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Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse
interacting with a heavy-ion-plasma density gradient
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The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using
laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated
with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The
RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30,
915 (1956); Kaw and Dawson, Phys. Fluids 13, 472 (1970); Max and Perkins, Phys. Rev. Lett. 27, 1342 (1971)] to
densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising
laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl
and Kaw, Phys. Fluids 14, 371 (1971); Silva et al., Phys. Rev. E 59, 2273 (1999)] driving a local electron density
inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances
with a velocity determined by the rate of the rise of the laser’s intensity envelope and the heavy-ion-plasma
density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that
the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace
density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are
relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be
obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model
for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and
compared to 1D and 2D PIC OSIRIS [Fonseca et al., Lect. Note Comput. Sci. 2331, 342 (2002)] simulations.
We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few petawatts.
The scaling of proton energy with laser power compares favorably to other mechanisms for ultrashort pulses
[Schreiber et al., Phys. Rev. Lett. 97, 045005 (2006); Esirkepov et al., ibid. 92, 175003 (2004); Silva et al., ibid.
92, 015002 (2004); Fiuza et al., ibid. 109, 215001 (2012)].
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In this paper we introduce a new scheme of laser-plasma
acceleration of protons and light ions using relativistically
induced transparency [1]. The laser field controls the in-
duced transparency through electron dynamics in a heavy-ion
(immobile) plasma density gradient and the ponderomotive
force [2] creates an acceleration structure at the relativistic
critical density. Laser-plasma accelerators can generate proton
and ion beams with unprecedented characteristics of high
bunch charge, low emittance, and ultrashort bunch lengths
using a very compact system. However, existing mechanisms
for acceleration [3–5] with femtosecond lasers have been
unable to simultaneously achieve the desired energy gain and
spectral control needed for the applications of interest. Here
we demonstrate with analysis and PIC simulations [6] that
using heavy-ion targets, we can control the laser propagation
by means of relativistically induced transparency [1]. By
varying the laser rise time or plasma density gradient it is
possible to tune the energy of the monoenergetic beams. The
results provide a pathway for achieving the beam properties
needed for a wide array of applications ranging from hadron
therapy [7] to high-charge injectors [8], particle physics [9],
and high-energy density physics [10].

Experimentally, target normal sheath acceleration (TNSA)
scaling laws have been studied extensively [11,12], and low-
energy quasimonoenergetic beams have been demonstrated

*aakash.sahai@gmail.com

[13]. The radiation pressure (RPA) [14,15] and collisionless
electrostatic shock acceleration (CESA) [16] have been exper-
imentally demonstrated with low-energy quasimonoenergetic
bunches using picosecond terawatt CO2 lasers or nanometer-
scale targets. This motivates the RITA mechanism, which
exploits the use of relativistically intense femtosecond lasers
interacting with heavy-ion targets for high-efficiency proton
and light-ion acceleration. This paper is organized into an
introduction of the scheme including the development of
scaling laws. The analytical model is then compared to PIC
OSIRIS [6] simulations. Last, we compare the RITA scaling
to TNSA.

The RITA scheme is depicted in Figs. 1(a) and 1(b). An
intense laser pulse propagates up an appropriately graded
heavy-ion plasma. When the head of the laser pulse with
electric field oscillating at an angular frequency ω0 � ω

γ�1
pe =√

4πe2ne

m
γ�1
e

, Eq. (1) (ne is plasma electron density), reaches

the cold-plasma critical density ncrit
cold = m

γ�1
e ω2

0
4πe2 , it is reflected

back. As the laser intensity rises, the quiver transverse
motion of the electrons in the laser field becomes rela-
tivistic (kinetic energy of the electrons in the laser field
becomes greater than their rest-mass energy), increasing their

mass by the Lorentz factor, γ ⊥
e =

√
1 + �p⊥. �p⊥

m2
ec

2 =
√

1 + |�a|2,

Eq. (2), thereby modifying the cold-electron plasma frequency,

ω
γ
pe(x,t) =

√
4πe2ne(x)

γ ⊥
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=
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[
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, Eq. (3). The
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FIG. 1. (Color) Snowplow formation and its evolution with fixed-
ion 1D PIC simulations. (a) Snowplow formation at the critical
density, ncrit

e (tinitial) at tinitial. The plasma density scale length is α;
relativistic laser pulse rise time is δ

c
. (b) The propagation into uphill

plasma density to ncrit
e (tlater), with velocity, vsp, due to the rising

intensity in the head of the laser pulse envelope. (c) Fixed ion 1D PIC
simulation at tinitial = 2245.5 1

ω0
= 954 fs for a continuously rising

laser intensity with scale length δ = 1904 c

ω0
→ δ

c
� 810 fs, a0 = 2

and with the plasma density rise scale length α = 50 c

ω0
= 6.4 μm

(λ0 = 0.8 μm). The laser electric field is in red, plasma longitudinal
electric field is in green (axis on the right), and snowplow potential,
�sp, is in blue (all in normalized units). (d) Corresponding, 1D
simulation at a later time tlater = 5738.5 1

