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Modeling steady-state dynamics of macromolecules in exponential-stretching flow using multiscale
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We introduce a method to obtain steady-state uniaxial exponential-stretching flow of a fluid (akin to extensional
flow) in the incompressible limit, which enables us to study the response of suspended macromolecules to the
flow by computer simulations. The flow field in this flow is defined by vx = εx, where vx is the velocity of the
fluid and ε is the stretch flow gradient. To eliminate the effect of confining boundaries, we produce the flow in
a channel of uniform square cross section with periodic boundary conditions in directions perpendicular to the
flow, but simultaneously maintain uniform density of fluid along the length of the tube. In experiments a perfect
elongational flow is obtained only along the axis of symmetry in a four-roll geometry or a filament-stretching
rheometer. We can reproduce flow conditions very similar to extensional flow near the axis of symmetry by
exponential-stretching flow; we do this by adding the right amounts of fluid along the length of the flow in our
simulations. The fluid particles added along the length of the tube are the same fluid particles which exit the
channel due to the flow; thus mass conservation is maintained in our model by default. We also suggest a scheme
for possible realization of exponential-stretching flow in experiments. To establish our method as a useful tool
to study various soft matter systems in extensional flow, we embed (i) spherical colloids with excluded volume
interactions (modeled by the Weeks-Chandler potential) as well as (ii) a bead-spring model of star polymers in
the fluid to study their responses to the exponential-stretched flow and show that the responses of macromolecules
in the two flows are very similar. We demonstrate that the variation of number density of the suspended colloids
along the direction of flow is in tune with our expectations. We also conclude from our study of the deformation
of star polymers with different numbers of arms f that the critical flow gradient εc at which the star undergoes
the coil-to-stretch transition is independent of f for f = 2, 5, 10, and 20.
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I. INTRODUCTION

The two most commonly occurring flows of complex fluids
in nature are shear flow and extensional flow or a combination
of the two. However, the response of soft matter to shear
flowhas been much more investigated than extensional flow.
In shear flow the velocity gradient is perpendicular to the
flow velocity, i.e., the shear rate εs = dvx/dy; whereas in
elongational flow the gradient in velocity is in the same
direction as the flow, i.e., ε = dvx/dx. We have supposed
that the fluid flows in the x direction. One of the reasons for
this greater focus on shear flow is the difficulty in obtaining
elongational flow under controlled experimental conditions, as
well as the difficulties involved in modeling it in simulations.

Before the advent of the filament-stretching rheometer
[1–5], doing controlled extensional (or elongational flow)
(henceforth referred to as E flow) experiments on viscoelastic
materials was fraught with artifacts, and thereby different
methods gave very different values of the extensional viscosity
ηE . This was because of the transient nature of the flow
obtained in each method, each with different induced flow
histories. Furthermore, in some cases measurements were
done before the steady-state condition was fully realized.
In the celebrated M1 experiments [6–8] the ηE of the same
polymeric fluid code named M1 (0.244% polyisobutylene
in a mixed solvent consisting of 7% kerosene in polybutene
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with molecular weight of 3.8 × 106) was measured by a wide
variety of extensional rheometers and the values of ηE obtained
differed by over three orders of magnitude. This of course
pointed to the need of developing better and standardized
techniques to measure the ηE of a complex fluid. Theoretical
studies have also made limited progress as a result: a
number of constitutive equations to quantify stress–strain-rate
relationships under E flow exist, but different responses
obtained in different flow measurement apparatuses led to a
lack of proper validation of the constitutive relations [9].

Multiscale simulation of uniaxial planar elongational flow
(refer to [10] for definitions of different kinds of elongational
flow) can fill in the missing links between constitutive
equations and experiments and provide a mesoscopic picture
of the response of macromolecules to elongational flow; such
techniques can also be used to calculate bulk stress with
varying strain rate. But difficulties exist in modeling steady-
state elongational flows in simulations with suitable boundary
conditions such that bulk flow conditions are reproduced. A
solution was proposed by Kraynik and Reinelt [11] which
enabled suitable averaging of thermodynamic quantities in
E flows. Previous simulation studies by various groups have
focused on calculating a range of properties of polymeric
systems in elongational flow. These include calculation of
the elongational viscosity ηE as a function of strain rate ε

for dense alkanes and other bead-spring models of polymers
[12–19], studies on the distribution of coil-stretch transition
times for single polymer chains as a function of ε [20–28],
calculation of diffusion constants of polymeric molecules

043303-11539-3755/2013/88(4)/043303(11) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.043303


DHAIRYASHEEL GHATAGE AND APRATIM CHATTERJI PHYSICAL REVIEW E 88, 043303 (2013)

in flow [29,30], as well as study of the effect of solvent
quality on the coil-stretch transition in flow [31]. All these
studies used one of the two available technique for their
simulations: (a) nonequilibrium molecular dynamics (NEMD)
using Kraynik-Reinelt (KR) boundary conditions [11] or
(b) Brownian dynamics (BD) simulations. NEMD methods
using KR boundary conditions do not produce uniaxial or
biaxial flows in steady state [15–18,29,30], although NEMD
can be used to achieve transient uniaxial flows [12–14].
Moreover, the effects of hydrodynamic interactions between
particles are not incorporated in the method, so it is unsuitable
for studying the response of dilute systems in elongational
flow. Hydrodynamic interactions are included in Brownian
dynamics simulations [22–26,31–33], but the friction constant
ζ of polymers is a parameter of the simulation and thus the
change in ζ due to deformation in flow has to be calculated
separately and included in the BD simulation.

In the last decade multiparticle-collision (MPC) dynam-
ics has been extensively used to incorporate hydrodynamic
interactions in studying the dynamics of soft matter systems
in equilibrium as well as in flow [34–46]. The MPC fluid,
just like the Lattice-Boltzmann simulation technqiue [47], is a
coarse-grained model of the fluid which reproduces very well
the fluctuating hydrodynamics of nearly incompressible fluids
in flows with low Reynolds number and low Mach number.

In this work, we use the MPC simulation scheme to achieve
steady-state exponential-stretching flow (ES flow) in a box of
uniform cross section with periodic boundary conditions in
all directions. ES flow is akin to E flow, and we show in
this paper that polymers in ES flow get stretched above a
critical flow gradient just as in E flow. In elongational flow
the velocity of the fluid increases linearly in the flow direction
(say x), vf l = εx; furthermore, mass conservation demands
v

y

f l = −εy. However, for ES flow, we maintain the most
important characteristic for E flow, viz., vf l = εx, but uniform
fluid density along the length of a channel of uniform cross
section is maintained by addition of suitable amounts of fluid
from transverse directions. The typical soft matter constituents,
colloid, polymer, or ampiphilic molecules, are embedded in
the fluid and flow along the fluid with the imposed velocity
gradient of ES flow. To maintain incompressibility of the
background fluid with increasing velocity in the flow direction
but with fixed number of particles within the simulation box,
the continuity equation demands a box with tapering walls
along x; however, a box of uniform cross section is desirable
to avoid unwanted artifacts due to variable confinement with
tapering walls.

