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The dynamics of particles in solution or suspension is influenced by thermal fluctuations and hydrodynamic
interactions. Several mesoscale methods exist to account for these solvent-induced effects such as Brownian
dynamics with hydrodynamic interactions and hybrid molecular dynamics-stochastic rotation dynamics methods.
Here we compare two ways of coupling solutes to the solvent with stochastic rotation dynamics (SRD) to Brownian
dynamics with and without explicit hydrodynamic interactions. In the first SRD scheme [SRD with collisional
coupling (CC)] the solutes participate in the collisional step with the solvent and in the second scheme [SRD
with central force coupling (CFC)] the solutes interact through direct forces with the solvent, generating slip
boundary conditions. We compare the transport coefficients of neutral and charged solutes in a model system
obtained by these simulation schemes. Brownian dynamics without hydrodynamic interactions is used as a
reference to quantify the influence of hydrodynamics on the transport coefficients as modeled by the different
methods. We show that, in the dilute range, the SRD CFC method provides results similar to those of Brownian
dynamics with hydrodynamic interactions for the diffusion coefficients and for the electrical conductivity. The
SRD CC scheme predicts diffusion coefficients close to those obtained by Brownian dynamic simulations
without hydrodynamic interactions, but accounts for part of the influence of hydrodynamics on the electrical
conductivity.
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I. INTRODUCTION

The numerical simulation of transport processes in ionic
solutions and colloidal suspensions over time scales larger
than the characteristic time of solute diffusion requires the
use of simplified descriptions of the solvent. In such coarse-
grained descriptions, the influence of solvent molecules on
the static properties of the solutes is taken into account
through effective interaction potentials averaged over the
solvent degrees of freedom. Solvent molecules also influence
the dynamic properties of solutes: Thermal fluctuations induce
Brownian motion and momentum transfers through the solvent
couple the motions of solutes. The latter effect generates the
hydrodynamic interactions (HIs). Several simulation methods
with coarse-grained solvent exist, which account both for the
Brownian motion and for hydrodynamic interactions.

Brownian dynamics (BD), which was first proposed by
Ermak and McCammon in the 1970s [1,2], can be used
to investigate the dynamic properties of solutions [3–5], of
colloidal suspensions [6–11], and of polymers and polyelec-
trolytes [12–16]. In BD, displacements of solutes are described
by a stochastic equation of motion, so that the Brownian
motion is explicitly accounted for, and HIs are computed due
to a diffusion matrix for which approximations can be obtained
in the Stokes limit. Nevertheless, the treatment of HIs in BD
suffers several weaknesses: (i) Pairwise approximations of the
diffusion tensor exist for bulk solutions [17], but for systems
under confinement, analytic expressions of the diffusion matrix
scarcely exist, except in the case of systems confined between
walls [18,19]; (ii) pairwise approximations of the diffusion
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matrix are valid only for dilute systems, typically with volume
fraction less than 10% [20]; and (iii) the BD algorithm
requires the computation of the square root of the diffusion
matrix at each step to generate the random displacements, a
time-consuming operation.

Stochastic rotation dynamics (SRD) combined with molec-
ular dynamics for solutes is an alternative simulation method
that allows one to account for hydrodynamic couplings in any
geometry and in several hydrodynamic regimes. Stochastic ro-
tation dynamics was first introduced by Malevanets and Kapral
[21] and now also goes by the name multiple-particle collision
dynamics [22]. In this algorithm, the fluid is represented by
pointlike particles that only interact through the so-called
collision steps where momentum exchanges occur. Between
collision steps, fluid particles undergo ballistic motions (in
the absence of external fields). As this algorithm conserves
momentum and energy, it generates the correct Navier-Stokes
hydrodynamics. In order to describe solutions and suspensions,
a fluid bath described via SRD can be coupled to an explicit
molecular dynamics (MD) of interacting solute particles. Two
different schemes exist in the literature to achieve the coupling
between fluid and solutes. In the first one [22], solutes and
fluid particles are treated on an equal footing: Solute particles
participate in the momentum exchange during the collision
step and no other interaction occurs between solutes and
fluid particles. During the so-called streaming steps between
collision steps, fluid particles have ballistic motions and solutes
undergo standard MD moves. In the following, we will refer
to this scheme as SRD with collisional coupling (CC). In
the second scheme [23,24], fluid particles are coupled to
solute particles through a central repulsive interaction, which
excludes the fluid particles from the interior of the solutes.
This interaction is taken into account within the streaming
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G. BATÔT et al. PHYSICAL REVIEW E 88, 043304 (2013)

steps for both fluid and solute particles. Solute particles do
not participate in the collision steps. In the following, we will
refer to this scheme as SRD with central force coupling (CFC).
These two schemes clearly do not correspond to the same
hydrodynamic boundary condition between fluid and solutes.
The SRD CC scheme treats the solute as a point from the
hydrodynamics standpoint, which may be appropriate for poly-
mers or small solutes, for which defining clear hydrodynamic
boundaries is anyway questionable. Conversely, there is within
the SRD CFC scheme a clear fluid-solute interface, on which
the fluid slides. This slip boundary condition can be replaced
by stick boundary conditions, at the price of algorithmic
changes that make the computational cost increase [25–28]
and allow the rotational diffusion of colloids to be accounted
for [25]. Because of its simplicity and efficiency, the SRD CC
scheme has been used in many simulations of polymers with
or without external field [22,29–31] and also in simulations
of colloidal suspensions [32]. The SRD CFC scheme allows,
for instance, the simulation of the dynamics of colloidal
suspensions in crowded conditions [33], the sedimentation
of colloidal suspensions [34–36], the thermal diffusion of
colloids [37], the self-assembly of colloids [27], and colloids
under confinement [27,38]. The two coupling schemes (CC
and CFC) have never been quantitatively compared for a given
system. Only the work of Hecht et al. [32] suggests a qualitative
agreement between both methods, but no numerical results
were given in this work to quantify this agreement. Finally,
it should be noted that hybrid lattice-Boltzmann–molecular
dynamics simulations, which are lattice-based simulations, are
another alternative to account for hydrodynamics and thermal
fluctuations of the solvent in solutions and suspensions [39].

