
PHYSICAL REVIEW E 88, 043107 (2013)

Heavy ion charge-state distribution effects on energy loss in plasmas
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According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge
density. Also, it depends on the target through its dielectric function; here the random phase approximation is used
because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa
(BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler
et al. is used to determine its mean charge state 〈Q〉. This latter criterion implies that the mean charge state
depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is
crucial for calculating 〈Q〉 inside the plasma. Comparing our models and estimations with experimental data,
a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same
cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the
increase in projectile effective charge Qeff , which is obtained as the ratio between the energy loss of each heavy
ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and
in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that
the calculated effective charge in plasmas Qeff is greater than the mean charge state 〈Q〉, which is due to the
incorporation of the BK charge distribution. When estimations are performed without this distribution, they do
not fit well with experimental data.
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I. INTRODUCTION

In recent decades, energy loss of ions in matter has been
the subject of research. Specifically, energy loss in solids and
gases has been studied for almost a century; therefore, there
are numerous models that adequately reproduce and explain
the experimental data [1–5]. However, the interaction of
charged particles with fully ionized matter (plasma) is still not
completely understood, and there are only few experimental
data that support the development of theories on this subject
[6–13].

The energy loss of ions in plasmas is relevant for many
applications in different fields of science, such as heavy ion
inertial fusion [14], the use of plasma targets as focusing
[6,15,16] or stripping devices [9,17,18] of heavy ion beams,
the transverse cooling of an intense ion beam by a magnetized
electron beam [19], and the investigation of warm dense matter
[20]. Therefore, many laboratories continue with experiments
on the interaction of ion beams with ionized matter [21–26].
The electronic stopping of projectiles in plasmas differs from
the stopping in solids and gases, owing to the properties of
plasma. In this last case, a projectile interacts not only with
neutral atoms, but also with the ions and free electrons in the
target.

An important aspect when calculating the electronic stop-
ping of ions is to know the projectile charge state. There are
various processes that modify the projectile charge state when
it travels through the target (electron capture or loss). As it
is not possible to measure this parameter for any projectile
and at any position during its travel, it must be determined
theoretically.

The charge state of the projectile increases when passing
through a target (projectile loses electrons) principally by
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collisions with target ions, but it also decreases due to the
capture of the electrons bound to ions (recombination). There
are other effects that change the charge state of the projectile,
but these are the two dominant mechanisms.

In the case where a projectile traverses a solid, a kind of
equilibrium charge state is reached after it travels a short
distance through the target. This equilibrium charge state is
primarily a function of velocity and the initial charge state
before entering the target [4,27–30].

The charge state of projectiles passing through fully ionized
plasmas was first studied by Nardi and Zinamon [3] who
showed theoretically that the charge state is significantly higher
than when the same projectiles pass through solids. Later, this
effect was verified experimentally [12,31–34].

This increase in the ion charge state traveling through
completely ionized plasma is mainly due to the reduction in
the recombination processes of the projectile. This is because
of the smaller number of bound electrons in plasmas, which
are captured by the projectile in the case of a solid or a
partially ionized gas (direct free electron capture from a
moving projectile violates the simultaneous conservation of
energy and momentum). The charge state enhancement affects
the value of the energy deposited in the target significantly,
resulting in an increase in electronic stopping in plasmas
compared with cold matter.

Experiments reported in the literature [6,12,31,33] show
that the electronic stopping of ions in plasmas is higher
than the electronic stopping in cold matter for two main
reasons: the increase in projectile charge state mentioned
above, and the more efficient energy transfer with the free
electrons of the plasma than with the bound electrons of the
solid. In this paper, we focus on analyzing the first reason for
the increase in electronic stopping, the projectile charge state
enhancement. This study is based on the dielectric formalism
to analyze the charge distribution and the charge state of the
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projectile. To distinguish the enhanced stopping due to the
higher number of free electrons in plasmas compared with
cold matter, we use only fully ionized plasmas or electron
gases as the targets.

II. DIELECTRIC FORMALISM

Many models have been developed to calculate projectile
energy losses due to electronic stopping in different targets.
One that is used most widely is the dielectric formalism
introduced by Fermi [35] and developed by Fermi and Teller
[36].

In the dielectric formalism, the electron response, in
an isotropic and homogeneous material, to a perturbation
produced by an external charge density ρext (r,t) is contained
in the dielectric function ε (r,t) of the medium.

In the phase space, the first Maxwell equation relates
the displacement vector D (k,w) = ε (k,w) E (k,w) with the
external charge density ρext (r,t),

∇ D (k,w) = 4πρext (k,w) ,

in Gaussian units. Moreover, the electric field and total
potential φtot are related by the expression,

E (k,w) = −ikφtot(k,w).