However, if (1) a fixed amount of fluid of volume dv, (2) in
a channel of uniform cross section, (3) were to have a velocity
field vx = εx + v0, then the density of the fluid necessarily
would have to decrease along the length of the channel.
That we consider undesirable. What we show, however, is
that if fluid is added along the length of the channel at an
appropriate constant rate independent of x, then (1) the density
can be maintained uniform along the length of the channel and
(2) simultaneously maintain the desired velocity field.

Moreover, to maintain steady-state conditions with con-
tinuous flow in the simulation box with periodic boundary
conditions (PBC), we would have to deal with a discontinous
jump in velocity as well as the excess of fluid particles exiting

the box with finite velocity at the x = Lx end compared to
the x = 0 end, i.e., the point where the fluid reenters the
simulation box due to the PBCs. We tackle both the issues
by (a) addition of fluid along the length of the channel, and
(b) velocity discontinuity at the end of the simulation box
with one ingenious idea to obtain a linearly increasing fluid
velocity profile of a fluid of fixed density ρf l , but also in a
box of uniform cross section. We just recycle the excess fluid
coming out of the x = Lx end and redistribute the same fluid
along the length of the box to maintain constant ρf l .

The rest of the paper is organized as follows:
(a) In Sec. II we first give a brief overview of the MPC

method, then we present our model to obtain steady-state
uniaxial ES flow of the MPC fluid and finally demonstrate
the success of our idea by our simulation results.

(b) In Sec. III, we describe our model and simulation results
for two test cases where we embed macromolecules in our
MPC fluid undergoing ES flow and study their response to the
flow. We consider a colloidal suspension with just excluded
volume interactions as the first test system, and star polymers
with different arm numbers in E flow as the second test case.

(c) Finally we conclude in Sec. IV and discuss future
prospects of extensions of this study to study various soft
matter systems in ES flow.

II. EXPONENTIAL-STRETCHING FLOW
OF A MPC FLUID

A. Model

We consider a volume of fluid undergoing ES flow in the x

direction. In our simulations, the fluid flows through a channel
of length Lxa and with square cross section of dimensions
Lya × Lza, where a = 1 is the unit of length in our system.
We shall set the size of the cubic collision boxes of the MPC
fluid to be a (see later). We apply periodic boundary conditions
in the z and y directions to model the bulk flow of fluid and
avoid the effect of confining walls. For exponential-stretching
flow of fluid, the velocity of fluid vx in the x direction increases
linearly with x:

vx = εx + v0. (1)

The fluid enters the simulation box with velocity v0 (=0 in
our simulations) at x = 0 and the ES strain rate is ε. This
immediately implies that there is a force

f x
ES = m

dvx

dt
= m

∂vx

∂t
+ mvx

∂vx

∂x

= mvxε = m(ε2x + εv0) (2)

acting on each element of the fluid with mass m. The term
m∂vx

∂t
= 0 in steady-state conditions. The displacement X of

the fluid element along the x direction as a function of time is
similarly obtained as

X = v0

ε
(et − 1), (3)

where the integration constant is obtained by defining x = 0
at time t = 0.

Since we aim to study the response of complex fluid systems
in steady-state exponential-stretching flows, our simulation
scheme has to address the two modeling issues mentioned
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above: how to (A) maintain an ES flow of fluid in a simulation
box of dimensions Lx × Ly × Lz while maintaining a uniform
fluid density ρf l throughout, and (B) obtain a scheme to imple-
ment periodic boundary conditions for the background fluid
in the x direction, since there will be velocity discontinuity at
x = Lx for the fluid, as well as for the colloids or polymers or
any other macromolecule one wishes to study in steady-state
ES flow.

We use MPC dynamics to model the volume of fluid
undergoing ES flow; the MPC fluid consists of Nf l discrete
noninteracting point particles of mass m contained in a
box of volume V = Lx × Ly × Lza

3. MPC dynamics is a
coarse-grained particle-based model of a fluid; it has become
one of the established methods to model and incorporate
hydrodynamic interactions between molecules of soft matter
systems. There are many articles on the MPC method; it is
also referred to as stochastic rotation dynamics in the literature
[38,39]. Here we summarize the basic principles which MPC
dynamics uses to model an equilibrium fluid, before we go on
to describe a MPC fluid in ES flow. The interested reader can
refer to the many other previous papers and review articles for
the details of the method [34,36,37,40].

MPC dynamics consists of two steps, the ballistic motion
step (position update step) and the collision step (velocity
update step). In the ballistic step the MPC particles move in
a straight line for time h with their respective velocities �vi

(i = 1,2, . . . ,Nf l) like particles of an ideal gas. However,
the difference from a real gas is that all the Nf l MPC
particles move ballistically for an identical period of time h,
before undergoing collisions. Thus, all Nf l particles undergo
collisions at the same instant of time after every time step h.

In the collision step, instead of having two-body collisions
between particles with just two particles colliding and ex-
changing momentum, clusters of MPC particles undergo col-
lision and redistribute momenta among themselves. Clusters
of particles are identified by sorting all the particles into small
cubic boxes of volume a3, and the particles within a particular
box exchange momenta in a collision. The linear dimension
of the collision boxes a is taken to be the unit of length for
our system. To achieve redistribution of momentum, one first
selects the inertial frame in which the total momentum of
a selected cluster of nb particles belonging to a particular
collision box is zero. That is, the velocities �v′ of MPC particles
in this new frame are �v′

n = �vn − �vc.m. such that m
∑

n �v′
n = 0,

where �vc.m. is the center-of-mass velocity of nb particles, and
the index n = 1,2, . . . ,nb. Next, in this frame one rotates the
velocity of each of the nb particles about a random direction
by a fixed angle α. This step redistributes momenta among the
particles, maintaining energy and momentum conservation.
One then adds back �vc.m. to the velocity of all the particles
to get the new velocity of each of the nb particles in the
original frame. This is repeated for all the collision boxes.
One thus obtains momentum redistribution among nb particles
due to collisions at one instant of time but simultaneously
achieving local energy-momentum conservation throughout
the system. To maintain Galilean invariance, one also has to
do a random shift of collision boxes before the collision step;
refer to [40] for details. Angular-momentum conservation is
not maintained in this collision step, but there exists also an
angular-momentum-conserving MPC method [40,41].