In this context, the objective of the present paper is to
compare the aforementioned simulation methods (BD, SRD
CC, and SRD CFC) on a simple system representative of
a suspension. The question we are particularly interested
in is whether these methods predict quantitatively similar
dynamical properties on time scales longer than the structural
relaxation time, time needed by a sphere to diffuse a distance
roughly equal to its radius. An efficient simulation method
that would provide reliable dynamic quantities could indeed
be used to interpret experimental determinations of transport
coefficients in terms of individual properties of solutes. Such
a procedure based on an efficient two-scale BD scheme, for
example, was recently used by some of us to deduce from
experiments the size, the bare charge, and the effective charge
of micelles in aqueous solutions [40,41]. However, based on
BD, this procedure was limited to the case of bulk suspensions
of volume fractions less than 10%. The use of SRD-based
schemes would allow one to overcome this limitation.

Here we propose to compute the transport coefficients of
suspensions of neutral or charged solutes for several volume
fractions between 0.02 and 0.3. We compute the self-diffusion
coefficient as it is useful for many applications and analytical
calculations at larger scales, such as the calculation of first-
passage times, residence times, or rates of diffusion-limited
reactions. However, it is known that the effect of HIs on
the self-diffusion coefficient is quite limited, so we also
compute the electrical conductivity, a collective transport
property that is more difficult to calculate but is also sensitive
to hydrodynamics. Moreover, the case of charged solutes is

particularly interesting because (i) most solutes in aqueous
solutions (i.e., in most natural solutions) are charged, (ii) the
presence of charges gives rise to important electrostatic friction
effects that are significantly influenced by hydrodynamic
interactions between solutes [42], and (iii) it is important to
test whether the presence of attractive potentials, such as the
attractive Coulomb interactions between particles of opposite
charges, can lead to important deviations between the results
of BD and SRD. We compare in what follows the results
of BD with HIs and slip boundary conditions, SRD with
collisional coupling, and SRD with central force coupling, the
latter corresponding to slip solute-fluid boundary conditions.
We have also computed in every case the same transport
coefficients from BD simulations without HIs in order to
provide a reference where the dynamics is only affected by
direct interactions between solutes.

The paper is organized as follows. In Sec. II we describe the
simulation methods (Brownian dynamics and SRD schemes).
In Sec. III we describe the model system under study and dis-
cuss the choice of the parameters of all methods. In Sec. IV we
compare the results obtained by the four algorithms concerning
the structural properties, the self-diffusion coefficients of
solutes, and the electrical conductivity of the charged system.

II. SIMULATION METHODS

A. SRD algorithms

1. Case of a pure SRD fluid

Here we describe the SRD algorithm briefly; we use
the same notations as those of Ref. [24]. The fluid in
SRD is represented by pointlike particles, whose positions
and velocities evolve in two steps. First, in the streaming
step, positions and velocities are propagated by integrating
Newton’s equations of motion, for a time denoted by δtc. In
the absence of external forces, this yields a ballistic motion for
each fluid particle i:

ri(t + δtc) = ri(t) + vi(t)δtc, (1)

where ri are vi are, respectively, the position and the velocity
of particle i. Second, in the collision step, the simulation box
is divided into small cubic cells of size a0, where momentum
exchanges between the enclosed fluid particles occur. More
precisely, a randomly oriented axis is defined for each collision
cell and the velocities of fluid particles relative to the velocity
of the center of mass of the cell are rotated by an angle α

around this axis:

vi(t + δtc) = vcell
c.m.(t) + Rα

[
vi(t) − vcell

c.m.(t)
]
, (2)

where Rα is the rotation matrix and vcell
c.m. the velocity of the

center of mass of the cell. The angle α is a fixed parameter of
the simulation. The collision step keeps unchanged the velocity
of the center-of-mass of the cell. To ensure the Galilean
invariance, a random shift of the collision grid has to be
performed at each collision step [43,44].

This algorithm ensures the conservation of the local
momentum of the fluid, while enabling momentum transfer
inside the fluid. The SRD fluid thus has the hydrodynamic
characteristics of a real fluid, in particular in terms of
dimensionless hydrodynamic numbers, as discussed in more
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detail in the paper of Padding and Louis [24]. The amount
of momentum that is exchanged in a cell per unit time, and
thus the viscosity of the SRD fluid, depends on the number
of solvent particles per cell γ , on the rotation angle α, and on
the time interval between collision steps δtc. The simplicity
of the SRD algorithm makes possible the derivation of
analytical formulas for the viscosity and transport coefficients
as functions of γ , α, and δtc [22,24]. In what follows, we use
dimensionless units depending on the fluid particle mass mf

as the mass unit, the size of the collision cells a0 as the length
unit, and kBT as the energy unit with T the temperature and
kB the Boltzmann constant. The time unit is then

t0 = a0

√
mf

kBT
. (3)

The value of the collision time step δtc controls the fluid
properties by modulating the dimensionless mean free path
λ of fluid particles defined by λ = δtc

t0
.

2. Embedded particles in a SRD bath: Collisional coupling

The simplest method to achieve the coupling between solute
particles and the fluid bath is to treat the solutes like fluid
particles, except that they are interacting with each other and
may have a mass different from that of fluid particles. In the
streaming step, the positions of fluid particles are updated
following Eq. (1), whereas the positions and velocities of
solutes, denoted, respectively, by Rj and Vj for solute j , are
propagated due to the velocity Verlet algorithm of standard
MD simulations, with a time step δtMD:

Rj (t + δtMD) = Rj (t) + Vj (t)δtMD + Fj (t)

2M
δt2

MD, (4)

Vj (t + δtMD) = Vj (t) + Fj (t) + Fj (t + δtMD)

2M
δtMD, (5)

where M is the solute mass and Fj is the force vector acting on
solute j at the beginning of the step, which derives from a given
interaction potential. Like in MD, the choice of δtMD relies on
a compromise between numerical efficiency and precision:
High values enhance the efficiency but can lead to unphysical
moves if the interaction force varies too much during δtMD.
The value of the time step δtMD depends then on the nature of
the interaction potential and is often smaller than δtc.