Therefore, the total potential is obtained in terms of the
external charge density,

φtot (k,w) = 4πρext (k,w)

k2ε (k,w)
. (1)

If the projectile is atomic in nature, the external charge
density ρext (r,t) will consist of a nucleus with charge Z,
presumably pointlike, and an electron cloud with a charge
density ρe (r,t) that will move with velocity v, provided that
the relative velocity between the nucleus and the electron cloud
is negligible. Thus, this is written as

ρext (r,t) = Zδ (r − vt) − ρe (r − vt) ,

whose Fourier transform is

ρext (k,w) = 2πδ (w − k·v) [Z − ρe (k)] , (2)

where ρe(k) is the Fourier transform of the electron density of
the projectile in absolute value because the minus sign in the
equations above indicates the negative value of the electron
charge.

Substituting this expression into Eq. (1), the following
relationship between the total potential and the external charge
density is achieved:

φtot (k,w) = 8π2δ(w − k · v)
Z − ρe (k)

k2ε(k,w)
.

The induced potential can be obtained by subtracting the
Colombian potential [where ε (k,w) = 1 in Gaussian units]
from the total potential,

φind (k,w) = 8π2δ(w − k · v)
Z − ρe (k)

k2

[
1

ε(k,w)
− 1

]
.

(3)

FIG. 1. (Color online) Inducing and test charge density traveling
through a plasma with velocity v. Dashed lines: position of inducing
charge density at time t = 0 and solid lines: position of inducing and
test charge density at time t .

Then, the potential energy due to the induced potential
acting on a test charge density ρ ′

ext can be calculated as

U (R,t) =
∫

dr ′φind(r ′,t)ρ ′
ext(r ′ − R,t),

where R is the vector position of ρ ′
ext with respect to the

position of the inducing charge density (see Fig. 1).
Rewriting this equation in terms of the Fourier transforms,

we get

U (R,t) = 1

(2π )8

∫
d r ′

∫
dk

∫
dw φind (k,w) ei(k·r ′−wt)

×
∫

dk′
∫

dw′ρ ′
ext(k

′,w′)ei(k′ ·r ′−w′t)e−ik′ ·R.

Then, employing Eqs. (2) and (3) for the external charge
density and the induced potential, respectively, and consider-
ing ρ ′

ext = Z′ − ρ ′
e (k),

U (R,t) = 1

2π2

∫
dk

[Z − ρe (k)][Z′ − ρ ′
e (k)]

k2

×
∫

dw eik·Rδ (w − k · v)

[
1

ε (k,w)
− 1

]
.

After this, vectors r and k are divided into a component
perpendicular to the velocity of the projectile and into another
parallel to it, i.e., r ≡ (r⊥,r ) and k ≡ (k⊥,k). Also, vector
dk is separated into cylindrical coordinates, and we make
a variable change k = √

k2⊥ + w2/v2, which sets the limit
integration over w, kv � w, and as k⊥ is real, we obtain

U (R,t) = 2

πv

∫ ∞

0
dk

[Z − ρe (k)][Z′ − ρ ′
e (k)]

k

×
∫ kv

0
dw J0(R⊥

√
k2 − w2/v2)

×
{

cos

(
wR‖

v

)
Re

[
1

ε (k,w)
− 1

]

− sin

(
wR‖

v

)
Im

[
1

ε (k,w)

] }
,
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where J0 is the Bessel function of the zeroth order. In a first approximation, we assume that the electron densities have
spherical symmetry so that we can replace the vector dependence of the electron densities ρe (k) by linear dependence ρe (k).

Force components in directions parallel and perpendicular to the projectile velocity vector are achieved by obtaining the
gradient of the potential energy,

F‖(R,R⊥) = 2

πv

∫ ∞

0
dk

[Z − ρe (k)] [Z′ − ρ ′
e (k)]

k

∫ kv

0
dw wJ0(R⊥

√
k2 − w2/v2)

×
{

sin

(
wR‖

v

)
Re

[
1

ε (k,w)
− 1

]
+ cos

(
wR‖

v

)
Im

[
1

ε (k,w)

]}
,

F⊥(R,R⊥) = 2

πv

∫ ∞

0
dk

[Z − ρe (k)][Z′ − ρ ′
e (k)]

k

∫ kv

0
dw

√
k2 − w2/v2

×J1(R⊥
√

k2 − w2/v2)

{
cos

(
wR‖

v

)
Re

[
1

ε (k,w)
− 1

]
− sin

(
wR‖

v

)
Im

[
1

ε (k,w)

]}
,

where J1 is the Bessel function of the first order. It is important
to show that the force components do not depend explicitly on
time.