Variation of the values of the important parameters, viz.,
the density ρf l of the fluid, the time between collisions h, and
the rotation angle α, can lead to a model of the fluid with a
wide range of viscosity ηf and Schmidt numbers Sc, which
can be tuned a priori. The Schmidt number (Sc) is the ratio
of momentum diffusivity and mass diffusivity; the dynamics
of particles with high Sc is more liquidlike with momentum
transport occurring predominantly via collisions, whereas a
fluid with low values of Sc is more gaslike with momentum
transfer occurring mainly by diffusion and mass motion of the
constituent particles. For small values of h and large values of
α, most of the momentum transport by the fluid is by collisions,
akin to that of a liquid at a temperature kBT .

Units. Energy values in our simulations are measured in
units of the room temperature kBT , and we set kBT = 1. The
unit of mass is the mass mf of a MPC fluid particle, and thereby
the unit of time τ is fixed automatically by kBT /(mf a2) =
1/τ 2. At room temperature (300 K), with a = 0.1 μm and
m = 106 a.u., τ ≈ 10−7 s.

If now an externally applied force field of f x
E [see Eq. (2)]

is applied to each MPC fluid particle of mass m, one can
expect to obtain a velocity profile of vx = εx + v0 of the
fluid. In the expression it is implicitly assumed that the fluid
enters the channel at x = 0 with average velocity (v0,0,0)
and we set v0 = 0 for most of our simulations. However, a
gradually increasing fluid velocity along the length of the
channel would result in the decrease of the fluid density
ρf l(x) along x. This problem, identified as issue (A) before,
would render this method useless to study complex fluids
suspended in an incompressible fluid undergoing ES flow.
Implementation of PBCs, issue (B), is a problem also because
for an incompressible fluid the number of fluid particles Nl

crossing the x = 0 plane with the x components of their
velocities in the −x̂ direction is always less than the number
of particles Nr moving right and crossing the x = Lx plane
with the x components of their velocities in the +x̂ direction.
Refer to Fig. 1 for a schematic diagram. This is because the Nr

MPC
fluid

zz=0
<v > = v  +    z

ε

v0

N∗
therm εN

Nε particles put back in system.

z

*

*

yL

xLVelocity
= 0
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from z=0 face.

therm + N

Ntherm

thermN∗

L
0 ε Fluid
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exit from z=L   face.

Fluid
enters

z

0v   + 

FIG. 1. (Color online) Schematic diagram to illustrate how
we implement exponential-stretching flow, with velocity linearly
increasing in the positive x direction and a velocity discontinuity
at x = Lx . Nr = Nthermal + 〈Nε〉 particles exit the x = Lx plane to
the right, whereas Nl = N∗

therm exit at x = 0 to the left. Nthermal and
Nl particles are put back into the left edge and right edge of the
box using normal PBCs but with a suitable velocity shift by εLx . Nε

particles are put at randomly chosen x positions in the box with its
y,z coordinates remaining unchanged but with suitable shift in the x

velocity. Normal PBCs have been implemented for particles leaving
the simulation channel in the ±ŷ and ±ẑ directions.
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particles will have velocity contributions due to the ES flow
which is over and above the thermal velocities. Thus, due to the
higher x velocity of particles near x = Lx , 〈Nr〉 will always
be greater than 〈Nl〉 for a fluid with uniform density along x.

We use one idea as a solution to both the issues: the excess
particles coming out of the right-hand side (RHS) of the box
at x = Lx are distributed in such a way that a uniform density
of fluid particles is maintained throughout the box. A simple
calculation shows that the excess particles 〈Nε〉 = 〈Nr〉 − 〈Nl〉
exiting the x = Lx plane in each step must be distributed
uniformly along x to maintain ρf l independent of x. This can
be deduced by observing that in the steady state �∇ · (ρf l �v) =
ρf l

�∇ · �v = ρf lε, i.e., independent of x in ES flow if one
maintains ρf = const. Then the rate of addition of particles
in a unit volume should also be ρf lε and independent of x.
These ideas are presented schematically in Fig. 1. Usually the
expression �∇ · �vf l = 0 holds true to express incompressibility
conditions such that uniform density prevails for a fixed
amount of fluid; however, note that we have �∇ · �vf l 	= 0. Of
course, in our case we have to add fluid particles locally to
maintain ρf l = ρ0 and simultaneously have the desired flow
field in a box of uniform cross section. Globally there is mass
conservation, i.e., the total number of fluid particles in the
simulation box is strictly conserved as the number of excess
particles exiting the box at the right are added back into the
box along its length. But locally, mass is not conserved in our
system.

The next question to address is the calculation of the value
of 〈Nε〉 exiting the RHS of the simulation box in unit time due
to ES flow. The net number of particles exiting the x = Lx

plane is �Jf · �A = (ρf lεLx)(LyLz) per unit time, where �Jf and
�A is the particle current density due to the flow and cross-

sectional area of the tube, respectively. Therefore, in time h,
i.e., one MPC update, the number of particles exiting the x =
Lx surface is 〈Nε〉 = ρf l(εLx)LyLzh: these are distributed
with uniform probability along the length of the box. Thus
the implementation of PBCs for the fluid particles can be
summarized as follows: Suppose at a certain instant in time,
Nl and Nr fluid particles cross the x = 0 = Lx plane from right
to left and left to right, respectively, at the end of a ballistic
step. Then:

(a) All the Nl particles are put back in the box at the RHS
of the box as per standard molecular-dynamics PBC rules but
with a velocity increment of εLx for the x component of the
velocity vx of all these particles. The y and z positions as well
as the vy and vz of the Nl particles remain unchanged.

(b) Nthermal = Nr − 〈Nε〉 number of particles are put back
at the LHS (left-hand side) of the box, but with vx of these
particles changed by an amount −εLx ; the y,z coordinates
and vy,vz velocities remain unchanged.

(c) A random position xR , where 0 � xR � Lx , is chosen
for 〈Nε〉 particles using a uniform random number generator
and the particles are put in this new position with the velocity
suitably reduced by (Lx − x)ε. The y and z positions and
velocities remain unchanged.