During the collision step, the velocities of every particle,
in the fluid and solute, included in each collision cell are
updated following Eq. (2) given above. This momentum
exchange constitutes the only interaction between fluid and
solute particles in this simulation scheme. Details of this
simulation scheme can be found in Refs. [22,45].

3. Embedded particles in a SRD bath: Central force coupling

In this second variant, an explicit interaction between
solutes and fluid particles is introduced, which prevents fluid
particles from penetrating into solutes. In contrast, solutes do
not participate in the collision step. In the streaming step, both
solute and fluid particles evolve according to the MD scheme
of Eqs. (4) and (5). The interaction force acting on solutes
contains a contribution due to other solutes and another due to
fluid particles. The force acting on fluid particles is only due
to solutes. Usually, the interaction potential between solutes

and fluid particles is chosen to be at short range. The collision
step only involves fluid particles according to Eq. (2). Details
on this simulation scheme can be found in Ref. [24].

In this study, the interaction potential between fluid and
embedded particles is a purely repulsive short-range Weeks-
Chandler-Anderson potential

φcf(r) =
{

4εcf
[(

σcf
r

)12 − (
σcf
r

)6] + εcf for r < 21/6σcf

0 otherwise.

(6)

This interaction potential involves two parameters εcf and σcf ,
which must be carefully chosen as discussed in the following.

4. Comparison of the coupling schemes regarding hydrodynamic
boundary conditions

The goal of the two coupling schemes (CC and CFC) is
to reproduce the momentum transferred between the fluid and
the solutes. Within the CC scheme, the embedded particles
are seen as point particles by the fluid particles. This is a
rather crude description of local momentum exchanges, so
this method should not be used when the exact description of
the fluid flow field around the embedded particles needs to be
resolved or when the volume or the shape of the particles is
expected to influence hydrodynamic interactions. In the CFC
scheme, the volume of the embedded solutes accessible to the
fluid particles is clearly defined. The central force between
the solutes and the fluid does not influence the tangential
components of the velocities. Therefore, this coupling is anal-
ogous to hydrodynamic slip boundary conditions. Moreover,
in the SRD CFC method, the position of the boundary between
solute and fluid is usually chosen in such a way that it does
not exactly correspond to the physical surface of the solute.
Indeed, as a consequence of the representation of the solvent
as particles of finite size from the point of view of solutes,
a depletion interaction appears between solutes at short
distances, which might not properly account for what happens
in a real solvent. This issue is thoroughly discussed in Ref. [24].
To overcome this difficulty, the volume of the solute relative
to the fluid particles must be smaller than the volume given
by solute-solute interactions so that the fluid is allowed to
flow in a small volume inside embedded solutes. For charged
systems this may be a very reasonable approximation, as the
solute-solute interaction range can be of considerably longer
range than twice the distance that the solvent can reach from
the center of the particle.

B. Brownian dynamics algorithm

1. Brownian dynamics with hydrodynamic interactions

Brownian dynamics is an implicit solvent simulation
method based on the generalized Smoluchowski equation [46].
It is also referred to as overdamped Langevin dynamics. When
HIs are taken into account, the displacements of solute particles
are coupled with each other via the so-called diffusion matrix
D. This matrix depends on the position of all the particles and
reflects pairwise hydrodynamic interactions. More precisely,
in this simulation scheme, the equation of motion of N solute
particles placed in a box with periodic boundary conditions

043304-3
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is [1]

r(t + 	t) − r(t) =
(

βD · F + ∂

∂r
· D

)
	t + R, (7)

where β = 1/kBT , 	t is the time increment, r is the 3N -
dimensional configuration vector of solutes, and F is the
interaction force acting on the particles at the beginning of the
step. In addition, R is a random displacement, chosen from a
Gaussian distribution with zero mean, 〈R〉 = 0, and 〈RRT 〉 =
2D	t . Hydrodynamic interactions between particles are in-
troduced via the configuration-dependent 3N × 3N diffusion
matrix D. In this simulation scheme, the slowest operation
from the computational point of view is the generation of
the random displacement R, which requires the computation
of the square root of the matrix D at each step. In the case
where hydrodynamic interactions are neglected, D becomes
a diagonal tensor with the self-diffusion coefficient at infinite
dilution of solutes on the diagonal, so the computation time
is highly decreased. Compared to SRD, the treatment of
hydrodynamics in BD is much less general. It is only valid
in the Stokes regime and when momentum propagation is
infinitely fast compared to mass propagation (infinite Schmidt
number).

When the particles interact through a very steep potential,
the BD algorithm can become unstable, as the random moves
can drive the system into regions of high energy. This can be
overcome by using a so-called Metropolized algorithm. In that
case, the displacements are accepted with a given probability
and unrealistic steps can be rejected. For details on this method,
see [3,47–49].

To model HIs with slip boundary conditions, we use the
diffusion tensor derived by Felderhof [50], assuming that HIs
are pairwise additive, which is reasonable for systems with a
relatively low packing fraction (smaller than 10%). The (3N ×
3N ) matrix D can be divided into N2 (3 × 3) submatrices Dij :

D =

⎛
⎜⎜⎜⎜⎜⎝

D11 D12 . . . D1N

D21
. . .

...
...

. . .
...

DN1 . . . . . . DNN

⎞
⎟⎟⎟⎟⎟⎠ , (8)

where

Dij (k,l) = D[3(i − 1) + k,3(j − 1) + l] (9)

is the element at row k and column l of the (3 × 3) submatrix
Dij .

For distinct values of i and j , the submatrix Dij reads

Dij = kBT

8πηr3
ij

(
Ir2

ij + rij rT
ij + 4

a3
i a

3
j

r6
ij

rij rT
ij

)
(10)

and the submatrix Dii is written as

Dii = D0
i I +

N∑
j=1,j �=i

1

6πη

[
− 3a3

j

2

rij rT
ij

r6
ij

− 3a5
j

2

rij rT
ij

r8
ij

+ 3a5
j

16r6
ij

(
I − rij rT

ij

r2
ij

)]
. (11)

Here D◦
i is linked to the Stokes radius by D◦

i = kBT /4πηai .
This expression of the diffusion tensor is a series expansion
in powers of the inverse distance 1/r between sphere centers
through the order 1/r7. The first two terms (1/r5 and 1/r3)
are the same as those obtained by Rotne and Prager for stick
boundary conditions and for equal spheres [17]. The diver-
gence of this matrix is not zero. We checked that neglecting
the divergence of D in the equation of motion did not change
the results of our calculations for the systems investigated here.
Finally, the formulas used to compute the transport coefficients
of solutes in BD are given in the Appendix.