The force that acts on the projectile itself R=R⊥ = 0 has
no perpendicular part F⊥ = 0, i.e., it has only a parallel part,

F=
−2

πv2

∫ ∞

0
dk

[Z − ρe (k)]2

k

∫ kv

0
dw w Im

[ −1

ε (k,w)

]
,

the direction of which is opposite to the projectile velocity,
implying that it will stop or will lose its energy through the
target. If the projectile travels in the z direction, the energy
loss will be dE = −Fdz, and then the electronic stopping can
be expressed as

Sp (v) = dE

dz
= −F=

2

πv2

∫ ∞

0
dk

[Z − ρe (k)]2

k

×
∫ kv

0
dw w Im

[ −1

ε (k,w)

]
. (4)

According to this expression, the electronic stopping of the
projectile depends on its velocity and the square of the Fourier
transform of its charge density Z − ρe (k); however, it depends
on the target through the energy loss function Im (1/ε). Then,
to be able to calculate the electronic stopping of the projectile,
it is necessary to define its electron distribution ρe (k) and
to characterize the target material by its dielectric function
ε (k,w).

III. TARGET DESCRIPTION

The dielectric function of an electron gas without damping,
i.e., without considering collisions between its electrons,
was calculated first by Lindhard [37] in the random phase
approximation (RPA). The RPA usually is valid when these
electron collisions are not significant in the gas [38]. However,
in this paper, we will study all kinds of electron gases, and
therefore, these collisions have to be taken into account.

Mermin [39] derived an expression for the dielectric func-
tion considering plasma electron collisions but only preserving
the local particle density. This function has successfully been
applied to solids (dense degenerate electron gases) [40], to
classical plasmas (nondegenerate electron gases) [41], and

to partially degenerate plasmas [42]. For solids, the Mermin
dielectric function (DF) was used, obtaining the electron
collision frequency from experiments [43,44], but for plasmas,
this frequency must be calculated a priori. Many papers
have been devoted to calculating this frequency [45–47],
whereas, others treat it as a free parameter [48,49]. In the
present investigation, these values are taken from a previous
calculation [50].

Recently, a new DF has been calculated that includes elec-
tron collisions but preserves the three conservation laws (den-
sity, momentum, and energy) for plasmas at any degeneracy
[51,52]. This full conserving dielectric function reproduces the
former RPA DF and Mermin DF. Differences in calculations
of energy loss between the full conserving dielectric function
and the RPA DF were found to be a maximum of 2% for
plasmas with very high collision frequencies [53]. This means
that collisions are not important for energy loss calculations.
Therefore, for this paper, we will use the simpler RPA DF to
calculate electronic stopping.

RPA DFs can be developed in terms of the wave number
k and of the frequency ω provided by a consistent quantum
mechanical analysis [using atomic units (a.u.), e = h̄ = me = 1,
to simplify the formulas],

εRPA(k,w) = 1 + 1

π2k2

∫
d3k′ f (k + k′) − f (k′)

w + iν − (Ek+k′ − Ek′ )
, (5)

where Ek = k2/2. The temperature dependence is included
through the Fermi-Dirac function,

f (k) = 1

1 + exp [β (Ek − μ)]
, (6)

where β = 1/kBT and μ is the chemical potential of the plasma
with electron density ne and temperature T . In this part of the
analysis, we assume the absence of collisions such that the
collision frequency tends to zero ν → 0.

Analytic RPA DFs for plasmas at any degeneracy can be
obtained directly from Eq. (5) [54,55],

εRPA(k,w) = 1 + 1

4z3π kF

[g(u + z) − g(u − z)], (7)
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where g(x) corresponds to

g (x) =
∫ ∞

0

y dy

exp(Dy2 − βμ) + 1
ln

(
x + y

x − y

)
,

where u = w/kvF and z = k/2kF are the common dimension-
less variables [37], D = EF β is the degeneracy parameter, and
vF = kF = √

2EF is the Fermi velocity in a.u.

IV. PROJECTILE DESCRIPTION

Describing the projectile involves determining how its
charge density is distributed in space when traveling through a
target. This requires knowing the number of electrons bound to
the nucleus of the projectile, which changes while traveling due
to electron capture and loss processes. The Brandt-Kitagawa
(BK) model is used to describe the projectile space distribution.

In the BK model [56], the density of electrons bound to the
projectile is established by a generic orbital that depends on
variational parameter 
,

ρe,BK (r) = N

4π
3




r
e−r/
, (8)

where N is the number of electrons bound to the projectile, r

is the distance to the nucleus, and 
 fulfills

1



= 1

N

∫
ρe(r)

r
dr.