Thus all the particles Nr + Nl which exit the simulation
box at the end of the position update step of the MPC scheme
are retained in the box; this ensures particle number and
correspondingly mass conservation at all times. The numbers

FIG. 2. A schematic diagram of a plausible experimental realiza-
tion of a flow which will be similar (but not identical) to the flow
in our simulation model with input of fluid along the entire length
of the box (refer to Fig. 1). Introduction of particles at a constant
rate at random positions independent of x in the box is equivalent
to a constant influx of fluid through side channels in a tube with the
appropriately adjusted velocity vx . Mass conservation is maintained:
the amount of incoming fluid should be equal to the amount of fluid
leaving the tube due to ES flow.

Nl and Nr are fluctuating quantities and Nr > Nl always, but
after a fixed number Nε of the Nr particles are redistributed
in the box at random positions, the remaining 〈Nr − 〈Nε〉〉
is equal to 〈Nl〉. The introduction of particles at random
positions along the length of the box might appear contrived;
however, a situation demonstrating the underlying principle of
introduction of particles along the length of the box can be
plausibly experimentally realized as shown in Fig. 2.

The introduction of particles at random positions in the
box is akin to pumping in fluid through side channels of the
tube to maintain uniform density of the fluid undergoing ES
flow. While the practicability of the idea can be answered
only by doing an actual experiment, we envisage it as if there
are an infinite number of tiny pores through which the right
amounts of fluid are introduced back into the system. One can
think of tiny amounts of fluid leaking back into the channel
from the surface, with the appropriate local x velocity of the
fluid. Of course experimentally there can be only finitely many
number of pores along the walls of the channel and there
would always be a finite y component of velocity for the
fluid entering the channel. This would render the experimental
realization close but never identical to our model of flow, where
the thermally averaged fluid velocity has a component only
in the +x̂ direction. But then one can observe the flow and
measure the response of soft matter systems more in the center
of the experimental channel along the axis. We emphasize,
however, that we also maintain PBCs in the y and z directions
as we would like to investigate bulk ES flow of fluid.

To maintain incompressibility conditions in the fluid flow of
any coarse-grained simulation method, one should ensure that
the simulated fluid velocities are significantly less than the
sound velocity of the model fluid (Mach number Ma 
 1).
To that end we have been careful to maintain the maximum
value of the fluid velocity at values significantly less than the
sound velocity cs [c2

s = γ kBT /m = 1.4(a/τ )2, where γ is the
adiabatic index] of the fluid; in our case the fluid velocity near
the x = Lx end is the maximum fluid velocity vmax

x obtained
in our simulations. For our simulations vmax

x is always �0.05cs

unless otherwise mentioned. An appropriate MPC thermostat
[48] is applied to maintain the temperature at a constant fixed
value, otherwise the average kinetic energy of the system will
gradually increase due to the externally applied f x

ES which
sustains ES flow. We set the unit of length a = 1, unit of
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energy kBT = 1, unit of mass the mass of the fluid particle
mf = 1, and thereby the unit of time is τ = √

mf a2/kBT .
Then we choose the collision time h = 0.1τ, ρf = 10, α =
130◦ in a box of Lx = Ly = Lz = 20a or 40a to test our
model of steady-state ES flow of the background fluid.

B. Results

Figure 3 shows the parallel streamlines in ES flow of a
MPC fluid in a box of uniform cross section, where each fluid
particle is acted upon by a force as explained in Eq. (2) with
ε = 0.004a/τ in a box of (20a)3. The figure shows that the
velocity near x = 0 is nearly zero and it goes on increasing with
increasing value of x and is maximum at x = Lx . Although
the simulation box size is (20a)3, the plotted box extends
to 21a in the x direction to accommodate the length of the
arrow. The streamlines clearly indicate that the flow is pure
uniaxial flow of fluid with increasing velocity only in the x

direction, reminiscent of E flow, but no velocity components in
the transverse directions as one would expect in elongational
flow. We maintain the appropriate velocity gradient in the
direction of flow (in this case the x̂ direction) by a suitable
position-dependent force; in experiments with elongational
flow, this is realized by the appropriately moving boundaries.

The streamlines for ES flows that we produce in our
simulations might seem counterintuitive to most researchers,
as the textbook definition [10] of the velocity fields for E flow is
given not only as vx = ex but also vy = −ey; this additional
flow in the y direction is dictated by the condition of mass
conservation of an incompressible fluid. In our simulations,
however, mass conservation is inherent in our model as only
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FIG. 3. (Color online) Streamlines of a MPC fluid in ES flow
with vmax

x = εLx = 0.08a/τ in a box of volume (20a)3 with ε =
0.004τ−1. The fluid velocity increases linearly with x. Since there
is a slow but gradual flux of fluid into the simulation box along the
sides of the channel (refer to Fig. 2) at the same rate at which the
fluid gets drained out of the channel, we do not obtain the typical
streamlines observed in elongational flow experiments with vx = εx

and vy = −εy. The streamlines observed in our simulations are close
to what might be expected at the central axis of a complex fluid flow
in a filament-stretching rheometer.
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FIG. 4. (Color online) (a) Plot of the fluid velocity vf l
x of a MPC

fluid along the flow direction x. vf l
x increases linearly along x. The

quantity x, the distance from the point where the fluid enters the
box, has been normalized by box length Lx . (b) Ratio of the velocity
gradient ε∗, the slope calculated from velocity profile in (a), and the
applied flow gradient ε versus ε. (c) Plot of the number density profile
ρ(x) of the MPC particles versus x, which remains uniform along x.
The quantity ρ(x) is normalized by the average number density ρ0

of the fluid. (d) The temperature profile of the fluid kBT calculated
using the equipartition theorem as a function of x. The thermostat
maintains the desired uniform temperature kBT = 1 of the flowing
fluid.

those particles which exit the box at x = 0 and at x = Lx are
put back into the system, as explained in the previous sections.
The idea of redistributing particles along the length of the
box with a uniform probability is akin to the experimental
realization suggested in Fig. 2 but with infinite number of
entry points in the tube. Our model of the idealized uniaxial
exponential-stretched flow can nearly be obtained at the axis of
symmetry of a four-roll geometry producing extensional flow
or at the centerline of flow in a filament-stretching rheometer.

To make our measurements more quantitative, we plot the
the linearly increasing velocity profiles of the MPC fluid as
a function of x for different values of the flow rate ε with
v0 = 0 in Fig. 4(a). We get consistent velocity profiles of the
fluid in tune with our expectations for all values of ε except
for ε = 0.002/τ . The flow with the highest value of ε shows
deviations from the linear profile; but in this case the maximum
velocity of the fluid at x = Lx reaches 0.05cs and the method
is expected to start showing artifacts. The slope of the velocity
profiles gives the actual velocity gradient ε∗ as obtained from
our simulations.