ω0
= 2437 fs. From (c, d),

vsp � 0.024c, as can be seen in the blue curve for δ/c ∼ 810 fs,
a0 = 2 in Fig. 2. It should be noted these simulations are carried
out with immobile background plasma-heavy ions. The entire movie
corresponding to the snapshots is in the Supplemental Material [32].

relativistic-electron plasma density is ne(x)
γ ⊥

e (x,t) . Where, �a(x,t) =
e �A(x,t)
mec2 = �p⊥

e (x,t)
mec

= γ ⊥
e (x,t) �β⊥

e (x,t), (|�apeak| = a0, in vacuum)

is the normalized vector potential and �A(x,t) is the laser field
vector potential. Thus, relativistic intensity |�a|2 > 1 allows
the laser to propagate further into the uphill plasma density
gradient beyond the cold-plasma critical density. This process
of reduction of relativistic-electron plasma frequency (ωγ

pe)
compared to cold-electron plasma frequency (ωγ�1

pe ) for the
same plasma density with fixed background-ions (Mion) is
known as relativistically induced transparency [1]. It should be
noted for clarity that ultrashort laser pulse intensity (with pulse
length, τp � √

mp/me/ω0 � √
Mion/me/ω0, where mp is the

mass of proton) varies in space-time and has a characteristic
envelope with a rising part, a flat-top (not always), and a
falling part. Since, the laser can propagate further into the
plasma density gradient by inducing transparency only if it
can render higher plasma densities transparent, an advancing
front can occur only while the laser intensity is rising. An
observed consequence of this effect is the optical shuttering

FIG. 2. (Color) 1D simulation results of vsp vs laser-plasma
control parameters. Snowplow velocity vsp vs laser pulse rise time
δ

c
for various fixed α (in red) and vs plasma density scale-length α for

various fixed laser pulse rise times δ

c
(in blue). The curves labeled “an”

correspond to vsp � 0.5( α

δ
)a0c. Also shown are some 2D vsp results

corresponding to the 1D results for a0 = 2. Again, it should be noted
that these simulations are with immobile plasma background ions.

[17] (experimental connotation of relativistic transparency)
of a laser pulse, which when more intense than a threshold
intensity, propagates beyond an initially reflecting ultrathin
nanometer-scale boundary, more by density reduction due to
expansion of plasma [18] than due to the relativistic effects.

In addition to the transverse dynamics of the plasma
electrons in the laser field, the changing laser intensity in the
envelope results in longitudinal dynamics. The ponderomotive
force [2], �F ponde

x � −mec
2

2γ
�∇xa

2(x,t), Eq. (4), of the rising
laser pushes away the critical layer electrons, creating a dense
local build-up of the electron density just beyond the critical
layer [19], referred to as a snowplow [seen in the black curve
corresponding to electron density in Figs. 1(c) and 1(d)]. The
transparency is incrementally induced such that the relativistic
critical layer (and snowplow) is at a density, ncrit

γ (x,t),
where the relativistic-electron plasma frequency is equal to
the laser frequency ω

γ
pe(x,t) � ω0 and ne(x) = γ ⊥

e (x,t)ncrit
cold,

Eq. (5). Thereby, the laser transfers energy resonantly to the
relativistic critical density [ncrit

γ (x,t)] plasma electrons. The
process of laser being able to incrementally render higher
densities (initially reflecting) transparent to itself continues
until a(x,t) � amax (amax can be higher than free-space peak
amplitude of the laser field, a0 due to various plasma effects).
The rate at which the transparency is induced is higher if the
laser intensity rises faster. The velocity of the snowplow vsp

therefore depends on the rate of rise of the laser pulse intensity
and the plasma density gradient scale length. The electron
snowplow forms only under the condition that its speed is
less than the group velocity of the laser ( vg

c
=

√
1 − ne

ncrit
coldγ

⊥
e

)
and is able to keep up with the incrementally advancing
transparency condition above. For laser pulses with rise time
too short or plasma with density gradient scale-length too long,
the electron snowplow is not created and the laser reaches
its transparency limit without incrementally inducing the
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transparency or interacting resonantly with increasing density.
For short-pulse lasers, the massive background ions (Mion) are
relatively unperturbed by the laser ponderomotive force or the
electrostatic pull of the inflated electron layer. As a result,
their inertia establishes the local plasma electron density that
controls the rate of laser advance. The spatial charge separation
between heavy ions and electrons in the region depleted of
electrons just before the snowplow sets up a propagating
electrostatic potential �sp that follows the snowplow. If the
potential difference is large enough, then a positively charged
third species of protons or light ions of trace density (at least
an order of magnitude below cold critical density, ncrit

cold), of
mass mp can be picked up and accelerated to speeds twice
that of the snowplow (reflected off the electrostatic potential
in the moving frame of reference of the snowplow) gaining
a kinetic energy of 1

2mp[2vsp]2, Fig. 3(a). By appropriately
controlling the laser rise time and the plasma density gradient,
tunable beams of quasimonoenergetic protons or light ions can
be produced. If the third species of ions to be accelerated is
cold enough initially such that its thermal kinetic energy is
well below the electrostatic potential energy of the snowplow,
all of it can be picked up and driven longitudinally (hence the
analogy to a snowplow). The transverse electric field of the
laser in the plasma [aplasma(x,t)] can be maximally coupled
to a propagating space-charge electrostatic potential (�sp)
only if maximum charge separation can be created in the
snowplow density inflation of electrons against the stationary
heavy ions. Experimentally, the preplasma gradient can be
controlled through the properties of laser prepulse [20].