Integrating the electron density over all orientations in
space, the probability P (r) that an electron was in a spherical
shell of thickness dr at a distance r from the nucleus is obtained

P (r) =
∫ 2π

0
d�

∫ 1

−1
d (cos θ ) r2ρe (r) = 4πr2ρe (r) dr,

where 4πr2ρe (r) is the radial distribution function. Mean-
while, as 
 increases, the radial distribution function extends
to the space.

According to the work of Brandt-Kitagawa [56], the
internal energy of the projectile can be written as the sum
of the potential energy of the nucleus electron Ene and
electron-electron Eee interactions and the kinetic energy of the
electrons Ec,

E = Ene + λEee + Ec,

where λ is another variational parameter that introduces cor-
rections due to not considering the correlation and interchange
energy contributions in the electron-electron interaction
potential,

Ene = −Z

∫
dr

ρe (r)

r
= −ZN



,

Eee = 1

2

∫
d r

∫
d r ′ ρe (r) ρe(r ′)

|r − r ′| = N2

2


= −1

2

(
3

4
π

)2/3 (
3

5

)5/3

�

(
4

3

)
N5/3


2
= 0.24

N5/3


2
,

where � is the γ function.
Imposing the condition ∂E

∂

= 0 in order to set the 
 value

for which the internal energy of the projectile is minimized,

we get


(Z,N ) = 0.48N2/3

Z − λ
2 N

. (9)

To determine the value of the λ parameter, it is assumed
that the more stable chemical species is the one that has the
same number of electrons bound to the nucleus as the number
of protons,

∂E

∂N

∣∣∣∣
N=Z

= 0.

Thus, using Eq. (9) leads to the value of λ = 2/7.
The 
 parameter value increases with the number of

electrons bound to the projectile. Moreover, with the increasing
atomic number of the projectile Z, the value of 
 for N = Z is
lower because a greater nuclear charge leads to compaction of
the radial distribution function P (r) associated with electrons.

Finally, the Fourier transform of the electron density needed
in Eq. (8) is

ρe,BK (k) = N

1 + (k
)2 . (10)

Observing Eq. (10), we see that increasing parameter 


decreases the Fourier transform of the electron density, i.e.,
the extension of the orbital will be larger. This means that
as parameter 
 increases, the projectile charge “seen” by the
electrons of the target (Z − ρe) will be greater. In fact, if
it is verified that 
→∞, the projectile would behave like a
point charge Z completely stripped of electrons. As variational
parameter 
 increases, the charge density of the projectile
becomes greater, regardless of momentum transferred (k), and
therefore, electronic stopping will also be higher [see Eq. (4)].

Another observation we can make is that (Z − ρe) tends
to Z with increasing momentum transferred, and if the latter
becomes small, (Z − ρe) vanishes. Thus, when target electrons
interact with a projectile charge near its nuclear value (ρe→0),
the momentum transferred will be higher, whereas, when
interacting with a neutral projectile, the momentum transferred
will be zero. As the projectile charge increases, the variational
parameter 
 decreases (charge is more compact), increasing
its electron density (see Fig. 2).

V. PROJECTILE CHARGE

When a projectile is heavy, its charge state can be very
diverse with corresponding complexity in any calculation that
depends on it. Hence, most authors use a mean charge state
when calculating electronic stopping.

One of the procedures used to determine the mean charge
state of a heavy projectile is based on the stripping criterion of
Bohr [27], whereby the bound electrons of the projectile will
be ionized; the ones whose relative velocity to the nucleus is
less than the velocity of the nucleus to the target. This implies
that the mean charge depends on the atomic number and on
the velocity of the projectile.

Kreussler et al. [29] suggested that the mean charge state
of the projectile 〈Q〉 not only depends on the relative velocity
of the latter to the target, but also on the relative velocity
between the projectile (v) and the electrons of the target (ve),

043107-4



HEAVY ION CHARGE-STATE DISTRIBUTION EFFECTS . . . PHYSICAL REVIEW E 88, 043107 (2013)

FIG. 2. (Color online) 
, Eq. (9), as a function of N , number
of electrons bound to the nucleus for different projectiles. Solid line
corresponds to the curve N = Z.

i.e., vr = |v − ve|. Considering all the possible orientations of
vector v − ve gives

vr = |v − ve| = v2
e

6v

[(
v

ve

+ 1

)3

−
∣∣∣∣ v

ve

− 1

∣∣∣∣
3]

. (11)