To compare it to the value of applied velocity gradient ε in
the expression for f x

E in Eq. (2), we plot ε∗/ε for the different
values of ε used to obtain the ES flows. This is shown in
Fig. 3(b). The values of the ratio ε∗/ε are very close to 1
which is a very satisfactory validation of the required flow.
The value of ε∗/ε for only the largest value of ε = 0.002τ−1
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shows around 3% deviation from the perfect value of 1, but
this is again the case where the velocity at x = Lx becomes
0.08a/τ (i.e., about 5% of cs , the sound velocity). This is
the case which shows a clear deviation from the linear velocity
profile [refer to Fig. 4(a)]. Thus, unless one uses vmax

x 
 cs , the
method is expected to fail for reasons mentioned before. Thus
we also investigate the regime where the validity of the scheme
starts becoming suspect; clearly in all future simulations one
should use ES flow rates ε which lead to fluid velocities vmax

x <

0.04a/τ at the x = Lx end.
Figures 4(c) and 4(d) show the number density ρ(x) and

temperature kBT of the fluid particles along the length of
the channel for two different box sizes. The density has been
normalized by the average number density ρ0, which is 10
particles per a3, the volume of each collision box. For all values
of ε < 0.001τ−1 (such that at x = Lx = 40a, the maximum
fluid velocity vmax

x < 0.03cs is maintained) the deviation from
the average density is ∼1%. The figure establishes that the
density of the fluid ρ(x) is held constant along the length of
the channel and our idea of introduction of 〈Nε〉 MPC particles
after every ballistic step, at random positions between x = 0
and x = Lx , is a reasonable one. For the smaller box size
of (20a)3, the deviation in the density is ∼1% even if ε =
0.001τ−1 or 0.002τ−1 is used. This is because the maximum
velocity at x = Lx for the smaller box with L = 20a is half
the value of vmax

x for the box of size (40a)3. The thermostat
maintains the temperature of the fluid at the desired value
with less than 1% deviation at even higher values of ε used in
the simulation. Of course, for both ρ and kBT there are edge
effects at x = 0 = Lx , but for the low ε values that we use in
future simulations, the effects are minimal.

One also sees a mild density gradient along the length of
the channel although this is negligible at low values of ε.
We think the applied flow perturbs the Maxwell-Boltzmann
velocity distribution, especially at the x = Lx end, although
we apply a local thermostat every 50 iterations to maintain
the right temperature. This in turn perturbs the theoretical
calculation of the number of particles to be from moved from
the left end of the box to the right and vice versa, as well as the
number of particles being redistributed in the box. Thus for
lower values of ε, such that the maximum velocity at the right
end of the box is low, one sees a lower density gradient. Even
for the largest ε = 0.002τ used in the simulation, one sees a
large density gradient for a 40 × 40 × 40a3 box but a reduced
density gradient for a smaller 20 × 20 × 20a3 box.

A viable apprehension is that hydrodynamic interactions
between suspended particles might be destroyed by the
addition of fluid particles at random positions in the simulation
box. With that consideration we calculate the fraction of
reintroduced particles Nε(T ) in time T in a box of length
Lx × Ly × Lz, where T is the time taken for diffusion of
momentum of the fluid over half the length of the simulation
box. We choose Lx = Ly = Lz = 40a and the number density
ρ = 10/a3, and then the kinematic viscosity ν = η/mρ ≈
0.83a2τ−1 for the values of rotation angle α and collision time
h chosen for this simulation (refer to [36,40] for calculation
of the viscosity η). Thereby T = (20a)2/(6ν) ≈ 80τ . The
average number of particles exiting the x = Lx surface in
time τ due to flow is (εLx)ρ(LyLx) = 640 particles for ε =
0.001τ−1. These particles are put back at random positions in

the box with 640 000 MPC partcles, and thereby 8% of the
particles are replaced at random positions in time T = 80τ .
This gives the upper limit of the number of fluid particles
introduced at random positions as typically lower values of
ε will be used in a similar-sized box. We also show later
that the velocity autocorrelation function of a suspended
macromolecule in the MPC fluid undergoing ES flow decays
as a power law, which is one of the signatures of having
incorporated hydrodynamics in describing the dynamics of
a particle in a fluid.

III. MACROMOLECULES IN ES FLOW

The interest of the soft matter and rheology community lies,
of course, in studying the response of colloids, polymers, and
macromolecules in steady-state uniaxial elongational flows
or the nearly equivalent ES flow. To that end, we study the
response of two test cases, a suspension of colloids with only
excluded volume (EV) interactions between them in the nearly
equivalent exponential-stretching flow and also an extended
object with internal degrees of freedom such as a polymer
in ES flow. In particular we have done simulations with a
star polymer with different numbers of arms f in ES flow. In
the following, the issue of PBCs of these macromolecules
embedded in the MPC fluid is addressed over and above
modeling ES flow of the background MPC fluid.

A. Colloids in ES flow

We introduce 2000 spherical colloids coupled to the MPC
fluid in a (500 × 10 × 10)a3 box filled with 1 × 106 MPC
fluid particles (number density ρf l = 20) and apply a position-
dependent force f x

E , as defined in Eq. (2), to both colloidal
and MPC particles. We use ε = 0.000 05τ−1 such that the
maximum velocity vmax is 0.025a/τ at the x = Lx = 500a

end, which ensures that vmax < 0.02cs . The colloids interact
with each other via the Lennard-Jones potential

VLJ = 4εc

(
σ 12

c

r12
− σ 6

c

r6

)
(4)

suitably shifted and truncated at rcut = 21/6σc such that there
exists only repulsive excluded volume interactions between
the colloids. We have used the colloidal radius rc = σc/2 =
0.4a, εc/kBT = 1, and colloidal mass mc = 20mf such that
the colloids are density matched with the background MPC
fluid. The position and velocity of the colloids are updated
every tMD = 0.0025τ ; this is the time step for MD simulations.
The momentum-exchanging rotation step of colloids + MPC
fluid particles is implemented after every 40 MD steps, such
that h remains 0.1τ , where τ is defined as before as τ =√

mf a2/kBT .
The colloids are coupled to the MPC fluid and exchange

momentum with it; this is achieved by including the embedded
colloid in the rotation step of the MPC dynamics where
momentum is redistributed among the fluid particles. There is
EV interaction between the colloidal spheres, but with respect
to the MPC fluid the colloids are just pointlike particles with
a mass of 20mf . The details of this coupling scheme between
an embedded particle and the MPC fluid and the success of
the scheme are well explained in Refs. [36,40]. PBCs for the
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colloids in ES flow are implemented thus: We put back all col-
loids which cross the x = Lx (alternatively x = 0) boundary
into the box at x = 0 (x = Lx) with the x component of the
colloid velocity vc

