains stationary on the solid
surface, i.e., the hysteresis of contact line is exhibited; whereas
for the equilibrium angle beyond the range of (θR,θA), it will
move.

III. NUMERICAL RESULTS AND DISCUSSIONS

To verify the accuracy and applicability of the developed
multiphase LBM, typical simulations of the contact-line
motion are performed, including the droplet partial wetting
process and the droplet behavior subjected to a simple
shear flow, and the obtained results are compared with the
experimental data and previous numerical results.

A. Partial wetting of the droplet

1. Equilibrium shape of the droplet partial wetting

First, we investigate the equilibrium shapes of the droplet
wetting on the solid surface to verify the model’s ability to
impose a given static contact angle θs . Periodic boundary
conditions are used at the left and right sides of the domain,
and the bounce-back boundary condition is used at the top
surface. At the bottom surface, the color-conserving wetting
boundary condition is applied with the given static contact
angle. The physical properties of both fluids are σ = 0.004,
ρR = ρB = 1, and νR = νB = 0.1. Different values of θs are
considered, ranging from θs = 10◦ to θs = 170◦. Initially, a
semicircular droplet with radius R0 is located at the center
of the bottom wall, and the simulations are performed in a
8R0 × 2R0 lattice domain with three different grid resolutions,
i.e., R0 = 20, R0 = 40, and R0 = 60, to check the grid
dependence of numerical results.

Figure 2 shows the comparison between the simulated
equilibrium droplet shape with its theoretical shape for the
grid resolution of R0 = 40, in which the droplet shape is
represented by the contour of ρN = 0. It is clearly seen that

FIG. 6. Time evolution of (a) the contact-line velocity ucl and (b) the advancing contact point position xcl.
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FIG. 7. The dimensionless wet length L∗ as a function of the
dimensionless time τ .

good agreement is obtained for all presented contact angles.
Figure 3 plots the dimensionless wet length L/R0 and height
e/R0 of the droplet at the equilibrium as a function of θs for
different grid resolutions. The predicted wet length and height
of the droplet agree well with their corresponding theoretical
values at moderate contact angles for all grids, which means
that even for a relatively coarse grid, our LBM simulation
can predict the contact-line behavior with good accuracy.
However, for extremely small and large contact angles, the
wet length error is relatively large on coarse grid, and tends
to decrease with increasing the grid resolution. For example,
at θs = 10◦, an error of 13.23% for wet length is found for
R0 = 20, while the error reduces to much smaller values,
i.e., 4.83% for R0 = 40 and 3.60% for R0 = 60. Figure 4
presents the dimensionless pressure difference R0�P/σ of
the droplet at equilibrium versus the static contact angle θs , in
which the pressure difference is calculated from the average
pressure inside the droplet (ρN � 0.999) and outside the
droplet (ρN � −0.999). By comparing the simulated results
with the theoretical solutions, good agreement is found over
the entire contact-angle range for all grid resolutions.

2. Dynamics of partial wetting

Next, the dynamic color-conserving wetting boundary
condition is validated by simulating the dynamical partial
wetting process. The numerical simulation is conducted for

a droplet placed on the bottom wall in a 160 × 40 lattice
domain. Initially, the droplet has a radius of R0 = 20, and
its centroid is located at 0.95R0 above the bottom wall.
The physical properties of both fluids are σ = 0.0156, ρR =
ρB = 1, and νR = νB = 0.125. The dimensionless time τ is
used to characterize the spreading process, and is defined as
τ = tσ/(ρνA1/2), where A is the droplet area in 2D cases.
Periodic boundary conditions are used at the left and right
boundaries. The bounce-back boundary condition is used at
the top surface, while the dynamic color-conserving wetting
boundary condition is applied at the bottom surface.