III. PARAMETERS OF THE SIMULATIONS

A. Interaction potentials and length scales

We investigate the dynamic properties of solutes in pro-
totypes of aqueous solutions or suspensions at equilibrium.
The solutes are either neutral spherical particles or charged
spherical ones. In the latter case, the whole system is neutral: It
contains an equal number of positively and negatively charged
solutes. The absolute value of the charge is Ze, with e the
elementary charge. Electrostatic interactions in such systems
are known to have a great influence on the dynamic properties:
They yield a strong decrease of the self-diffusion coefficient
compared to the case of neutral solutes. Hydrodynamic
interactions are known to increase slightly the self-diffusion
coefficients and to strongly decrease the collective transport
properties such as collective diffusion [51] and the electrical
conductivity [3]. For the charged systems, we use here a model
close to the so-called primitive model of electrolytes, with
a soft short-range repulsion between solutes instead of the
hard-sphere repulsion of the primitive model.

The interaction pair potential between solutes i and j

contains in every case a short-range repulsive contribution

φcc(rij ) = 4ε

(
σcc

rij

)24

, (12)

where rij is the distance between particles i and j and σcc

is a size parameter. The energy parameter of the short-range
repulsion, ε = 0.25kBT , is large enough to ensure that we
have in every case spherical solutes of diameter σcc. These
interactions are computed with a minimum image convention
and a cutoff distance of 2.5σcc.

For suspensions of neutral solutes, the short-range repulsion
is the only contribution to the direct interaction between
solutes. As in the case of hard spheres, there is thus only
one relevant length scale in the problem, which is the particle
size σcc. If σcc is used as the unit length, the trajectories of
the simulations are the same whatever the size of the spheres,
for a given value of the volume fraction � of solutes, defined
by � = Nπσ 3

cc/6L3
box, with Lbox the simulation box length

and N the number of solutes in the simulation box. In other
words, a given simulation can describe either small solutes of
nanometric size or large colloids of micrometric size.

In the case of charged solutes, the electrostatic contribution
to the pair interaction potential is

φelec(rij ) = ZiZje
2

4πε0εrrij

= kBT ZiZj

lB

rij

, (13)

043304-4



DYNAMICS OF SOLUTES WITH HYDRODYNAMIC . . . PHYSICAL REVIEW E 88, 043304 (2013)

with Zie the charge of particle i, ε0 the permittivity of
vacuum, εr the relative permittivity of the solvent, and lB
the Bjerrum length (lB = e2/4πε0εrkBT ). For suspensions of
charged solutes, there are thus two different length scales
lB and σcc. If σcc is used as the unit length, for given
values of � and of ZiZj

lB
σcc

, the trajectories obtained from
simulations are the same whatever the real (physical) size of the
spherical solutes. Electrostatic interactions are computed using
the Ewald summation technique with conducting boundary
conditions. The parameters of this summation are exactly the
same in BD and in SRD calculations.

B. Systems under study

The volume fraction � of systems investigated hereafter
ranges between 0.019 to 0.263. In every case, we have
N = 300 solute particles in the simulation box and we vary
the density of solutes by changing the simulation box length.
The charged systems contain an equal number of positively
and negatively charged solutes, with D◦

+ = D◦
− in Brownian

dynamics and with similar masses in SRD simulations. The
size parameter is σcc in every case and the hydrodynamic radius
ai is equal to σcc/2. The dimensionless parameter ZiZj

lB
σcc

,
which represents the electrostatic interaction at contact divided
by kBT , is equal to 1.785 in every case. In water at room
temperature (T = 298 K), this value corresponds either to the
case of a simple monovalent salt with ions of size equal to 0.4
nm or to the case of two nanoparticles of opposite charge (with
Z = ±3) and radius of about 1 nm.

C. Choice of parameters of the SRD simulations

One goal in this paper is to compare for the same systems
the results of two different coupling schemes between solutes
and a SRD bath. Both algorithms involve several parameters
that control the behavior of the fluid and the coupling with
solutes. The values of the mean free path λ, of the number of
fluid particles in a cell γ , of the rotation angle α, of the mass
of the solute M , of the box length Lbox, and of the interaction
length σcf in the SRD CFC scheme must be carefully chosen.
Moreover, since the constraints on the parameters are not
exactly the same in both schemes, it appears in the literature
that the typical values of these parameters usually differ
whether the SRD CC or the SRD CFC scheme is used.
We use in this study the same parameters in both kinds of
SRD simulations. We detail the reasons of our choices of the
parameters in the following.

1. Time scale analysis

A physical system can be described at many different time
scales. Some properties of a given system can be modeled
assuming a clear separation of some of these time scales,
while others are the consequence of a competition between
phenomena that occur at time scales relatively close to each
other. Two time scales of two different phenomena can be
compared using dimensionless characteristic numbers that are
the ratio of these time scales. The SRD fluid is a model of a fluid
for which the differences between time scales can be tuned
by changing the parameters. The choices of the parameters
have to be made in order to (i) keep characteristic numbers in

the right regimes and (ii) keep all the time scales sufficiently
close to each other in order to gain computational efficiency.
For example, if the real system has a Reynolds number of
10−6, a value of 0.05 is sufficiently low to keep the time
scale of momentum transfer in the fluid faster than diffusive
transport, but this value is also sufficiently high so that treating
both momentum transfer and diffusive transport in the same
simulation is not too time consuming.