The RITA mechanism differs from previous laser-plasma
ion accelerator schemes in several very important aspects.
The heavy background ions are essentially immobile over the
RITA timescales, whereas the ion motion is critical to both
hole-boring [21] and shock acceleration [5]. RITA thereby
differs from hole-boring in that no hole is created in the
heavy-ion species and from shock acceleration since an ion
acoustic shock cannot be launched. Both the hole-boring and
shock speed depend upon the plasma-ion mass, so under
infinite mass limit these processes are ruled out. Whereas the
snowplow velocity vsp in RITA (where ions are stationary)
is not dependent upon mass ratio of the background ions and
electrons, Mion

me
. The experimental demonstration of hole-boring

[15] and shock [16] acceleration have been performed in the
ion-motion regime of picosecond pulse-length lasers using
electron-proton plasma and not with heavy-ion metal plasma
and femtosecond lasers as considered here. RITA also differs
from TNSA, which occurs at the vacuum-plasma interface
on the rear of the target at later timescales when the front
surface fast electrons reach it and the plasma slowly expands
into vacuum. In mobile-ion simulations we see all mechanisms
present. When vsp > vshock, which occurs when plasma density
gradient scale length is sufficiently long, only snowplow is
seen. Later, we observe the TNSA field form due to the
ponderomotively driven electrons on the front side reaching
the plasma-vacuum boundary on the high-density side (seen in
Fig. 7). This TNSA field then marginally further accelerates the
RITA accelerated protons when they reach the plasma-vacuum
boundary. An electron density movie of these processes at
different times is in the Supplemental Material [32]. At much
later times after the laser pulse has reached its peak and is

effectively stopped from propagating further [ncrit
max(γ )] into the

plasma, we can see the formation of a freely propagating shock
from the background-ion phase space (seen in Fig. 7).

To understand the scaling laws, we obtain an analytical
expression for the snowplow velocity by equating Eq. (3) to

the laser angular frequency, ω2
pe(x,t) = ω2

pe(x)
γ ⊥

e (x,t) = ω2
0, Eq. (6),

and varying it with respect to x and t (laser could be chirped
[22], so ω0 also depends on x and t). This variation gives,
δx
δt

= 1
2

∂a2(x,t)
∂t

[ 1+a2(x,t)
ω2

pe(x)
∂ω2

pe(x)
∂x

− 1
2

∂a2(x,t)
∂x

]−1, Eq. (7), using the

resonance between local plasma frequency and the laser
frequency. To simplify, we assume the uphill plasma density
to be linearly rising with scale length α, as ne(x) = ncrit

cold( x
α

),
Eq. (8) (when x = α, the density corresponds to the cold-
plasma nonrelativistic critical surface); and the laser pulse
intensity to be linearly rising, with the rise-time scale length
δ (rise time = δ

c
), as a2(x,t) = a2

0( ct−x
δ

)H (ct − x), Eq. (9)
(where H is the heaviside step function). Upon substituting the
linear models in Eqs. (8) and (9) into Eq. (7), we get vsp(t) =
α
δ

a2
0

2 [ α
δ

a2
0

2 +
√

1 + a2(x,t)]−1c, Eq. (10). For a2(x,t) 
 1 and
αa2

0
2δ

� |a(x,t)|, vsp(t) � αa2
0

2δ
1

a(x,t)c � 0.5( α
δ
)a0c, Eq. (11). In

this limit, it is easier to observe that the snowplow velocity
scales directly with plasma density scale length (α) and
inversely with laser pulse rise time ( δ

c
), favoring shorter pulses.

This also implies, vsp ∝ a0. The simplifying assumptions for
the scaling law study of the dynamics in 1D neglect many real
effects (observed in simulations). The simple linear analytical
model of the laser intensity in Eq. (9), neglects the fact that
laser intensity reaching the snowplow (�aplasma �= �avacuum) is
modified as a result of interference (especially under normal
incidence) from the Doppler-shifted reflected light [4,23] and
Airy swelling [24] of the laser field due to the changing group
velocity of the light in the density gradient [laser field is seen
in the red curve in Figs. 1(c) and 1(d)]. The simple analytical
model of the plasma density gradient in Eq. (8) neglects the
ponderomotively driven electron density inflation. The laser
encounters relativistic-electron critical density ncrit