Their studies were on solid materials and, therefore, for
electron velocity, only the valence electrons of the target
are considered, i.e., only its Fermi velocity is considered.
Averaging over the Fermi sphere 0 � ve � vF , we get

vr = v2
F

10v

{(
v

vF

+ 1

)3

−
∣∣∣∣ v

vF

− 1

∣∣∣∣
3

+ 4

(
v

vF

)2

+H

(
vF

v
− 1

)[
3v

2vF

− 4

(
v

vF

)2

+ 3

(
v

vF

)3

− 1

2

(
v

vF

)5 ]}
, (12)

where H (· · ·) is the Heaviside step function.
In the case of plasma, the electron velocity is defined by

its corresponding Fermi velocity, as solids, plus a term due to
temperature,

ve = (
2 × 3

5EF + 3kBT
)1/2 = (

3
5v2

F + 3v2
the

)1/2

= (
3
5

)1/2
vF

(
1 + 5

2θ
)1/2

, (13)

where T is the plasma temperature, vthe = √
kBT is the thermal

velocity, kB is the Boltzmann constant, θ = kBT
EF

= 2v2
the

v2
F

is the
reduced plasma temperature, and vF is the Fermi velocity
EF = 1

2v2
F in a.u. By substituting this expression into Eq. (11),

the relative velocity between the projectile and the plasma
electrons is obtained.

The mean charge state is then calculated as

〈Q〉 = Z − 〈N〉 = Z − Ze−vr /Z
2/3v0 , (14)

where Z is the projectile atomic number, 〈N〉 is the average
number of bound electrons, and Z2/3v0 is the electron velocity
bound to the projectile in the Thomas Fermi model in a.u. The

→

Q

FIG. 3. (Color online) Mean charge state of uranium (Z = 92)
traveling through an aluminum solid or plasma (ne = 1023e−/cm2;
T = 10 eV) as a function of its velocity when using the model of
Kreussler et al. [29], Eq. (14), or the Northcliffe model (not depending
on target material vr = v) [28].

mean charge state of the projectile increases at the same time
as its relative velocity does, until it achieves the limit value
〈Q〉 = Z when the velocity is high enough.

Figure 3 shows the dependence of the mean charge state of
a uranium projectile (Z = 92) with velocity when traversing
an aluminum solid or plasma. The differences between them
are significant at low energies; the mean charge state of the
projectile is higher when it travels through the plasma because
the relative velocity in the plasma includes the thermal velocity
of the electrons [see Eq. (13)].

In Figs. 4(a) and 4(b), the influence of the plasma properties
on the mean charge state of a uranium projectile is shown. We
note that, when the plasma temperature or the plasma electron
density increases, the mean charge state of the projectile also
increases, i.e., the number of electrons bound to the projectile
is smaller; this effect is more significant at low energies.
This is because an increase in the plasma temperature or
the plasma electron density implies a velocity augmentation
of the target electrons [Eq. (13)] and, thus, a reduction in
the relative velocity [Eq. (12)]. This effect is much more
pronounced in the case of increasing plasma temperature.
Looking at Fig. 4(a), we see that, for T = 1000 eV, the initial
mean charge state is practically ten times that for T = 10 eV
and half of the asymptotic value at high energies (Z = 92).

If initially, instead of throwing neutral projectiles, a charged
particle is thrown, the ionization degree of Kreussler et al.
[29] must be changed. In this case, the electrons bound to
the nucleus of the projectile are defined by the following
expression:

〈N〉 = N0e
−vr /Z

2/3v0 , (15)

where N0 = (Z − Q0) means the initial electrons bound to the
projectile nucleus and Q0 is the initial charge state.

After obtaining the projectile mean charge state or the
number of electrons bound to the projectile 〈N〉, we must
include it in the former model describing the electron charge
density to calculate the electronic stopping.
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Q

Q

→

FIG. 4. (Color online) Mean charge state using the model of
Kreussler et al. [29] and Eq. (14) of a uranium projectile (Z = 92),
traveling through plasmas as a function of its velocity. (a) ne =
1023e−/cm3 and different temperatures and (b) T = 10 eV and
different electron densities.

To include the ionization degree in the BK model is very
easy, the only change we need to make is to replace N in Eq. (4)
by Eq. (15). In this case, the electronic stopping is calculated
according to the following expression:

Sp (v) = 2

πv2

∫ ∞

0

dk

k

[
Z − 〈N〉

1 + (k
)2

]2

×
∫ kv

0
dw w Im

[ −1

ε (k,w)

]
, (16)

where


(v) = 0.48 〈N〉2/3

Z − 1
7 〈N〉 .

Figure 5 shows the electronic stopping using the BK model
for various uranium charge states and one with the mean charge
state of Kreussler et al. [29] 〈Q〉 as a function of its velocity
in a plasma target. If the charge state fractions of uranium for
this plasma were known, we would know each contribution
to the total stopping, and we could compare it with the curve
obtained using the mean charge state.

Q

FIG. 5. (Color online) Electronic stopping of various uranium
charge states and their mean charge state 〈Q〉 with Q0 = 0, defined
by the model of Kreussler et al. [29], see Eq. (14) as a function of
its velocity in a plasma target with ne = 1023e−/cm3 and T = 10 eV
using the Brandt-Kitagawa charge distribution model.