x suitably reduced (increased) by εLx .
We start our simulation with 2000 model colloid particles

arranged in a cubic lattice in the simulation box. We switch
on ES flow as described above and allow 0.4 × 106 iterations
(0.4 × 106 MPC particle position and velocity updates, or 16 ×
106tMD) for the system to reach steady state. We then start
calculating the number distribution of colloids as a function
of flow direction x in the steady state over the next 0.8 × 106

iterations. At steady state, a fixed number of colloid particles
enters the simulation box by crossing the x = 0 plane per unit
time, and the same number exits via the x = Lx plane. The
lower number density of colloids at the x = Lx end is offset
by the larger velocities of the particles in the flow direction,
thereby maintaining uniform current density. For comparison
we have also studied the case where there are 3000 colloid
particles in the 500a × 10a × 10a box. We choose the velocity
of colloids at the x = 0 plane to be v0 = 0.01a/τ to minimize
aggregation of particles at that boundary.

Figure 5 (top) shows a snapshot of 2000 colloids particles
in steady-state ES flow. There is a distinct decrease in the
number density of colloids with increasing x; near x = 0
there is a very high density of particles extended to about
x = 100a. If �Jc(x) = n(x)�vc(x) is the colloidal current density
in ES flow, �∇ · �Jc = 0 implies n(x) ∼ 1/x where n(x) is
the number density of colloids and �vc(x) = εx + v0 is their
velocity in ES flow. The middle and bottom figures show
snapshots of the 3000 colloids after 0.4 × 106 and 0.6 × 106

iterations, respectively. The system clearly has not reached
steady state; furthermore, it seems that the region with high
density of colloids shows behavior reminiscent of jamming
and is moving together as a block in the ES flow. This is
in tune with experimental studies which also see jamming
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FIG. 5. (Color online) Snapshot of 2000 (top figure) colloidal
particles with excluded volume interactions in steady-state ES flow in
the x direction with the background fluid modeled by MPC dynamics.
The velocity gradient is ε = 0.000 05τ−1 with box dimensions
Lx = 500a and Ly = Lz = 10a. The bottom two figures show 3000
particles in the flow at two different time instants. The bottom figure
suggests a local jamming of colloids at x = 150a where the particles
in the high-density region move cooperatively in the positive x

direction.
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FIG. 6. (Color online) Number of particles n(x), normalized by
the total number of particles N , as a function of x undergoing ES flow
for N = 2000 and N = 3000 in a 500a × 10a × 10a box plotted on
a log-log scale. The continuous lines (0.5/x and 0.3/x) have been
plotted to aid the reader to compare with the expected 1/x dependence
of the number density of colloidal particles in ES flow. The data shown
in (b) are the same as those shown in (a) but plotted on a linear scale.

of colloidal suspensions in extensional flow [49]. However,
a detailed investigation and understanding of the observed
phenomenon is an ongoing project and will be reported in a
future communication.

We focus on the N = 2000 colloids case and show the
number density of colloids n(x) as a function of x in a linear
plot as well as in a log-log plot in Fig. 6. The density shows
a 1/x dependence for x > 100a as expected on solving the
continuity equation with ∂ρ/∂t = 0. We have also plotted the
function 0.5/x which lies exactly on n(x) to illustrate that
the density indeed falls as 1/x along the length of the channel.
We have also shown n(x) versus x for N = 3000 particles,
albeit its has not reached steady state and there could be other
physics at play as discussed above.

We can envisage the region 0a < x < 500a to be a fluid-
filled tube in the laboratory with the appropriate velocity
profile in which particles enter at x = 0 and leave at x = 500a,
so that there are boundary effects at x = 0 and x = Lx .
However, in the region 100a < x < 500a we have steady-state
exponential-stretching flow, and this region can be used to
calculate statistical properties of interacting colloids in ES
flow.

B. A star polymer in ES flow

The modeling of extended objects like polymers is more
complicated than the flow of colloidal particles, which have
been considered as pointlike objects with respect to the fluid.
The fundamental problem in applying PBCs for extended
objects is that, as one end of the object (say a few monomers
in the front) crosses the x = Lx boundary, they cannot be put
back in the box at the x = 0 end with a suitably reduced value
of vx of the colloid. This is because the polymer is spread
on either side of the x = Lx = 0 plane and there the velocity
gradient becomes ∞. This in turn will affect the steady-state
structural properties of the polymer. Thus when invoking PBCs
for the polymer or macromolecule, the entire polymer has to
be shifted to the other end of the box such that the polymer
remains in a uniform velocity gradient. Before we discuss in
greater detail how we implement PBCs for extended polymeric
objects, we briefly describe our bead-spring polymer model
and its coupling with the fluid.
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We consider a star polymer in a simulation box (Lx ×
Ly × Lz)a3 with the PBCs for fluid in ES flow as described
earlier. Each monomer of the polymer is acted upon by a
force depending upon its position as in Eq. (2). The coupling
between monomer and the MPC fluid is achieved in the
collision step and each monomer is a point particle just like the
other fluid particles but with a mass 10mf , as ρf = 10 for these
simulations. There is no other interaction (EV or otherwise)
between the monomers and the fluid particles. A linear polymer
is just a star with two arms. The number of monomers in
each arm is Np = 30 and the length of each arm is Lp =
Nprp, where rp is the length of the bond between adjacent
monomers. We chose rp = a = 1; the interaction between
neighboring monomers in a chain separated by distance r is
V (r) = κ(r − rp)2, with κ = 1000kBT , so that we have nearly
inextensible bonds in our bead-spring model of polymers. In
addition, to model good solvent conditions we implement an
excluded volume interaction between monomers by a Lennard-
Jones potential between monomers with σp = 0.8a, where
σp is the diameter of a monomer. The potential is suitably
truncated at r = 21/6σp and shifted so that we have only
repulsive interactions between the monomers. The polymer
arms emanate out from a central monomer, the center-to-center
distance and bond length between the central monomer and
the first monomer in different arms being σ c

p = 2.0a and
rc
p = 2.0a, respectively.

The crucial idea in the implementation of PBCs of a star
polymer (or some other macromolecule) is this: We restrict
the center of the polymer to move between xL =  and xR =
Lx −  ( � Lx/2), but implement the usual PBCs in the y

and z directions. As soon as the central monomer crosses
xR in ES flow, the central monomer (and all monomers) are
shifted to position xL (at appropriate positions relative to xL)
with an accompanying velocity shift of ε(Lx − 2) for the x

component of the velocity of each monomer. Note than in
this case, the polymer always experiences a uniform velocity
gradient as long as Lx > 2.