γ (x,t) within
the density inflation of electron snowplow n

sp
e (x,t), before it

propagates up to the unperturbed relativistic-electron critical
density as assumed by the linear density gradient model. So,
the laser propagates only until it encounters the condition
ncrit

γ (x,t) = n
sp
e (x,t), not where the ncrit

γ (x,t) = ne(x). As the
ponderomotive force at the propagating relativistic critical
layer increases (for higher a0 laser pulses), the local electron
snowplow density becomes significantly higher than the
initial electron density [nsp

e (x,t) > ne(x)]. Thereby, the locally
inflated electron density reduces the relativistic transparency
of the laser and hence the snowplow speed. It is important
to note that the time scale of motion of snowplow is much
shorter than any significant motion of the background heavy
ions and thereby the heavy ion density is unperturbed, so
the electron density inflation creates a large local charge
imbalance. This effect is similar to the striction nonlinearity
when ions are dragged along with the electrons due to radiation
pressure observed with flat-top pulses and homogeneous
plasma density [19]. Additionally the 1D process in the
equation above does not account for the increase in the �a(x,t)
due to relativistic self-focussing of the laser pulse in a reducing
skin-depth (c/ωpe) plasma, which focusses the incident laser
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power into smaller spot sizes within plasma filaments of size√
γ ⊥

e
c

ωp
[25].

We model the snowplow formation, propagation, and its
subsequent acceleration of the trace density ion species using
the multidimensional PIC OSIRIS code [6], shown in 1D
simulation snapshots in Figs. 1(c) and 1(d). These simulations
were done with fixed plasma background ions to model the
heavy ions, which do not move over RITA time scales. In
Fig. 1(c), the electron snowplow (the local inflation in the black
curve) is at a point where the laser (laser field is shown in red)
initially stops around 2.5ncrit

cold (around 15 μm, ncrit
cold is at x =

6.4 μm). In Fig. 1(d) at a later time and higher a(x,t), the rising
laser has induced transparency to its earlier reflecting density
and along with the snowplow has advanced to a higher density
ncrit

γ (x,t). The simulation is setup with laser-plasma analytical
models ( δ

c
� 810 fs, a0 = 2, α � 6.4 μm) and the background

ions are immobile. To convert from simulation units to real
units we take λ0 = 0.8 μm for comparison to Ti:sapphire
laser-based experiments. However, for collisionless plasmas
all simulations can be scaled keeping the same value of ωpe

ω0
.

In 1D simulations, we use 40π cells per laser wavelength and
60 particles per species per cell. The electrons, protons, and
background ions (when simulated with finite mass) have an
initial thermal distribution with average temperature of 5 keV.
We use open boundary conditions for fields and particles
and third-order particle shapes with current smoothing and
compensation.

We run a set of 1D simulations to examine the dependence
of the snowplow velocity vsp on laser rise-time scale length δ,
plasma density gradient scale-length α, and the peak free-space
laser vector potential a0. The simulations are started and the
laser-plasma electron evolution is let to evolve in time, while
the plasma background ions are stationary. The snowplow
position is recorded at various times and average velocity is
determined by xsp(tlater)−xsp(tinitial)

(tlater−tinitial)
. These results are summarized

in Fig. 2. The 1D simulations reasonably follow the analytical
model scaling laws [of Eq. (11), overlaid on the simulation
data curves and labeled as “an” in Fig. 2], showing that the
snowplow moves faster for shorter rise-time pulses and longer
scale length plasma density gradient. We have also shown 2D
simulations for the exact parameters of 1D simulations except
for a realistic laser focal spot size, r0 = 30 c

ω0
= 3.8 μm (2D

effects are discussed in more details below). We have also
run these simulations with mobile background ions of mass,
Mion = 10mp, and found that the snowplow speeds are the
same.

Proton and light-ion acceleration occurs when the elec-
trostatic potential reflects them in the snowplow frame, while
leaving the heavier background ions unperturbed [this is shown
as a schematic in Fig. 3(a)]. The proton reflection starts only
when, in the snowplow frame of reference, the protons (or light
ions) with mass-to-charge ratio m∗

p = mp

〈Zp〉 (〈Z〉 is the average
ionization state) have a kinetic energy smaller than the electro-
static potential energy of the snowplow hill, e�sp > 1

2m∗
pv2

sp.