VI. COMPARISON WITH EXPERIMENTS

In this section, we compare the energy loss of atomic pro-
jectiles in fully ionized plasmas or electron gases, calculated
from the models described above with experimental data from
the literature. Many experiments are carried out in laboratories
for measuring and calculating the charge state of ions passing
through fully ionized matter [12,31,32,57]. Specifically, in this
paper, we will reproduce the experiments performed at GSI
(Darmstadt, Germany) by Weyrich et al. [31] and Hoffmann
et al. [8] because they were among the first.

These two papers present experimental data of the energy
loss of heavy ions in fully ionized hydrogen plasma formed
from a discharge tube. The plasma is created by discharging
the energy stored in a capacitor bank into a volume of hydrogen
gas, which thereby is fully ionized. The hydrogen gas is
confined in a 36-cm long quartz tube with pierced electrodes
at both ends. By knowing the free electron density ne and
the temperature Te of the plasma, it is possible to determine
the ionization degree and, therefore, by the Saha equation, the
number of neutral atoms if the plasma is in TE or local thermal
equilibrium. Perpendicular to the axis, along the diameter
of the tube, the plasma is optically thin, and spectroscopic
methods can be applied to determine the free electron density
and the temperature. Figure 6 shows the development of the
free electron density ne and the temperature Te, measured with
the absorption method. The maximum density and temperature
that coincide with the maximum energy loss are found to
be 2.9 × 1017e−/cm2 and 2.1 eV, respectively. With these
results, we know that the ionization degree between 25 and
30 μs is about 95%. Therefore, the free electron density is
approximately the same as the original particle density of
hydrogen atoms.

In these experiments, different heavy ion species, ranging
from Ca to U, were used at an energy of 1.4 MeV/u because,
within this energy region, the expected energy loss should be
greatest. The measurement of the energy loss was carried out
with a time-of-flight method. This has the advantage that only
a few parameters are needed to determine the change in energy
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FIG. 6. Electron density and temperature as a function of plasma
time development [8].

by the relation �E = 2(�t/t0)E0, where E0 is the original ion
energy of 1.4 MeV/u, t0 is the vacuum time of flight of the
ions on their flight path of 778 cm, and �t is the measured
increase in the flight time with hydrogen gas or plasma in the
quartz tube.

The energy loss for four different ion species (40Ca, 74Ge,
84Kr, and 238U) was measured. Figure 7 shows the development
of energy loss as a function of the plasma lifetime for 40Ca,
84Kr, and 238U. The curve undergoes certain oscillations, and
three maxima can be observed. The highest is between 25 and
30 μs after plasma ignition. By comparing Figs. 6 and 7, it
can be seen that the oscillations in the energy loss are caused
by similar oscillations in the electron density. This proves that
the energy loss is a direct result of the free electron density
of the plasma. Therefore, energy loss calculations will now
be given as a function of the electron density. Additionally,
Fig. 7 includes the theoretical calculations using our method
explained in previous sections, specifically, the BK model with
the mean charge state of Kreussler et al. [29]. As can be seen,

→

FIG. 7. (Color online) Energy loss of uranium, krypton, and
calcium ions in hydrogen plasma.

the theoretical values are analogous to the experimental data,
demonstrating a peaked structure, although not with exactly
the same peak, which confirms our theoretical model.

The original Fig. 7 from Weyrich et al. [31] and Hoffmann
et al. [8] compares their experimental results with the values
for cold gas. It depicts a horizontal straight line for cold gases,
but we disagree with this result because the energy loss in
cold gases has to be measured with the same electron density
and temperature values as for the plasmas. Nevertheless, it
clearly illustrates the energy loss enhancement in plasmas.
A correct comparison with cold gas will be shown in the
following figures involving energy loss as a function of the
electron density.