In the case of solutions and suspensions, several important
time scale separations have to be conserved. The Schmidt
number Sc = ν/Df expresses the ratio of the time scale of
diffusive mass transfer over the time scale of momentum
transfer in the fluid. For a gas, Sc is close to 1 and for a liquid,
it is on the order of 102–103. For a SRD fluid, Sc depends on
the simulation parameters α, γ , and λ. Increasing the number
of fluid particles per cell γ leads to a liquidlike behavior, while
minimizing the number of fluid particles per cell γ decreases
the computational cost. We chose the set of parameters {α =
130◦,γ = 5,λ = 0.1}, which gives Sc ∼ 10. According to the
results of Ripoll et al. [45], this value of the Schmidt number
should be high enough for our study: While Sc varied between
Sc(λ = 0.1) ∼ 10 and Sc(λ = 0.02) ∼ 200, these authors did
not observe differences between the dependences on volume
fraction of the diffusion coefficients of solutes computed from
the SRD CC scheme. In the SRD CFC scheme, the influence
of the Schmidt number is less important [24].

Another very important characteristic number is the
ratio τs/τ

� between the solute velocity relaxation time τs

and the solute diffusion time τ �. Here τ � = σ 2
cc/4D◦ is

the characteristic time needed for a solute to diffuse on a
length equal to its radius with a diffusion coefficient D◦. The
relaxation time of the solute velocity τs is the characteristic
time scale it takes a solute particle to reach its stationary
velocity under the influence of an external force; it can be
expressed as D◦M/kBT , where M is the mass of the solute.
The overdamped equation of motion of BD simulations is
justified only for systems for which the ratio τs/τ

� is small,
which is usually the case for solutions and suspensions of
relatively small solutes. In the hybrid MD-SRD schemes, the
value of D◦, and therefore the ratio τs/τ

�, depends on the
collision scheme and must be kept small in order to compare
the results with BD for times larger than τs . It is noteworthy
that D◦ is an input parameter in BD simulations, whereas it has
to be computed a posteriori in SRD. We discuss in more detail
in the following section the choice of parameters for both MD-
SRD schemes and the method used to compute the value of D◦.

2. Choice of solute mass in the collision coupling scheme

In the SRD CC scheme, the only parameter that controls the
solute-fluid coupling is the solute’s mass M . Ripoll et al. [45]
performed a careful analysis of the influence of the solute’s
mass on the diffusion coefficient for a single solute in solution.
A small value of M decreases the coupling between solvent and
solute and a high value increases the computation time because
the displacements in MD are slower for heavy particles. What
matters in our case is the evolution of the transport coefficients
of solutes with the volume fraction. We have computed the
self-diffusion coefficient of neutral solutes for several volume
fractions with the SRD CC scheme and we have repeated this
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calculation for several values of M (M = 20mf ,10mf ,5mf ).
We observed that the mass of the solute does not influence the
dependence of the diffusion coefficient on the volume fraction
within the range [5mf ,20mf ] (results not shown). In the SRD
CFC scheme, the solute’s mass influence is very weak. We
have kept M = 10mf in the rest of the paper.

Using this value of M , we have computed the value of the
diffusion coefficient of solutes at infinite dilution D◦. We have
simply switched off the interactions between the solutes and
computed the diffusion coefficient, which is then assumed to
be equal to D◦. We have obtained

D◦
SRD CC = 4.175 ± 0.005 × 10−2a2

0 t
−1
0 , (14)

where the uncertainty is here the standard error of results
obtained from several independent trajectories. From this value
of D◦, the characteristic times τs and τ � can be computed:
τ � = σ 2

cc/4D◦ = 135t0 and τs = D◦M/kBT = 0.4175t0. The
ratio τs/τ

� is thus equal to 3 × 10−3.

3. Choice of the fluid-solute interaction parameter in the central
force coupling scheme

In the SRD CFC scheme, the solute mass has a negligible
effect on the dynamics of solutes for time scales much larger
than the velocity relaxation time scale τs . The relevant param-
eter characterizing the fluid-solute coupling is the interaction
parameter σcf involved in Eq. (6). Several factors must be taken
into account when choosing the value of σcf relative to σcc and
to a0.

First, the value of σcf related to the size a0 of collision cells
controls the accuracy of the velocity field of the fluid around
the solute: The hydrodynamics at the scale of the collision
cell is not properly described, so the solute size must exceed
a0. Padding and Louis [24] suggested the choice σcf = 2a0.
Second, the size of the simulation box has to be sufficiently
large in order that the long-range hydrodynamic interactions
between solutes are taken into account. However, the larger
the simulation box, the longer the computation time, so a
compromise must be found. We took Lbox > 16σcf in every
case. Third, the value of σcf compared to σcc influences the
possible depletion effect induced by fluid particles between
solutes because of their finite size. It is known in hard-sphere
systems that for a minimal distance of approach between
two solutes less than 2σcf , the depletion effect arises. Taking
σcc � 2σcf would then avoid depletion. When soft interaction
potentials are used, in the presence of attractive interactions,
as in our case due to electrostatic interactions, the minimal
distance of approach between solutes dmin is smaller than σcc.
We have thus tuned σcc until dmin > 2σcf between solutes of
opposite charges where interactions are attractive. Here dmin

is chosen as the largest distance for which the solute-solute
radial distribution function is equal to zero (plots of the radial
distribution functions can be found in Sec. IV). Finally, we
have taken σcc = 4.75a0 with dmin = 4.30a0 for σcf = 2a0.
These parameters are the same in the SRD CC and SRD CFC
coupling schemes.

We have computed the value of D◦ in the SRD CFC scheme
as an extrapolation to infinite simulation box size of the self-
diffusion coefficient of a unique neutral solute in solution,

applying a finite-size scaling. We obtained

D◦
SRD CFC = 1.328 ± 0.002 × 10−2a2

0 t
−1
0 , (15)

where the uncertainty is deduced from the correlation coeffi-
cient of the linear regression of the data. The characteristic
times τs and τ � are then τ � = σ 2

cc/4D◦ = 425t0 and τs =
D◦M/kBT = 0.133t0. The ratio τs/τ

� is equal to 3 × 10−4.
Using both SRD CC and SRD CFC, the ratio τs/τ

� is
very small, which corresponds to the regime of overdamped
dynamics. This regime is typical of most solutions and
suspensions and it is the regime where Brownian dynamics
is valid.