The background-ions with mass-to-charge ratio M∗
ion = Mion

〈Zion〉
do not get significantly perturbed since e�sp � 1

2M∗
ionv

2
sp. The

reflected protons in the laboratory frame move longitudinally
at 2vsp with a kinetic energy of 1

2mp(2vsp)2. Thereby, the en-

ergy gained by the protons does not depend upon the magnitude
of the electrostatic potential. However, there is a threshold
snowplow potential at which protons start getting reflected.
In the snowplow frame, the threshold laser intensity required
to create a large enough snowplow space-charge potential can
be estimated by equating the laser ponderomotive potential
on the snowplow electrons creating the electrostatic potential
�sp, to the proton (or light ion) kinetic energy 1

2m∗
pv2

sp. To
estimate the threshold intensity required to develop a large
enough charge separation field to allow proton reflection, we
consider the ponderomotive potential of a typical electron
driven into the snowplow, creating a typical charge separation
potential. The snowplow electron energy equation is e�sp =
(γsp − 1)mec

2, where γsp =
√

1 + ( | �p⊥|
mec

)2 + ( | �p‖|
mec

)2 [19,26],

and | �p⊥|
mec

� | �p‖|
mec

� |�aplasma| [21,27,28]. It should be noted that
since �sp(x,t) ∝ aplasma(x,t), for a rising laser envelope the
traveling electrostatic snowplow potential is increasing. For
estimating threshold intensity, we equate (γsp − 1)mec

2 =
1
2m∗

pv2
sp, which under the assumption |aplasma(x,t)|2 
 1 gives

aplasma > ath � 1
2
√

2

m∗
p

me
( vsp

c
)2, Eq. (12). Again, determining the

local aplasma(x,t) based on the incident avacuum(x,t) and the
scaling of | �p‖| with |�a(x,t)| is complicated.

The impulse Fsp�t of the moving electrostatic potential
acting upon the light ions or protons reflects them and changes
their momentum, �p. Since the magnitude of the force, Fsp =
−e∇�sp is limited due to a finite slope of the potential, �sp

at the snowplow, there is a finite time �t over which the
accelerated ions or protons gain the final momentum. Hence,
the reflection process is analogous to balls rolling up a hill
while losing energy. If their initial kinetic energy is less than
the potential of the hill, they roll back down the slope, gaining
energy. If their kinetic energy is higher than the potential of
the hill, they do not reflect off the potential. We observe in our
simulations that there is a finite time over which the reflected
protons gain their final energy.

There is another important effect associated with the
proton and light-ion reflection off the snowplow electrostatic
potential. As mentioned above, the laser electric field incident
upon the relativistic critical layer is modulated by the Doppler
shifted light reflected off the moving snowplow (under normal
incidence) forming a beat pattern in the laser pulse envelope
as seen in the 1D simulation snapshot in Fig. 1(d). Due to
this beat pattern of the laser envelope the snowplow velocity is
modulated, since vsp ∝ a(x,t) [from Eq. (11)]. The modulation
of the snowplow velocity [vsp(t)] leads to the modulation of
the reflected [2vsp(t)] proton spectra (not shown).

We next demonstrate the proton reflection in the 1D simula-
tions. From simulations we confirm that the proton reflection
occurs in the front of the electron snowplow. In Fig. 3(b),
proton longitudinal phase space is shown at 264.5 fs, when
the proton beam is first formed (with laser-plasma parameters
of α = 50 c

ωp
= 6.4 μm, δ/c � 210 fs, and a0 = 2). It can be

seen that the reflected proton bunch is in front of the electron
snowplow location. At this time the vector potential expected
from the linear model avacuum[264.5 fs − 12.62 μm

c
] = 2.1 and

the threshold is ath = 1.8 from Eq. (12). At the time of proton
reflection, from simulations (not shown) the aplasma(x,t) � 2.4
and �sp � 5. The proton bunch is launched at close to
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FIG. 3. (Color) Schematic of acceleration process and proton energy gain from 1D simulations for different laser-plasma conditions where α

δ

is kept constant. (a) Proton reflection off the electrostatic field; protons (mp) gain speed of 2vsp, while background-ions (Mion) remain stationary.
(b, c) Longitudinal phase space and energy spectrum of 1D simulations (phase-space y axes are in energy units), with α = 6.4 μm, δ

c
= 210 fs,

a0 = 2, at t = 623.75 1
ω0

= 264.5 fs. It should be noted that in all the energy spectra plots the density is in logarithmic units to assess spectral

quality of the proton bunch. The green line is proton predicted energy, 1
2 mp[2(vsp = 0.057c)]2. The full-width at half-maximum (FWHM) energy

spread of the bunch is 4%. (d, e) α and δ are doubled (α = 12.7 μm and δ

c
= 404 fs) from (b, c) and shown at t = 1247.5 1

ω0
= 529.8 fs. The

green line is predicted energy 1
2 mp[2(vsp = 0.053c)]2. This shows that similar proton bunch energy gains are obtained by keeping constant α

δ
.

2[vsp = 0.057c] with a 4% FWHM energy spread as shown
in Fig. 3(c). To demonstrate the proton energy scaling with δ

and α, we double δ and α. In Fig. 3(d), a snapshot is shown at
529.8 fs, where model predicted avacuum[529.8 fs − 23.76 μm

c
] =

2.23 and predicted ath = 2.1; from simulations aplasma(x,t) �
2.0 and �sp = 2.92. As predicted, the proton bunch is still
approximately at 2[vsp = 0.053c] and has an FWHM energy
spread of 8.7%, Fig. 3(e). Thus, doubling α and δ maintains the
α
δ

ratio, resulting in the same snowplow speed and leaving the
proton bunch energy similar under two very different plasma
and laser pulse conditions. In these simulations, protons are
introduced at a trace density of 0.01ncrit

cold to model the particle

species to be accelerated (the third species) while background
ions are fixed.