Figure 8 shows the energy loss experimental data together
with our theoretical values for the former ions. The red circles
denote the energy loss as a function of the free electron
density as determined in the experiment for plasma. The
black squares show the measured energy loss in the cold
hydrogen gas of different electron densities. The blue triangles
and green diamonds are our calculations. The blue triangles
are estimated considering the initial charge state of all ions
being equal to zero, Q0 = 0, whereas, the green diamonds
are equal to the initial charge state indicated in Hoffmann
et al. [8]; Q0 = 13+ for calcium, Q0 = 18+ for germanium
and for krypton, and Q0 = 33+ for uranium. The initial charge
state Q0 is extremely relevant in establishing the mean charge
state in equilibrium 〈Q〉 of the projectile during its transport
through the plasma [Eq. (14)]. In the case of calcium, the
mean charge state for an initial charge of Q0 = 0 results in
〈Q〉 = 12.78+, and for an initial charge of Q0 = 13+, it
results in 〈Q〉 = 17.47+. Considering the figure, it appears
that the estimation with Q0 = 0 fits better to the experimental
results. To check this, let us consider the next ion 74Ge. In
this case, the mean charge state for an initial charge state of
Q0 = 0 results in 〈Q〉 = 16.81+, and for an initial charge
of Q0 = 18+, it results in 〈Q〉 = 25.35+. Here, it is seen
more clearly that the estimation with Q0 = 0 fits better to the
experimental values. As the atomic number of the projectile
increases, the difference between the calculations with zero
and nonzero initial charge states becomes more significant,
fitting better the estimations with an initial charge near zero to
the experimental data. Thus, it appears that the initial charges
of Ca, Ge, Kr, and U projectiles are mostly neutral (minimally
positive to be accelerated) before entering the plasma. This
agrees with the results presented in Weyrich et al. [31] but not
with those in Hoffmann et al. [8].

To better analyze the reason why there is a strong difference
in Q0 between our calculations and the results of Hoffmann
et al. [8], we are going to try to reproduce their Fig. 7, presented
in Ref. [8]. Thus, Fig. 9 represents the mean charge state
of uranium as a function of its energy. The symbols are the
calculations from Ref. [8], and the lines are our estimations
for the different models: Northcliffe [28] and our model for
different initial charge states Q0 = 0 and Q0 = 33+. The
first thing to notice is that our mean charge state estimations
depend strongly on the initial charge state. They do not
converge until very high energies, far beyond the energy range
studied in this paper. Our results for Q0 = 0 are similar to
the estimations for solids in Ref. [8], whereas, our results for
Q0 = 33+ are more similar to their results for plasma [8]. For
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→

→→

→

without BK

FIG. 8. (Color online) Experimental energy loss of several ions in a hydrogen plasma or cold gas as a function of their electron densities.
Also, blue triangles are calculated considering the initial charge state of all ions equal to Q0 = 0, whereas, the green diamonds show the initial
charge state indicated in Hoffmann et al. [8].

Q0 = 33+, their estimations declare that, at E = 0 MeV/u,
the mean charge state is 〈Q〉 = 0 [8], whereas, our model says

→

Q

Q
Q

Q

Q

Q

FIG. 9. (Color online) Mean charge state of uranium in a plasma
as a function of its energy for different theoretical models.

Q0 = 33 + . A strange coincidence is that, for the experiment
energy of 1.4 MeV/u, our result for Q0 = 33+ intersects their
computer model and gives the same value of 〈Q〉 = 51.18+.

However, as mentioned before, energy loss calculations using
the initial charge state of 33+ do not fit well to the energy
loss experimental data, and therefore, the idea of Q0 = 33+
is abandoned.

Furthermore, in our results, there is only a small difference
between the plasma and the cold gas case when using U0. This
means that, in our model, 〈Q〉 does not depend so much on
temperature. It is noticed as well that the different models do
not match for solids. The Betz estimation from Ref. [8] does
not match our Northcliffe one, although the latter is similar
to the SRIM data that are obtained from many experiments
[4]. In Ref. [8], it is said that 〈Q〉 in solids is 28 + , which
coincides with our estimation with the Northcliffe model but
not with their Betz model, 23.78 + . Thus, we can conclude
that the difference in the initial charge state between Ref. [8]
and our results lies in their theoretical model to establish the
initial charge state because our model fits very well with their
experimental data.

Returning to Fig. 8, the experimental values for the cold gas
cases are plotted as black squares [8]. The first thing that can be
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TABLE I. Effective charge in plasma and cold gas for different
projectiles.

Ion Qeff plasma Qeff cold gas Ratio

238
92 U0 34.43 24.26 1.42
84
36Kr0 19.79 16.98 1.17
74
32Ge0 18.40 14.92 1.23
40
20Ca0 13.39 12.14 1.10

seen is that energy loss varies almost linearly with the electron
density; it increases as the electron density does. Second, and
more importantly, the energy loss for cold gas is lower than
that for the hot plasma case, confirming the enhanced plasma
stopping (EPS). Experimental data for cold gas from Ref. [8]
are validated with the SRIM code [4] (pink open squares).

As mentioned in the Introduction, the EPS could be due
to two main effects: the increase in projectile charge state or
a more efficient energy transfer with the free electrons of the
plasma. To discern the EPS due to the increase in charge state,
it is convenient to compare the energy loss of each ion, not
with the energy loss in cold gas, but with the energy loss of the
proton in the same conditions, i.e., in the same plasma target.
As the energy loss is proportional to the square of the effective
charge, the ion effective charge traversing any material can be
found as

Qeff ≡ √
�Eion/�Eprot.