Moving the entire polymer from near the x = Lx end to
the x = 0 end of the simulation box maintains the velocity
gradient across the polymer, but the fluid around the star needs
to be moved as well, along with the star, to maintain correct
streamlines, hydrodynamics, and PBCs. To this end, we move
all the fluid particles contained between (Lx − 2) and Lx to
the volume between 0 < x < 2 at the same time that PBCs are
invoked for the monomers of the polymer. Correspondingly the
fluid between 0 < x < (Lx − 2) is displaced in the positive x

direction by distance 2. There must be corresponding velocity
shifts of −ε(Lx − 2) and +2ε, respectively, in the velocity
of the shifted particles. Thus one can implement the PBCs
of the polymer-fluid system without changing the fluid flow
around the polymer. The relative positions of the fluid particles
also remain unchanged with respect to each other. A schematic
figure is given in Fig. 7 for ease of visualization by the reader.

We use a simulation box of dimensions (100 × 40 × 40)a3

for star polymers with f = 2, 5, and 10 arms and a box of
size (120 × 40 × 40)a3 when f = 20. There are 1.6 × 106

MPC fluid particles in the box of length 100a and 1.92 × 106

fluid particles for Lx = 120a such that ρf l = 10a−3 always.
The quantity  was chosen to be 25a and 30a for Lx = 100a

and Lx = 120a (for f = 20), respectively. The mass of each
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FIG. 7. (Color online) Schematic diagram describing the method
we use to implement PBCs for polymers in ES flow. The MPC fluid
is contained between Lx − 2 and Lx surrounding a polymer, and
the polymer itself is shifted to the left end of the box from the right
end when the center of the polymer crosses position x = Lx − . A
suitable velocity shift is applied along with change in the position. The
quantity  is chosen such that the length of the polymer in the stretched
condition (Nprp) should �2. Simultaneously the fluid contained to
the left of Lx − 2 is moved to the right by an amount 2l with the
appropriate velocity shift. The box with dashed lines shown between
Lx and 2Lx represents a periodic image of the actual simulation box
between 0 and Lx .

monomer mp = 10mf such that each monomer was again
density matched with the fluid. The time step for MD is tMD =
0.005τ , and the MPC rotation and position update is carried out
every 20 MD steps, such that h = 0.1τ . We allowed 0.1 × 106

MPC iterations for the system to reach steady state, data for
thermodynamic averages were collected over the next 0.35 ×
106 MPC iterations, and structural quantities were averaged
over at least seven independent runs.

The top and middle pictures in Fig. 8 show snapshots of
polymer configurations of a star with f = 2 (equivalent to
a linear polymer chain of length 2Np + 1, by including the
central monomer in the count) at two different flow rates. The
bottom picture is a snapshot of two different configurations of
a star with f = 20 at the higher flow rate. We clarify that we
simulate only one star in the flow; the stars shown in different
colors are snapshots of the same single star at different time
instants as it moves along the flow. Note that as soon as the
f = 2 star crosses x = 75a ( = 25a) to the right, the entire
star is shifted to x = 25a. Simultaneously, the fluid particles
with x coordinates in the range 50a < x < 100a are shifted
to the region 0 < x � 50a, and the particles which occupy the
region 0 < x � 50a are shifted to the right by 2 and now fill
the region 50a < x < 100a. Thus the relative positions of the
fluid particles remains unchanged with respect to each other
in this implementation of PBCs. Of course, the appropriate
velocity shift has to accompany the position shift. For the
Lx = 120a box (bottom picture),  = 30a, and as soon as
the star center crosses x = 90a, all the particles in the region
60a < x < 120a are shifted to 0 < x < 60a and vice versa.

We use τR = ηSr
3
pN2

p/kBT = τ0N
2
p to calculate the relax-

ation time τR of a polymer arm of length Nprp and bond
length rp, where ηS is the solvent viscosity and τ0 = ηSr

3
p/kBT

[50,51]. We would like to clarify that the Zimm model for an
ideal polymer chain (i.e., in θ solvent) predicts the length
dependence of the relaxation time to be τZ

θ ∼ N3ν
p ∼ N1.5

p

for ν = 0.5. But for polymers in good solvents with EV
interactions among polymer chains (as is the case in our
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FIG. 8. (Color online) The top and middle figures show the
polymer configurations of a linear polymer chain (star polymer
with f = 2 and Np = 30 monomers in each arm) in ES flow
with Weissenberg numbers Wi = ετR = 0.324 and Wi = 1.944,
respectively. τR is the relaxation time of a star-polymer arm. The
three-polymer configurations shown with different shades (colors)
represent the same polymer but at different simulation times and
thereby at different positions in space. The bottom figure shows a
star with f = 20 in ES flow with Wi = 1.944. As before the two
differently shaded (colored) stars refer to configurations of the same
polymer at two different simulation times. The polymers are stretched
for Wi > 1.

simulations), the Zimm prediction for relaxation times is
τZ
EV ∼ N3ν

p ∼ N1.8
p for ν = 0.6, ν is the scaling exponent

which describes the variation of the size of the polymer with the
length of the polymer chain. However, for different simulations
of polymers in good solvents one observes the relaxation time
dependence of polymer chains with the number of monomers
in a chain as ∼N2

p [50–52], and therefore we use τR ∼ N2
p as

an estimate of the relaxation time of the star, as has been
done previously in the literature. In our simulations with
Np = 30 monomers, τR = 900τ0 and τZ

EV = 456τ0 such that
τR ≈ 2τZ

EV .
One can unambiguously see in Fig. 8 that the polymers

get stretched for Weissenberg number Wi = ετR > 1. The
stretching of stars is explored systematically in Fig. 9 where
we plot the diagonal components Gαα of the gyration tensor
Gxy at different flow rates, normalized by the average of the
diagonal components of the gyration tensor G0 when ε = 0,
where α = x, y, or z. The quantity Gαα for α = x is defined
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FIG. 9. (Color online) Diagonal components of the gyration
tensor Gxx and Gyy plotted versus the Weissenberg number Wi = ετR

for different numbers of arms f , in order to study the structural
response of the star to ES flow. The fluid flows in the x direction. Gxx

and Gyy have been normalized by G0, the average of the diagonal
components of the gyration tensor in equilibrium (i.e., no flow). The
vertical lines at εcτR = 1 and ετR = 0.1 are to aid the eye.

as

Gxx = 1

2Np + 1

∑
i

(xi − xcm)(xi − xc.m.), (5)

where xc.m. is the x coordinate of the center of mass of the star.
In Fig. 9 we show the variation of Gxx and Gyy as a function
of Wi = ετR for a star with different numbers of arms in ES
flow. There is a sharp transition beyond a critical Wic = 1,
where the stars get extended. This is in tune with experimental
observations of flexible polymers in E flow [53,54]. For
Wi < 1, we observe linear response of the star to the ES flow,
where Gxx increases linearly with ε, but the response becomes
nonlinear above Wi ≈ 1 for all values of f . Correspondingly,
there is a reduction in size of the star in directions perpendicular
to the flow, i.e., the y and z directions. Interestingly, the critical
Wic does not seem to depend significantly on the number
of arms; at least up to f = 20, its polymeric behavior is
retained.