We model the signature of RITA scheme with various
realizable laser focal spot sizes using 2 1

2 D OSIRIS
simulations. We find that with plane waves (equivalent of a
1D description) and very large focal spots, the 1D description
of the scheme is complicated in 2D because of the transverse
filamentation of the snowplow [25]. Each plasma filament
traps a different laser intensity depending on its transverse
location with respect to the laser focal spot intensity variation,
as show in Fig. 4. With smaller focal spots of a few laser
wavelengths only 2–3 proton filaments form. The relativistic
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FIG. 4. (Color) Electron density showing the snowplow in 2D
and its evolution. (a) Electron density in real space at 119 1

ω0
� 51 fs,

we can observe that an electron density inflation is ponderomotively
created by the laser and is located at � 13.4 μm. (b) Snowplow has
moved to � 15.3 μm at 154 1

ω0
� 66 fs. The plasma density gradient

scale length is α = 8.8 c

ω0
= 1.12 μm. The peak laser intensity is

a0 = 72 → I0 = 1.1 × 1022 W

cm2 and peak power is 2.54 PW. The laser

a(x,t) has a Gaussian transverse spatial profile, a(�r) = a0exp( −r2

r2
0

)r̂

with FWHM focal spot radius r0 = 30 c

ω0
= 3.8 μm and a trapezoidal

temporal profile with rise and fall time of δ

c
� 4 fs and duration

τp = 25 fs. The background ions have a mass-to-charge ratio M∗
ion =

10mp (high-Z metal like Au, Mion � 200, with 〈Zion〉 � 20 [31]). The
entire movie corresponding to the snapshots is in the Supplemental
Material [32].

self-focusing of the laser power into filaments with decreasing
transverse skin-depth (plasma density is increasing hence
the skin-depth c

ωp(x) is decreasing), locally increases a(x,t)
and the snowplow potential �sp as compared to the 1D case.
Within each filament, the scaling of vsp with α

δ
and of ath

follows the analytical theory. But, the snowplow speed and
relativistic penetration into higher density [19,29] are both
less than in simplified model due to the electron snowplow
density inflation and other effects in plasma described above.
The 1D simulations corresponding to the 2D simulations have
similar speed but higher relativistic penetration, as can be seen
in the comparison of 2D on-axis to 1D movie for α = 8.8 c

ω0
,

a0 = 72, and τp = 25 fs in the Supplemental Material [32].
Again, note that the heavy-ion motion (for high intensity case
of a0 = 72) is negligible as seen in Fig. 5.

We show the properties of a quasimonoenergetic relativistic
(Ep > 938.3 MeV) proton bunch accelerated by the RITA
scheme in Fig. 6 using 2D simulations. It shows the interaction
of a circularly polarized laser pulse with peak vector potential
of a0 = 72 (peak intensity is I0 = 1.1 × 1022 W

cm2 and peak
pulse power is 2.54 PW) of a super-Gaussian transverse spatial
intensity profile of FWHM focal spot radius, r0 = 3.8 μm with
rising plasma density gradient of scale-length α = 8.8 c

ω0
=

1.12 μm. It can be seen from Figs. 6(a) and 6(b) that the RITA

FIG. 5. (Color) Heavy-ion density corresponding to electron
snowplow evolution described in the caption of Fig. 4. The evo-
lution of density of background heavy ions that have a mass-to-
charge ratio M∗

ion = 10mp (high-Z metal like Au, Mion � 200, with
〈Zion〉 � 20 [31]). In particular, no perturbation (that is no hole)
is seen at the location of the proton acceleration. (a) Heavy-ion
density in real space at 119 1

ω0
� 51 fs. (b) Heavy-ion density in

real space at 154 1
ω0

� 66 fs. It should be noted that the laser intensity

modeled here is a0 = 72 → I0 = 1.1 × 1022 W

cm2 , which is favorable
for heavy-ion motion. But, we still see negligible perturbation. Most
of our simulations of RITA are carried out with immobile ions.

proton bunch is concentrated around 1.07 GeV. It can be seen
from Fig. 6(c), which plots the kinetic energy density in the
real space, that the length of the ultrashort bunch is 2.5 μm
and is of the order of the rise time of the laser pulse. Since
the shape of the laser pulse envelope changes in the plasma
due to self-focusing and interfering with the light reflected
from the snowplow, the flat-top part of the laser is required to
sustain the snowplow electrostatic potential for long enough
to allow protons to reflect off the potential hill. It can also be
seen from Fig. 6(c) that the proton bunch is not filamented.
The laser temporal profile is a linear rise and fall of 4 fs,
with a 17-fs flat-top part. From 2D simulations we observe
that for laser pulses with sufficiently long rise times such
that the total pulse length τp � 60 fs, the flat-top part is not
required. The energy-spectrum of the accelerated protons is
shown with the density on a logarithmic scale in Fig. 6(d),
which shows an FWHM energy spread of 17.5% at the peak
energy Ep of 1.07 GeV. In this nonoptimized 2D simulation
case where proton doping was light 0.01ncrit