D. Technical details

In Brownian dynamics, the time steps of simulations depend
on the solute density and is between 10−3τ � and 2.5 × 10−4τ �.
In every case, simulation runs without HIs of duration of
the order of 100τ � were first performed to equilibrate the
systems. Ten successive trajectories of duration of about 400τ �

were computed with BD for each system. The positions and
hydrodynamic velocities were saved every 4 × 10−3τ �. Then
the transport coefficients were computed as averages over the
ten trajectories following Eqs. (A1), (A4), and (A5) given in
the Appendix.

In SRD, we took δtMD = 0.01t0 to avoid an increase of
the temperature, with a time between two collisions δtc =
10δtMD. Each system was equilibrated for 500t0 and then
we performed simulation runs over a duration of 5000t0
(� 12τ �–40τ � according to the coupling scheme) to produce
the solute trajectories. For every system we computed the
averaged transport properties from 32 independent trajectories
with frames saved every four MD steps δtframe = 0.04t0. The
transport coefficients were computed as averages over the ten
trajectories following Eqs. (A8) and (A10).

In every case, the agreement between the self-diffusion
coefficient Ds obtained from mean-squared displacements or
from velocity correlations was good. For systems of charged
solutes, we took advantage of the symmetry between positively
and negatively charged solutes in averaging the self-diffusion
coefficient over all species. The package NMOLDYN [52] was
used to compute correlation functions from the trajectories.

IV. RESULTS

A. Structure

The radial distribution functions (RDFs) between solutes
obtained by SRD CFC are given in Fig. 1 for the two different
systems investigated here (neutral solutes and charged solutes).
In the top panel of Fig. 1, the volume fraction is the lowest one
studied by SRD (φ = 0.033); in the bottom panel of Fig. 1, it
is the highest one (φ = 0.263). The RDFs obtained from BD
and SRD CC (not shown here) were exactly the same as those
obtained from SRD CFC in every case, consistently with the
fact that the three methods accurately sample phase space in
the canonical ensemble. As can be seen in Fig. 1, the RDFs
are nonzero for a distance between solutes that is the same for
every system (dmin = 0.95σcc). The first peak between neutral
solutes or solutes of opposite charges appears at distances that
are only slightly larger than σcc (between 1.08σcc and 1.16σcc).
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FIG. 1. (Color online) Radial distribution functions g(r) between
solutes for the two different systems investigated here, computed from
SRD CFC simulations, for two volume fractions � (top, � = 0.033;
bottom, � = 0.263). Solid black lines show RDFs between neutral
solutes, dashed red lines show RDFs between solutes of opposite
charges, and dot-dashed red lines show RDFs between solutes of the
same charge. The same quantities were calculated with BD and with
SRD CC, giving the same curves within simulation errors.

We have thus two different systems made of solutes of the same
size, either neutral or charged.

B. Self-diffusion

The self-diffusion coefficients obtained from BD and SRD
schemes as functions of the solute volume fraction are plotted
in Fig. 2 for the system of neutral solutes and in Fig. 3 for
the system of charged solutes. The self-diffusion coefficient
computed from the trajectories is here divided by the value
at infinite dilution D◦, which is an input parameter in BD,
and was deduced from specific computations in the SRD

0 0.05 0.1 0.15 0.2 0.25 0.3

0.5

0.6

0.7

0.8

0.9

1.0

BD without HIs
BD with HIs (slip)
SRD CFC
SRD CC

FIG. 2. (Color online) Self-diffusion coefficient of solutes di-
vided by the value at infinite dilution as a function of the volume
fraction � in the case of neutral solutes, for the four simulation meth-
ods (lines are guide for the eyes). In each case, the size of the symbol
is much larger than the estimated statistical uncertainty of the result.
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FIG. 3. (Color online) Self-diffusion coefficient of solutes di-
vided by the value at infinite dilution as a function of the volume
fraction � in the case of charged solutes, for the four simulation
methods. Lines are guide for the eyes. In each case, the size of the
symbol is much larger than the estimated statistical uncertainty of the
result.

schemes [values given by Eqs. (15) and (14)]. The size of
the symbols used in Figs. 2 and 3 is in every case much larger
than the estimated statistical uncertainty of the result. We have
computed this uncertainty as the standard error of the results
obtained from several independent trajectories (10 runs in BD
and 32 runs in SRD). It should be noticed that the largest value
of this uncertainty is 0.001D◦ in BD and 0.01D◦ in SRD.

As expected, the self-diffusion coefficient as a function of
the volume fraction decreases under the influence of solute-
solute interactions. This decrease is more pronounced when
electrostatic interactions are present. Whatever the method
used to account for hydrodynamic interactions, it leads to a
systematic increase of the self-diffusion coefficient compared
to the case without HIs. Hydrodynamics reduces the impact
of direct solute-solute interactions on long-time self-diffusion
for non-hard-sphere systems, especially when strong and long-
range particle repulsions exist like in charged systems [53].
Such a behavior was already observed in various systems from
mode coupling theories [54–56], numerical simulations [3,57–
59], and experiments [60,61]. The magnitude of the effect of
hydrodynamics on self-diffusion depends on the simulation
algorithm used: It is quite small in any case, but significantly
larger than the uncertainty of the numerical results. For a given
method, the HIs have almost the same effect on (D◦ − D)/D◦
for all volume fractions tested. The SRD algorithm with the
collision coupling scheme (SRD CC) differs only by about 2%
from BD without HIs. It seems from our simulations that this
method does predict only a very small effect of hydrodynamics
on diffusion. The two other algorithms that account for HIs,
namely, BD and SRD CFC, provide results that are very close
to each other. They differ from the case of BD without HIs
with a relative difference between 5% and 8%. This order of
magnitude of the enhancement of the self-diffusion under the
influence of hydrodynamic interactions corresponds to that
already observed in other studies. This excellent agreement
between BD with HIs and SRD CFC is consistent with the
statement that the SRD CFC actually mimics slip boundary
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FIG. 4. (Color online) Self-diffusion coefficient of neutral solutes
as a function of time obtained from BD with HIs and slip boundary
conditions (A3) (dashed lines) and from SRD CFC (A9) (solid lines),
for volume fractions between 0.033 and 0.263 (the volume fractions
are exactly the same as those reported in Fig. 2).

conditions and shows that the approximate treatment of HIs
in BD is sufficient to account for their main effect in the
dilute range. The nonphysical position of the hydrodynamic
boundary inside the solute in SRD CFC (to avoid depletion)
does not seem to have a significant influence on the magnitude
of hydrodynamic interactions between solutes.