Figure 5 presents the time evolution of the droplet shape
for θs = 45◦. As shown in the figure, the droplet continually
spreads over the solid surface until it reaches the steady
state. We can clearly see that the contact angle is always
changing during the droplet spreading, and finally, the contact
angle is approximately equal to its prescribed value θs = 45◦.
Figures 6(a) and 6(b) show, respectively, the time evolution of
contact-line velocity ucl, and position xcl (the x coordinate
of the advancing contact point). Note that ucl and xcl are
both obtained by the interpolation on the contour of ρN = 0.
As shown in Fig. 6(a), at the initial stage of the process,
the contact-line velocity increases sharply from zero to the
maximum and then continuously decreases until it enters into
equilibrium state, at which a zero velocity is reached. From
Fig. 6(b) we can observe that the final position of the advancing
contact point is xcl = 2.287R0, which is close to the theoretical
result, i.e., xcl = 2.338R0.

According to Levi et al. [32], an exponential power law is
observed for the droplet spreading based on experimental data:

A∗ = 1 − exp

(
− K

Af

τn

)
, (41)

in which A∗ is the dimensionless wet area that is defined as the
ratio of the instantaneous wet area to the equilibrium wet area,
and K and n are the fitting parameters determined by physical
properties of the droplet and solid surface. Since the droplet is
initially in contact with the bottom wall in our 2D simulations,
the dimensionless wet area (i.e., the length in 2D cases) is
redefined as L∗ = (L − L0) /(Lf − L0), where L, L0, and Lf

are the instantaneous wet length, initial wet length, and final
wet length, respectively. Figure 7 illustrates the time evolution
of the dimensionless droplet wet length for three different
static contact angles, i.e., θs = 45◦, 60◦, and 75◦. The discrete
symbols represent our LBM simulation results, while the solid
lines represent the exponential power law, Eq. (41), by fitting
to simulation results. The predicted results of Eq. (41) show
good agreement with our LBM simulations. Table I gives the

TABLE I. Parameters in Eq. (41) obtained by the best fits of LBM results for various contact angles in the droplet partial wetting process.

θs K n R2 θs K n R2

35◦ 0.351 0.812 0.99863 65◦ 0.262 0.954 0.99985
40◦ 0.310 0.862 0.99922 70◦ 0.261 0.952 0.99981
45◦ 0.288 0.898 0.99958 75◦ 0.258 0.949 0.99976
50◦ 0.276 0.921 0.99976 80◦ 0.254 0.945 0.99971
55◦ 0.269 0.938 0.99985 85◦ 0.247 0.943 0.99964
60◦ 0.266 0.947 0.99986 90◦ 0.241 0.934 0.99958
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FIG. 8. Schematic diagram of a droplet meniscus subject to a
simple shear flow.

values of fitting parameters K and n, as well as the correlation
coefficients R2 for the static contact angles ranging from 35◦
to 90◦. Obviously, the values of R2 are larger than 0.998 for all
static contact angles under consideration, indicating that the
droplet spreading behavior can be well described by Eq. (41).
The values of K are observed to increase with θs for the entire
range of contact angles, whereas the values of n increase with
θs for θs � 65◦and change slightly when θs > 65◦, which is
consistent with the results in Ref. [32].

B. Droplet subjected to a simple shear flow

The droplet subjected to a simple shear flow is considered
in this section (the geometry setup of this problem is shown
in Fig. 8) to test the hysteresis behavior of contact line.
We first simulate the droplet remaining static on the solid
surface (i.e., the stationary mode thereafter) due to a large
hysteresis window, and the obtained results are compared
with the previous numerical results. Then we investigate the
different modes of droplet motion, namely, stationary, slipping,
and breakup modes, which are caused by different Capillary
numbers and hysteresis windows.