We clarify this because a star polymer is a very interesting
soft matter system, in which by just tuning the number of arms
of a star one can possibly go from a rigid colloidlike object to
a polymeric macromolecular system. A star with many arms
has a very dense rigid core and is not easily deformable, i.e., it
is almost colloidlike. On the other hand, a star with f = 2 is
just a linear polymer chain. We further point out that we could
calculate the Weissenberg number as WiZ = ετZ

EV = ετR/2
and use this to investigate the variation of Gαα with ε. But
the only difference will be that WiZ ≈ 1 will be obtained at
double the presently used value of εc, and the vertical lines in
Fig. 9 will shift to the right. The critical value εc is the flow
rate at which Wi = 1.

To convince ourselves and the reader that hydrodynamics is
correctly incorporated in spite of (i) the reintroduction of MPC
particles which are exiting the simulation box in the +x̂ di-
rection and (ii) the repositioning of the macromolecule + fluid
from the right end of the box (near x = Lx) to the left end
of the box (near x = 0) for implementation of PBCs, we
have computed the time relaxation of the velocity-velocity
autocorrelation function (VCF) for the center of mass of a star
polymer with f = 20. We show the plot of VCF versus time,
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FIG. 10. (Color online) Velocity correlation functions 〈v(t)v(0)〉
versus time t in the y and z directions, i.e., directions perpendicular to
the flow direction, of the center of mass (c.m.) of a star polymer with
f = 20 arms, suspended in a MPC fluid undergoing ES flow with
ε = 0.0002τ−1 ≡ Wi = ετR = 1.3. For t > 30τ , the VCF shows a
t−1 decay of VCF with time. The dashed green line is to aid the reader
to estimate the exponent of the power-law decay of the computed
VCFs. The VCFs have been normalized by the average of the square
velocity of the c.m. of the star, and time is measured in units of
τ 2 = mf a2/kBT .

suitably normalized, in Fig. 10. Data shown are averaged over
80 independent runs with ε = 0.0002τ−1 ≡ Wi = ετR = 1.3,
where τR is the relaxation time of the polymer. At long
times when the hydrodynamics is developed and momentum
transport by background fluid should affect the diffusive
behavior of the star, particularly in the y and z directions
perpendicular to the flow direction, our simulations show
that the VCF decays nearly as ∼t−1 for t > 30τ . We try to
understand this by observing that momentum conservation
is maintained only in the two directions transverse to the
flow. Absence of hydrodynamics would have resulted in the
exponential decay of the VCF. From this we conclude that
hydrodynamic effects due to momentum conservation between
the star and background fluid are maintained even at relatively
high ES flow gradients. At times below t = 30τ , i.e., before
diffusive time scales are reached, we see the average effect of
relaxation of many polymer arms on the center of the star. We
need to investigate further to understand the presence of the
knee in the VCF just before t < 30τ .

IV. DISCUSSION

We have introduced a method to obtain exponentially
stretching flow, a slight variant of steady-state uniaxial
extensional flow of a fluid, by computer simulations. Just as the
velocity field in uniaxial flow extensional flow, ES flow has
the velocity field vx = εx in the flow direction. We also study
the response of two simple test systems, viz., a colloidal system
with only excluded volume interactions and a linear polymeric
system in ES flow. We extend our study to star polymers in ES
flow. Since the response of macromolecules in ES flow is the

same as that in extensional flow, we suggest that this will be a
reliable method to study the response of soft matter systems in
steady-state E flow, which is difficult to obtain experimentally
and in simulations.

For a coarse-grained MPC fluid undergoing ES flow under
steady-state conditions, we have obtained a linearly increasing
velocity profile in the direction of flow in tune with our
expectations. We also maintain the density of fluid constant
along the length of the flow by suitable reintroduction of MPC
fluid particles along the length of the channel of uniform
cross section. We have demonstrated that the temperature
of the fluid is held constant along the length of the flow
by using a suitable thermostat. The measured flow velocity
gradient ε∗ is equal to the applied velocity gradient ε∗ as
long as the maximum velocity of the fluid is significantly
less than the sound velocity of the fluid. Care must be taken
that the calculated value of 〈Nε〉, the number of particles to
be redistributed at random positions in the box, is an integer
number. This can be achieved by suitably choosing the value
of ε or Lx,Ly,Lz in the expression for calculating 〈Nε〉. The
total number of particles (mass of fluid) in the simulation box
is always exactly conserved globally, as only the excess fluid
flowing out of the right end of the simulation box is put back
along the length of the box to maintain fixed density along
the flow direction. We have also established that the slow and
gradual reintroduction of fluid particles in the flow channel
does not destroy hydrodynamic correlations built up due to
momentum conservation between a diffusing particle and the
fluid around it.

The response of dilute systems of simple macromolecules
(colloids and polymers) dispersed in a fluid undergoing ES
flow is also in tune with previous studies by other groups on
similar systems in E flow. This gives us further confidence
that we are correctly modeling ES flow despite the apparently
unphysical introduction of MPC particles at random positions
within the simulation box. We thus think that the method can
be used to study a wide range of soft matter systems. We
are not aware of any previous studies of the response of star
polymers to E flow or ES flow, though the response of linear
polymers to E flow is well reported in the literature. We see
in our simulations that star polymers undergo a coil-stretch
transition when Wic = ετR > 1, where τR is the relaxation
time of a polymer equal in length to that of a star-polymer arm.
We do not observe any dependence of this critical Weissenberg
number on the number of arms f of the star. Any sensitive
dependence, if it exists, is not discernible from the available
data.

The modeling of multiple extended objects (many poly-
mers) in ES flow under steady-state conditions is an ongoing
work and will be reported in a future communication.
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