cold, the conversion
efficiency of proton energy within the energy spectrum FWHM
(�30% of the total energy in protons) to laser pulse energy is
�1%, corresponding to �1010 protons for a round beam. In 2D
simulations with heavier doping with trace proton density of
0.1ncrit

cold shown in Fig. 8(a), the conversion efficiency reaches
as high as 10%. Due to heavier beam-loading of the snowplow
electrostatic potential in this case, Ep is relatively reduced to
0.95 GeV but FWHM energy spread is 10.7%. For clarity, it
should be noted that when the trace species density is set to
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Laser

 = 

Proton Bunch
(a) (b) 

(c) (d) 

 
 

 
 

FIG. 6. (Color) Accelerated proton phase spaces from 2D simulations in the RITA scheme. (a) Proton longitudinal phase space at
t = 220.5 1

ω0
= 94 fs (phase-space y axes are in energy units). From simulations, the time at which the proton bunch is reflected is at

154 1
ω0

� 66 fs, but the reflected bunch takes finite time �t to reach its maximum energy. (b) Proton longitudinal phase space in transverse real

space at t = 220.5 1
ω0

= 94 fs. (c) Kinetic energy density in real space at t = 304.5 1
ω0

= 129 fs; note: the appearance of a hole in the proton
density should not be confused with hole-boring, since this space is filled with immobile background ions as described in the caption of Fig. 5.
A later time is chosen compared to (a) and (b) to show the RITA bunch spatially separated from lower energy protons. (d) Energy spectrum
(note: logarithmic units of the density) with peak at 1.07 GeV and FWHM spread of 17.5% at t = 220.5 1

ω0
= 94 fs. The movies of different

phase spaces corresponding to the snapshots are in the Supplemental Material [32].

�ncrit
cold, we lose the quasimonoenergetic signature of the RITA

mechanism. We have modeled laser temporal profiles that are
Gaussian (not shown) rather than linear and the proton energy
spectrum is similar.

The 2D PIC simulations are set up with 20π grid cells
per laser wavelength. There are 36 particles per grid cell per
species, with 6 particles in each dimension. The transverse
spatial profile of �a is Gaussian, a(�r) = a0exp(−r2

r2
0

)r̂ . The

background ions have a mass-to-charge ratio of Mion
〈Zion〉 = 10mp.

The parameter a0 can be converted to real laser parameters
using I = |�a|2(πc

2 )(mec

eλ
)2, (Ipeak = I0), where r0 is the focal

spot-size radius and its peak power P0 = πr2
0

I0
2 .

To study the effect of the TNSA field excited at the
vacuum-plasma interface on the RITA accelerated protons,
we set up simulations with a steep boundary beyond which the
plasma density goes to zero, as seen in plasma density plots in
Figs. 4, 5, and 7(a). The simulation snapshots in Fig. 7 show the
TNSA field phase spaces and density plots for the simulation
parameters corresponding to Figs. 4 and 5. The snowplow
eventually stops when the snowplow electron density reaches
the relativistic critical density. In the simulations the snowplow
stops around 22 μm. When the snowplow stops there is a dense
buildup of ponderomotively driven electrons that constitute the

snowplow, which thermalize and exchange their energy with
heavy background ions. Thereby, heavy ions pick up a small
momentum (with a maximum kinetic energy of 25 MeV) as
seen in Fig. 7(d). When the laser stops, there is also a significant
population of ponderomotively driven electrons with high
enough longitudinal momentum such that they propagate away
from the snowplow toward the vacuum-plasma boundary. The
electrons reaching the vacuum-plasma interface create the
slowly expanding sheath normal to the interface, which then
accelerates the heavy background ions to kinetic energies up
to 25 MeV. It is seen that the snowplow electrons that are at
oblique angles to the laser propagation gain higher momentum
compared to the snowplow electrons on axis. This process is
similar to ponderomotive swelling at oblique incidence [2].
Because of the snowplow electrons obliquely propagating
away from the snowplow, the transverse extent of the TNSA
field is much bigger than the laser focal spot. In the simulations,
even though the laser focal spot FWHM is only 7.6 μm, the
sheath field is created over the whole 25.5 μm transverse space,
which we simulate, as seen in Fig. 7(a). The RITA accelerated
protons get further accelerated by the TNSA field when they
reach the vacuum-plasma interface. From Fig. 7(b), it is seen
that the RITA proton bunch is accelerated to a higher energy
by the TNSA field compared to its energy in Fig. 6(a) ahead of
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FIG. 7. (Color) Long-term evolution of the RITA accelerated
protons and the development of TNSA field and shock. (a) Electron
density at t = 385 1