1. Droplet pinned on the wall

We first investigate the cases where the droplet remains
pinned on the solid surface due to a large hysteresis window
of (5◦,175◦). At the top surface, the halfway bounce-back

x

y

-1 -0.5 0 0.5 1
-1

-0.5

0

τ

τ0

FIG. 9. Time evolution of droplet shape for Ca = 0.10. Time τ0:
initial shape. Time τ∞: equilibrium shape. The dimensionless time is
taken as τ = 0, 11.34, 17.01, 200.

x

y

-1 -0.5 0 0.5 1
-1

-0.5

0

FIG. 10. (Color online) Equilibrium velocity field and stream-
lines for Ca = 0.10. The droplet interface is represented by the black
solid line.

boundary condition for the moving boundary [33] is used
to obtain the wall velocity (uw,0) at the bottom surface; the
developed dynamic wetting boundary condition is applied to
consider the contact-angle hysteresis; and at both the inlet and
outlet, the periodic boundary conditions are used. The physical
properties of both fluids are taken as ρR = ρB = 1, νR =
νB = 0.125, and σ = 0.004. Initially, a droplet of circular
segment (red fluid) with the radius R0 and contact angle
θ = 60◦ is placed on the bottom wall of a L × H = 512 × 128
domain. The problem is characterized by the dimensionless
droplet area A∗

d = 4Ad/H
2 and the Capillary number Ca =

ρνuwe/ (σH ).
Figure 9 presents the time evolution of the droplet shape

at Ca = 0.10 for moderate droplet size A∗
d = 0.5. The initial

droplet is a symmetric cap, but due to the viscous stresses,
it deforms continually toward the flow direction. Once the
viscous force acting on the droplet interface is balanced by
the interfacial tension, the droplet will reach a steady shape.

FIG. 11. Comparison of the simulated equilibrium droplet shapes
with the shear flow results of Schleizer and Bonnecaze [34] at
Ca = 0.10 for A∗

d = 0.125 and 1. The solid lines are the simulated
contours at ρN = {−0.9, 0, 0.9}, while the dashed lines are the results
of Schleizer and Bonnecaze [34].
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1(a) stationary mode at Ca=0.07
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(b)
slipping mode at Ca=0.18

FIG. 12. Evolution of droplet shapes at (θR,θA) = (60◦,120◦) for
(a) stationary mode and (b) slipping mode. In (a), τ0 denotes initial
droplet shape and τ∞ denotes equilibrium shape. In (b), τ0 denotes
initial droplet shape, τ1 denotes the shape at τ = 10.2 when the
droplet starts to move, and τ2 is the droplet shape at τ = 76.6 when
the simulation terminates.

Figure 10 presents the velocity field and the streamline of the
equilibrium droplet with the same flow condition, and a smooth
velocity field with a vortex inside the droplet is observed,
which is the typical flow feature of a deformed droplet.
Figure 11 compares the predicted equilibrium droplet shapes
with the numerical results of Schleizer [34] for dimensionless
droplet area A∗

d = 0.125 and A∗
d = 1. As the droplet size

increases, the droplet deforms more significantly to reach a
steady shape. For both droplet sizes, the predicted interface
profiles (ρN = 0) agree well with the results of Schleizer
and Bonnecaze [34], which indicates good accuracy of our
developed model for dealing with hysteresis.

2. Droplet motion under a shear flow

Now the deformation and migration of the droplet are
investigated at different Capillary numbers and hysteresis
windows. The simulations are conducted in a domain of

200 × 40 for a semicircular droplet of radius R0 = 20 initially
placed on the bottom solid surface. The physical properties are
taken as ρR = ρB = 1, νR = νB = 0.125, and σ = 0.005. We
use the boundary conditions as described in the last section. We
also follow the definition of Capillary number given in the last
section, where e = R0 for the initial semicircular droplet. In the
simulations, the Capillary number is varied from 0.01 to 0.3,
and the hysteresis window is chosen as (90◦,90◦), (80◦,100◦),
(70◦,110◦), (60◦,120◦), and (50◦,130◦), which covers a broad
range of flow conditions.

When a viscous droplet is subjected to a simple shear
flow, the flow pattern of the droplet falls generally into three
modes, i.e., stationary, slipping, and breakup modes. Figure 12
presents the time evolution of the droplet shape for stationary
and slipping modes at (θR,θA) = (60◦,120◦). As shown in the
figure, at Ca = 0.07, the droplet is in the stationary mode,
where the droplet deforms with time but its contact line remains
stationary on the wall; at Ca = 0.18, the droplet deforms
continuously until the receding and advancing contact angles
reach the hysteresis limits, and then starts to slip over the wall.
Figure 13 illustrates the droplet breakup process at Ca = 0.3
and (θR,θA) = (60◦,120◦). As the time elapses, the droplet
deforms to its limit shape and then breaks up into two separate
parts: one moves fast as it breaks away from the solid surface,
while the other slips over the solid surface at a relatively small
velocity.