Moreover, we plotted in Fig. 4 the self-diffusion coefficients
of solutes as functions of time obtained from the integral
of the velocity autocorrelation function with SRD CFC and
the analogous function obtained with BD with slip HIs.
As expected, the short-time behavior is very different in
both methods: Brownian dynamics relies on an overdamped
equation of motion, while the SRD CFC scheme accounts for
the short-time relaxation of the velocity of solutes. Indeed, we
do not expect agreement between SRD CFC and BD results
at a time scale lower than the velocity relaxation time scale
τs , which is much smaller than τ � (τs/τ

� = 3 × 10−4). In
contrast, for time scales similar to (or larger than) the diffusion
time τ �, diffusion behaviors predicted by BD and SRD can be
compared. We see in Fig. 4 that we do have similar long-time
behaviors of the time-dependent self-diffusion coefficients
computed from BD with slip HIs and with SRD CFC (time
scales larger than τ �).

C. Electrical conductivity

We have also investigated the behavior of a collective
dynamic quantity, for which hydrodynamic interactions may
play a significant role, namely, the electrical conductivity of
the system. It is well known that hydrodynamic couplings
between solutes tend to decrease the electrical conductivity:
Solutes of opposite charges travel in opposite directions under
an electric field, so they drag the solvent in opposite directions.
Such a result can also be obtained in simulations of charged
solutions without external field, using Kubo formulas [3].
Nevertheless, it should be noted that the computation of the
electrical conductivity is more affected by noise than that of
the self-diffusion coefficient because it involves the integral of
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t / 
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FIG. 5. (Color online) Electrical conductivity of the solution of
charged solutes as a function of time divided by the value at infinite
dilution χ ◦ obtained from BD with HIs and slip boundary conditions
(A6) (dashed lines) and from SRD CFC (A11) (solid lines) for volume
fractions between 0.033 and 0.263 (the volume fractions are exactly
the same as those reported in Fig. 6).

a collective quantity (the current of charges). The equations
used to compute the electrical conductivity from BD and SRD
simulations are given in the Appendix.

We show in Fig. 5 the electrical conductivity as a function of
time deduced from the integrals of the autocorrelation function
of the current of charges, obtained both with BD with HIs and
slip boundary conditions [see Eq. (A6)] and with SRD CFC
[see Eq. (A11)]. As can be seen in this figure, the noise is
important for results obtained from SRD CFC because the total
length of the simulations is smaller than in BD. Nevertheless,
we see that for times larger than τs and of the order of τ �, we
obtain similar trends from BD and SRD CFC.

Since our goal is to compare several simulation techniques,
we compare in what follows the values of the electrical
conductivity obtained from several methods at a given time.
We chose a time that is smaller than the time scale for which
the integral of the autocorrelation function of the current of
charges reaches a plateau, but much larger than the velocity
relaxation time τs , so it makes sense to compare SRD and
BD. The values of the electrical conductivity of the systems
containing charged solutes are plotted in Fig. 6 at a time close
to the characteristic diffusion time: t = 0.25τ �.

We observe in Fig. 6 that, as expected, the influence of
hydrodynamics on the conductivity is more pronounced than
on self-diffusion: For example, BD with HIs differs from BD
without HIs by roughly 15% or so. This order of magnitude
of the decrease of the conductivity induced by hydrodynamics
is the same as in aqueous solutions of strong electrolytes,
computed from analytical calculations [62] or numerical
simulations [3] in agreement with the experimental data.

As for the comparison between SRD-based schemes and
BD, part of the trends we observed for the diffusion behavior
are still clearly observed for the conductivity and some of them
are amplified. The electrical conductivity obtained with SRD
CC is closer to the value obtained with BD without HIs than
the conductivity obtained with SRD CFC. Nevertheless, we
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FIG. 6. (Color online) Electrical conductivity of the solution
divided by the value at infinite dilution as a function of the volume
fraction � in the case of charged solutes obtained from the four
simulation methods at t = 0.25τ �.

obtain a significant and systematic difference between SRD
CC and BD without HIs (difference of about 6%), contrarily
to what was observed for self-diffusion (difference between
both D/D◦ values smaller than 2%). This means that there is a
non-negligible and systematic effect of the hydrodynamic cou-
plings between solutes when the solute is coupled to the solvent
through the SRD CC scheme, even if for our systems these cou-
plings do not influence the self-diffusion behavior very much.
As in the case of self-diffusion, the electrical conductivity com-
puted with the SRD CFC scheme is close to that computed with
BD with slip boundary conditions. The agreement between
both methods is not as good as for self-diffusion (the difference
between SRD CFC and BD with slip HIs for D/D◦ was on
the order of 2%), which may be due to the relatively high level
of noise in the computation of the autocorrelation function of
the current in SRD CFC, which can be seen in Fig. 6.

Finally, the influence of the choice of the coupling method
between solutes and fluid particles in SRD seems also ampli-
fied for the calculation of the electrical conductivity: Except
for the smallest and largest values of the volume fraction, the
difference between the values obtained with SRD CC and SRD
CFC is of the order of 7%, compared to 3% for self-diffusion.

V. CONCLUSION

The multiplicity of the methods available to simulate the
dynamics of particles embedded in a solvent, ranging from
small ions to micrometric colloidal particles, offers a difficult
choice. In this article, we compared for model systems
the self-diffusion coefficient and the electrical conductivity
obtained by two different coupling schemes between solute
and solvent in SRD (SRD CC and SRD CFC schemes), with
strictly the same parameters to describe the SRD fluid. We
obtained systematic differences between both SRD schemes,
which are mainly due to the different treatments of the

short-range fluid-solute interaction: SRD CC treats solutes
as pointlike from the hydrodynamic point of view, whereas
a clear boundary exists between fluid and solutes in the SRD
CFC scheme. For dilute systems, with a volume fraction less
that 0.1, BD with HIs also allows one to compute individual
and collective transport properties. Hydrodynamic interactions
can be disregarded in BD, providing reference values to
quantify the hydrodynamic couplings in other methods.