ω0
= 164 fs for laser-plasma parameters described

in the caption of Fig. 4. At the vacuum-plasma interface at 31.8 μm,
we can see from the electron density that the electrons expand out
away into the vacuum. It should be noted that even though the
laser focal-spot FWHM is 7.6 μm, the TNSA field transverse size
is much larger due to the ponderomotively driven electrons reaching
the plasma-vacuum boundary at oblique angles. Also, one can see
the shock-like structure in electron density where the snowplow
stops around 21 μm. (b) RITA accelerated protons getting a second
acceleration from the TNSA fields and gaining higher energy. When
compared to the proton longitudinal phase space in Fig. 6(a), we
can observe that the RITA protons have higher energy. Additionally,
TNSA accelerated protons can be seen close to the vacuum-plasma
boundary, with peak energy of 110 MeV. (c) Kinetic energy density
of the high-energy RITA accelerated protons colliding with the
low-energy TNSA accelerated protons. The RITA protons have
propagated beyond the TNSA protons and are smaller in transverse
dimension. (d) Heavy-ion phase space showing the TNSA field at
31.8 μm accelerating the heavy ions to about 25 MeV. Also, the
shock field accelerated background heavy ions can be observed at
around 21 μm, where the laser and the snowplow finally stop.

FIG. 8. (Color) Kinetic energy density product of the RITA
accelerated proton bunch with 0.1ncrit

cold. (a) Proton kinetic energy
density at t = 220.5 1

ω0
= 94 fs for the laser-plasma parameters

described in the caption of Fig. 4. The peak energy is around 0.95 GeV
with energy spectrum FWHM of around 10.7%. (b) Proton kinetic
energy density of the RITA accelerated protons after the second
kick due to TNSA acceleration at t = 385 1

ω0
= 164 fs. The RITA

proton bunch has gained more than 100 MeV or about 10% of its
initial energy due to its interaction with the TNSA field. It can
be observed that the exponential energy distributed TNSA proton
bunch is developing in the low-energy region of the spectrum. These
spectrum graphs in (a) and (b) on a linear scale are the spatial integral
of graphs in Figs. 6(a) and 7(b), respectively, but for a higher proton
trace density of 0.1ncrit

cold instead of 0.01ncrit
cold.

the vacuum-plasma interface. Also, it is seen in Fig. 7(c) that
the RITA proton bunch, which has a smaller transverse size,
collides and accelerates beyond the TNSA proton bunch. The
energy spectrum of the protons at this later time in Fig. 8(b)
shows the energy gained by the RITA accelerated proton bunch
due to the TNSA fields.

To evaluate the validity of the RITA model in 2D, we
summarize the laser-plasma parameter scaling law results in
Fig. 9. Here we compare the results (quasimonoenergetic
proton beams of different energies) of a number of 2D
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FIG. 9. (Color) Peak proton-bunch energy vs Peak laser power. A compilation of peak proton-bunch energy obtained with 2D simulations
of the RITA scheme by varying the laser-plasma parameters, plasma density gradient scale-length α (in c

ω0
), laser pulse rise-time scale-length

δ, and laser pulse a0 (converted to laser peak power because the focal spot size r0 is fixed across the compiled simulations) with fixed FWHM
focal spot radius, r0 = 3.8 μm. The top solid black line is a fit to the RITA 2D energies for circularly polarized laser with rise time δ

c
� 4 fs

and pulse length, τp = 25 fs. The next two solid lines are for TNSA with τp = ∞ and τp = 30 fs from Refs. [3,12]. Experimentally obtained
maximum TNSA [30] and RPA [14] proton energy are shown.

simulations for varying laser-plasma parameters with fixed
laser focal spot size. It shows the predicted RITA scaling law
that the proton beam energy, for a fixed intensity, increases
directly with plasma density gradient scale length (α) and
inversely with laser pulse rise time (δ/c). In Fig. 9, the
RITA bunch energy, Ep, is plotted versus peak laser power,
P0, and is compared to TNSA (maximum cut-off energy of
the exponential spectrum) [3,12,30]. The 2D simulations for
various intensities show that the proton beam energy scales
linearly with laser power, Ep ∝ P0. We see that the RITA
scaling is well above the TNSA maximum energy scaling,
Ep ∝ √

P0. The longer the TNSA field accelerates the ions,
the higher the ion energies obtained [3], where the acceleration
time tacc is directly proportional to laser pulse length Ep ∝
tacc ∝ τp. Also, the TNSA field amplitude depends upon the
hot electron temperature, Te, which is directly proportional
to the laser pulse length, τp. Hence, the difference is greatest

for short pulse lengths, since TNSA gives lower energy for
shorter pulses while RITA is the opposite. Similarly in the RPA
schemes [4], the ion energy scales directly with laser pulse
length Ep ∝ τp. In CESA scheme, the shock Mach number
scales directly with the shock electron temperature [5]. The
shock electron temperature is shown to scale directly with the
laser pulse length, thereby Ep ∝ τp. Hence, RITA exhibits a
unique inverse scaling of the accelerated ion energy with the
laser pulse length (when aplasma > ath), Ep ∝ 1

τp
.
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