Figure 14 presents the relation of Capillary number Ca
and droplet velocity ud for different hysteresis windows. The
droplet velocity is calculated by

ud =
∑
i,j

ux (i,j ) N [ρN (i,j )]/
∑
i,j

N [ρN (i,j )], (42)

in which N [ρN (i,j )] is defined by

N [ρN (i,j )] =
{

0, ρN (i,j ) < 0

1, ρN (i,j ) � 0.
(43)

As shown in Fig. 14, for the case without hysteresis,
i.e., (θR,θA) = (90◦,90◦), the zero velocity is only held at
the origin, and no stationary mode is encountered. But in the
remaining four hysteresis windows, the left parts of the curves
remain nearly overlapped with the abscissa and the stationary
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1
(b)τ1=7.7
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FIG. 13. Evolution of the droplet shape for (θR,θA) = (60◦,120◦) and Ca = 0.3 in breakup mode with the times taken as (a) τ = 0,
(b) τ = 7.7, (c) τ = 48.5, and (d) τ = 69.
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FIG. 14. Droplet velocity as a function of Capillary number for
various hysteresis windows.

modes are apparently exhibited. As Ca increases, the droplet
velocity ud begins to increase linearly with Ca, and the droplet
enters into the slipping mode for all hysteresis windows.
The critical Capillary number (above which the droplet starts
to move) increases with the size of hysteresis, since the
larger hysteresis corresponds to the larger deformation, and
subsequently a larger Ca is required to move the droplet.
For a further increase in Ca, the droplet motion shifts from
the slipping mode to the breakup mode with an abrupt rise
of droplet velocity. It is noted that in our simulations, the
calculated velocity represents the averaged velocity of the two
separated parts of the droplet, and thus, the above-mentioned
abrupt rise of velocity in the breakup mode is mainly attributed
to the daughter droplet escaping from the solid surface, which
moves faster than the bottom one.

In this study, the contact angle is evaluated as the intersec-
tion angle of the droplet interface tangent and the wall surface,
and the tangent is approximated by the connecting line of

FIG. 15. Receding and advancing contact angles as a function of
Capillary number for (θR,θA) = (80◦,100◦).

FIG. 16. Relationship between (cos θa − cos θA) and contact-
line Capillary number for various hysteresis windows.

two intersection points, which are produced, respectively, by
the interface with the wall and the interface with the adjacent
grid layer. Figure 15 presents the magnitude of the calculated
receding θr and advancing θa contact angles against Ca for the
hysteresis window of (80◦,100◦). As shown in the figures, with
an increase in Ca, the advancing contact angle θa increases
but the receding contact angle θr decreases, indicating a
larger droplet deformation. Beyond the hysteresis window of
(80◦,100◦), both θa and θr vary linearly but inversely with Ca
until the droplet breaks up.

Next, we investigate the Navier slip rule between advancing
contact angle θa and the contact-line Capillary number Cacl =
ρνucl/σ in Fig. 16, in which the contact-line velocity ucl

equals the droplet velocity ud for the present shear flow.
A linear relation between (cos θa − cos θA) and Cacl is
approximately exhibited for different hysteresis windows in
the slipping mode, which is consistent with the simplified
Navier slip rule described by Eq. (40). However, the critical
contact-line Capillary number, at which the transition from
slipping to breakup occurs, varies for different hysteresis
windows owing to the different size of the formed daughter
droplets.

Finally, we interestingly investigate the critical values of
Capillary number (above which the droplet starts to move) for
several different hysteresis windows. As shown in Table II,
the Capillary number increases with the hysteresis windows.

TABLE II. Values of Capillary number Cacr and
Cacr/ (cos θR − cos θA) when the droplet starts to move. Note
that the Reynolds and Weber numbers are both negligibly small.