Thus, we can calculate the effective charges for each ion in
plasma or in cold gas and compare them (see Table I). The Qeff

in plasmas is calculated from former figures for ions and from
our theoretical model for protons, whereas, the Qeff in cold gas
also is obtained from figures for ions and the SRIM tables for
protons [4]. As can be seen, the effective charge in plasma is
higher than in the same cold gas, and this increase is due only
to the increase in the projectile charge due to the plasma state
of the target. In the Introduction, it is commented on that this
enlargement is due mainly to the reduction in recombination
processes of the projectile because of the smaller number of
bound electrons in plasmas (more if these plasmas are fully
ionized). In this paper, the reduction in the recombination
process is taken into account through the relative velocity in
the mean charge state estimation [Eq. (14)]. The factors for the
enhancement range between 1.10 and 1.42. The heaviest ion,
uranium, shows a slightly higher increase. This fact indicates
that this effect is not as important as originally thought in the
past.

Another thing that can be noticed is that the effective charge
in plasmas Qeff is greater than the mean charge states in
plasmas 〈Q〉 (see Table II). This fact is directly due to the
BK charge space distribution. It can be verified theoretically
by performing energy loss calculations without the BK radial
distribution in the energy loss estimation �E′

ion [see “Q0 = 0
without BK” in Fig. 8(d)] and then calculating the new mean
charge state as

Q′
eff ≡ √

�E′
ion/�Eprot.

As expected, the results are the same when using Eq. (14).
As our results with the BK charge distribution are closer

TABLE II. Effective and mean charge states in plasmas for
different projectiles.

Ion Qeff plasma Q′
effplasma 〈Q〉 plasma

238
92 U0 34.43 28.36 28.36
84
36Kr0 19.79 17.92 17.92
74
32Ge0 18.40 16.81 16.81
40
20Ca0 13.39 12.78 12.78

to the experimental data, the use of the BK distribution is
convenient.

VII. CONCLUSIONS

According to dielectric formalism, the energy loss of the
heavy ion depends on its velocity and the square of the Fourier
transform of its charge density. Also, it depends on the target
through its energy loss function; in this paper, this is based
on the RPA dielectric function that describes fully ionized
plasmas superbly at any degeneracy.

The BK model is used to describe the projectile charge
space distribution. The density of electrons bound to the
projectile N is established by a generic orbital that depends on
a variational parameter 
, which, in turn, depends only on N

and the nucleus charge Z. It is observed that, by increasing the
parameter 
, the extension of the orbital will become larger.
Also, as the projectile charge increases, 
 decreases (charge
is more compact), thereby, increasing its electron density.

Another model, this one to determine the mean charge state
of a heavy projectile 〈Q〉, was based on the stripping criterion
of Kreussler et al. [29], whereby the bound electrons of the
projectile are ionized; the ones whose relative velocity to the
nucleus is less than the relative velocity between the nucleus
and the electrons of target. This implies that the mean charge
depends on the electron density and temperature of the plasma.
When the temperature or the electron density increases, the
mean charge state of the projectile also increases. This effect
is more significant at low projectile energies and higher plasma
temperatures. The initial charge state of the heavy projectile
has also been taken into account in this model because it has
a relevant contribution to the later equilibrium charge states
inside the plasma and, obviously, to the estimation of the mean
charge state.

Comparing our models and estimations with experimental
data from the literature, specifically, Weyrich et al. [31] and
Hoffmann et al. [8], it is shown that our theoretical predictions
are in good agreement with experimental results. Specifically,
it is seen that the initial charge of the heavy ions is more or
less zero (or minimally positive to be accelerated), which is
in agreement with results presented in Ref. [31], although not
those in Ref. [8]. The difference in the initial charge state
between Ref. [8] and our results lies in their theoretical model
to establish their initial charge because our model fits very well
with the experimental data.

On the other hand, a very relevant fact is that the energy loss
in plasma is higher than in the same cold gas case, confirming
the well-known EPS. EPS could be due to two main effects: the
increase in projectile charge state or a more efficient energy
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transfer with the new free electrons created in the plasma.
Focusing on the increase in the charge state is convenient
comparing the energy loss of each ion with the energy loss of
the proton in the same plasma conditions. Finally, it is seen
that the ratio between the effective charge in plasmas and in
cold gases is higher than 1 but not as high as was thought in
the past.

Another relevant point is that the effective charge in plasmas
Qeff is greater than the mean charge state 〈Q〉. This effect is
due directly to the incorporation of the BK charge distribution.

When estimations are made without this distribution, they do
not fit the experimental data well.

In the near future, plasmas that are more complex will be
studied, such as partially ionized plasmas where the bound
electrons have to be considered.
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