We found remarkable agreement between BD and SRD
when the solute interacts with the SRD fluid through direct
central forces (SRD CFC) and when slip boundary conditions
are taken in BD, be it for the self-diffusion coefficients of
solutes or for the electrical conductivity of the solution when
solutes are charged. Conversely, when solutes are coupled to
the SRD fluid during the collision step (SRD CC), the effect of
hydrodynamics on the self-diffusion is much less noticeable
than with BD, even if a systematic effect of HIs exists on the
electrical conductivity. The SRD CC is an attractive method
because it is faster than SRD CFC, but our results show that it
does not provide a quantitative description of the influence
of hydrodynamic interactions on the diffusion of solutes
at equilibrium; SRD CC better accounts for the influence
of hydrodynamic couplings on the electrical conductivity,
which is a collective transport property. Nevertheless, in
many systems the precise hydrodynamic boundary condition
is unknown, typically for polymers or polyelectrolytes. In such
cases, the fact that the SRD CC method does not account for the
short-range solvent-solute direct interaction that leads to stick,
slip, or no-slip boundary conditions does not prevent the use
of the method and since it is faster, it may be the best option.

Finally, as far as dilute bulk suspensions or solutions are
concerned, our comparative study also showed that, from the
point of view of the numerical efficiency, BD, because it is
based on an overdamped equation of motion and assumes that
the solvent is a continuous medium, is much more efficient
than SRD-based simulations to compute trajectories over time
scales larger than the diffusion time scale τ �. Of course, for
cases where BD fails to be reliable or cannot be used (concen-
trated systems and systems under flow or under confinement),
the resort to SRD-based or other algorithms is mandatory.
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APPENDIX: COMPUTATION OF TRANSPORT
COEFFICIENTS

1. 1. Brownian dynamics simulations

To obtain the self-diffusion coefficient of ions D, we
calculate the autocorrelation function of the hydrodynamic
velocity with a Kubo-like relation derived from a linear
response theory at the Smoluchowski level [3,63]:

D = 1

3

[
〈tr{Dii}〉 −

∫ ∞

0
〈Ui(t0 + t) · Ui(t0)〉t0dt

]
, (A1)

where Ui(t0) and Ui(t0 + t) are the hydrodynamic velocities of
the particle i at some arbitrary initial time t0 and at some later
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time t + t0, respectively, the angular brackets specify averages
over the particles i and over the time t0, and tr{Dii} is the trace
of the diffusion submatrix Dii . The hydrodynamic velocity is
defined as

Ui(t) =
N∑

j=1

Dij (t) · Fj (t), (A2)

with Fj (t) the total force acting on particle j at time t . The
self-diffusion coefficient as a function of time divided by the
value at infinite dilution is thus

D(t)

D◦ = 1

3D◦

[
〈tr{Dii}〉 −

∫ t

0
〈Ui(t0 + t ′) · Ui(t0)〉t0dt ′

]
.

(A3)

The autocorrelation function (A1) tends to zero with a rather
small characteristic time, so we were particularly careful in
the sampling of small times. An alternative way to obtain
the self-diffusion coefficient is to compute the slope of the
mean-square displacements at long times:

〈|ri(t + t0) − ri(t0)|2〉t0 = 6Dt, (A4)

where a long-time average (t → ∞) is implied.
The electrical conductivity χ of charged systems is also

computed from a Kubo-like relation, which reads

χ = 1

3

β

V

(〈
N∑

i=1

N∑
j=1

qiqj tr{Dij }
〉

−
∫ ∞

0
dt

〈
N∑

i=1

qiUi(t0 + t) ·
N∑

j=1

qj Uj (t0)

〉
t0

)
, (A5)

where qi = Zie is the electric charge of the ith particle and
β = 1/kBT , so the value at a given time time t is

χ (t) = 1

3

β

V

(〈
N∑

i=1

N∑
j=1

qiqj tr{Dij }
〉

−
∫ t

0
dt ′

〈
N∑

i=1

qiUi(t0 + t ′) ·
N∑

j=1

qj Uj (t0)

〉
t0

)
.

(A6)

The electrical conductivity at infinite dilution reads

χ◦ = β

V

∑
i

q2
i NiD

◦
i , (A7)

where Ni is the number of charged solutes of type i in the
simulation box and V is the volume of the simulation box.

The two Kubo-like expressions (A1) and (A5) consist of two
contributions. The first one is due to the instantaneous response
of the system, which can be viewed as the sum of the infinite
dilution conductivity (or diffusion) and an electrophoretic
correction if hydrodynamic interactions are taken into account.
The second one is due to the time-dependent retarded response
(still with instantaneous hydrodynamic interactions in our
treatment) describing relaxation effects, including direct and
hydrodynamic interactions.

2. Stochastic rotational dynamics simulations
with embedded solutes

In SRD with embedded solutes, the self-diffusion coeffi-
cient D is computed from the same functions as in molecular
dynamics. The mean-square displacement formula is the same
as in BD, but the equivalent Kubo relation is written

D = 1

3

∫ ∞

0
dt〈(vi(t0) · vi(t + t0)〉t0 . (A8)

The self-diffusion coefficient with time then reads

D(t)

D◦ = 1

3D◦

∫ t

0
dt ′〈vi(t0) · vi(t0 + t ′)〉t0 . (A9)

The electrical conductivity of the system reads

χ = β

3V

∫ ∞

0
dt

〈
N∑
i

qivi(t0) ·
N∑
i

qivi(t0 + t)

〉
t0

, (A10)

so we have the conductivity as a function of time

χ (t) = β

3V

∫ t

0
dt ′

〈
N∑
i

qivi(t0) ·
N∑
i

qivi(t0 + t ′)

〉
t0

. (A11)

The electrical conductivity at infinite dilution χ◦ is again given
by Eq. (A7).
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[8] G. Mériguet, M. Jardat, and P. Turq, J. Chem. Phys. 123, 144915

(2005).
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