(θA,θR) Cacr Cacr/ (cos θR − cos θA)

(90◦,90◦) 0
(80◦,100◦) 0.033 0.0955
(70◦,110◦) 0.064 0.0932
(60◦,120◦) 0.093 0.0931
(50◦,130◦) 0.121 0.0943
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FIG. 17. Critical shapes when the droplet starts to move for
different hysteresis windows.

This is because larger hysteresis magnitude leads to the larger
deformation to initiate the droplet movement, which is also
demonstrated by Fig. 17. Since the Reynolds number and
Weber number are both negligibly small for microdroplets in
our simulations, the flows are mainly controlled by viscous
and capillary forces, which can be a supplement to the
simulations in Ref. [27] where inertia and capillary force
play a dominant role. A simple force balance between
the viscous force (∝ ρνuwe/H ) and the capillary force
[σ (cos θR − cos θA)] is used to determine the critical flow
conditions. This force balance, i.e., Cacr = ρνuwe/ (σH ) ∝
(cos θR − cos θA), suggests that the critical Capillary number
Cacr changes proportionally with the hysteresis window
(cos θR − cos θA), corresponding to the small Weber number
situation in the simulations of Spelt [35]. Table II presents the
values of Cacr/ (cos θR − cos θA) for various hysteresis win-
dows. It is observed that the value of Cacr/ (cos θR − cos θA)
is held nearly as a constant for different hysteresis win-
dows, consistent with the prediction from the simple force
balance.

IV. CONCLUSIONS

A color-gradient-based multiphase LBM is developed to
simulate the contact-line dynamics, with particular emphasis
on the hysteresis of contact angle. The perturbation operator
based on the CSF concept is introduced to model the interfacial
tension, and the recoloring algorithm proposed by Latva-
Kokko and Rothman [13] is used to maintain the interface
and eliminate the lattice pinning problem. At the solid surface,
the color-conserving boundary condition [21] is employed to

improve the accuracy of the simulation and suppress spurious
velocities at the contact line. A numerical strategy based on
an idea of macroscopic contact-angle hysteresis algorithm is
introduced to LBM to allow for the effect of hysteresis.

To verify the developed model, numerical simulations
are conducted for several typical droplet flows, and the
obtained results are compared with the theoretical solutions
and experimental data. A brief summary of these studies is
given below together with some conclusions.

(1) The developed wetting boundary condition is employed
to investigate the equilibrium properties and the dynamic
process of a droplet spreading on various partial wetting
surfaces. The obtained equilibrium droplet shapes and pressure
differences are compared with the analytical solutions, and
good agreement is reached. In the dynamic spreading process,
the best fits of our simulation results show good agreement
with the exponential power law proposed in Lavi et al. [32],
and the variation trend of K , and n with static contact angle θs is
consistent with the experimental results presented in Ref. [32].

(2) The developed model is finally used to simulate
the droplet behavior subjected to a simple shear flow. For
the droplet pinned on the wall, the predicted shape of deformed
droplet agrees well with the result of Schleizer and Bonnecaze
[34], which indicates good accuracy of our developed model
for dealing with contact-angle hysteresis. Three typical modes
of droplet motion (i.e., stationary, slipping, and breakup
modes) are well reproduced under different Capillary numbers
and hysteresis windows, and the predicted linear relation
between the cosine function of the advancing contact angle
and the contact-line Capillary number is consistent with
the simplified Navier slip rule. Moreover, prediction of the
linear relationship between the Capillary number Cacr and the
hysteresis window (cos θR − cos θA), which can be derived
from the force balance between viscous and capillary forces
in the creeping flow, further demonstrates the capability of the
developed model for accurately simulating the contact-line
motion.

With the present model, the influence of hysteresis on the
dynamical behavior of contact line can be studied system-
atically, which enables us to predict the droplet motion in
numerous industrial processes such as immersion lithography,
fiber coating, and ink-jet printing, and is also helpful to
improve our understanding of the mechanisms controlling the
droplet behavior at microscale.
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