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This work is devoted to the calculation of transport coefficients for He2
+ ions in gaseous He at intermediate

reduced electric fields. These swarm data are of great interest for a better understanding of the mechanisms of
formation and propagation of the fast plasma bullets or ionization waves observed in dielectric barrier plasma jet
devices. For transport data, the collision cross sections required are determined from several theoretical methods
based on quantum, semiclassical, and hybrid approaches and a diatomics-in-molecules model for the potential
energy surfaces of He3

+. The corresponding collision cross sections are then used in an optimized Monte Carlo
code to calculate the ion transport coefficients over a wide range of reduced electric fields extending over
the experimental range. Calculated transport coefficients are compared with available experimental data at low
electric fields. Moreover, an extrapolation method is used in order to determine the reduced mobility for stronger
fields. A critical discussion has been performed on the pertinence and the reliability of these different methods
of determination of collision cross sections needed for the calculation of ion transport data. Such ion data will be
used in electrohydrodynamic and chemical kinetic models of the low-temperature plasma jet to quantify and to
tune the active species production for a better use in biomedical applications.
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I. INTRODUCTION

Low-temperature plasma jets launched at atmospheric
pressure can be initiated inside a cylindrical quartz tube
wrapped by two thin alumina electrodes powered by a high
voltage pulsed supply (see, e.g., Ref. [1]). In such a plasma
device, the flowing helium gas is injected at low velocity
(about 10 m/s) in the upstream side while the plasma jet
propagates at much higher velocity (about 105 m/s) in the
downstream side. Thus the plasma jet emerges in open air
of several cm (around 4 cm) outside the glass tube. It was
already shown that the continuous form of the observed plasma
jet corresponds to a succession of fast bullets or ionization
waves. The latter involves many active species (charged
particles, radicals, long-lived excited species, photons, etc.)
with a gaseous plasma temperature very useful for instance
for living cell exposures since it generally remains lower
than about 37◦C [1]. The plasma active species are known
to play a determinant role in many biomedical applications
as for instance antitumor treatment, wound healing, blood
coagulation, and others; Refs. [2] and [3] and the references
given therein provide more information on this topic. The
challenge for the plasma physics community is to tune such
plasma device in order to abundantly or selectively produce
some active species (atomic singlet oxygen, ozone, hydrogen
peroxide, metastable helium, or hydroxyl, etc.) beforehand
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identified for their bactericide, antitumor, or cell-regenerating
effects.

Therefore, to optimize such plasma sources to each specific
biomedical application it is very important to better understand
the mechanisms of formation and propagation of the fast
plasma bullets or ionization waves observed in the plasma jet
devices. Electrohydrodynamic and chemical plasma models
are in complement to experimental measurements very useful
tools to study the physical phenomena and to accurately
quantify the generated active species [1]. However, the use
of such models required a good knowledge of ion swarm input
data (reduced mobility, diffusion coefficients, and reaction
rates) that are determined in the present work for diatomic
helium ions.

As a matter of fact, in the case of electrical discharges
using helium carrier gas at atmospheric pressure, the atomic
and diatomic ions, He+ and He2

+, can significantly affect
the physical and chemical properties of the low-temperature
plasma jet used in the biomedical field [4]. In fact, after the
formation of atomic ions He+ and metastable He∗ in the plasma
discharge by impacts with energetic electrons, He2

+ molecular
ions are rapidly formed in the atmospheric pressure devices
following two-body or three-body, reactions [5]

He+ + 2He → He2
+ + He

He∗ + 2He → He2
∗ + He

e + He2
∗ → He2

+ + 2e

He∗ + He∗ → He+
2 + e

He2
∗ + He2

∗ → He2
+ + e + 2He.
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As ionization waves in a low-temperature plasma jet propagate
outside the discharge region mainly in helium when it is not yet
diluted in ambient air [1], the electric field is mainly controlled
by He2

+ ions. This is why a good knowledge of He2
+ ion

transport coefficients is absolutely necessary to determine
accurately the electric field self-generated by ionization waves
and the abundance of the associated active species.

In weakly ionized gases under action of an external electric
field, transport coefficients are closely related to the ion-neutral
interaction potential curves and the corresponding collision
cross sections. A previous study [6] determined the best ab
initio interaction potential of the He+/He interaction system
in order to get the most accurate reduced mobility results of
He+ ions in He. Other He+/He transport coefficients can be
found in the literature (see, e.g., Ref. [7]). The purpose of this
work is to compute transport coefficients of He2

+ ions in He
over a wide range of reduced electric field E/N (ratio of the
electric field E over the gas density N ). Mobility experimental
data are available only for E/N lower than 25 Td (1 Td =
10−17 V cm2) while there are no data for diffusion coefficients
and reaction rates. Reduced mobility has been determined
from momentum transfer collision cross sections instead of
differential cross sections [6] by using an optimized Monte
Carlo code [8]. The collision cross sections have been obtained
from a diatomics-in-molecules (DIM) model for the He3

+
interaction potential [9,10]. These collision cross sections have
been calculated using three different approaches, quantum,
semiclassical, and hybrid methods, over a center-of-mass
energy range varying from 1 meV to 40 eV.

The rest of the paper is organized as follows. Following this
introduction, Sec. II is devoted to description of calculation
methods of collision cross sections and of computation of
ion transport coefficients. The diatomics-in-molecules inter-
action potential of He2

+/He system [9,10] is first described.
Then, the different calculation methods of collision cross
sections are briefly reviewed. Quantum and semiclassical
Jeffreys-Wentzel-Kramers-Brillouin (JWKB) methods [11]
are described together with the infinite order sudden (IOS)
approximation for the inclusion of vibrations and rotations
of the He2

+ molecule colliding with He atoms [12]. A hybrid
molecular dynamics simulation, mixing quantum and classical
dynamics taking explicitly into account vibrational and rota-
tional motions is also presented. Then, a short description of
the Monte Carlo simulation for the ion transport coefficients
is given. Section III summarizes the results we obtained and is
divided in four parts. The first part presents calculated collision
cross sections and the corresponding ion reduced mobilities
obtained with the quantum and semiclassical JWKB methods
over a reduced electric field E/N range varying from 1 Td
to 150 Td. A comparative analysis between the calculated
reduced mobilities and available experimental data [13] is
provided. The second part presents the results obtained with
the hybrid molecular dynamics simulation and compares them
to experimental results. Moreover, longitudinal and transversal
diffusion coefficients useful for multidimensional fluid mod-
eling of low-temperature plasma jet were also calculated using
the method, which gives the best agreement with experimental
results. The third part then reports the results obtained via
a rigid core interaction potential model used to reproduce
experimental reduced mobility at low reduced electric field

E/N and then to extrapolate them to higher fields up to 500
Td. Finally, we draw some discussions in Sec. IV.

II. METHODS AND COMPUTATIONS

A. Diatomics-in-molecules surfaces

In order to obtain potential energy surfaces for the
He2

+/He interaction system, the diatomics-in-molecules
(DIM) methodology has been used. In short, the DIM method
enables us to decompose the electronic Hamiltonian of Hen

+
clusters into a sum of atomic and diatomic contributions [14],

ĤDIM =
n−1∑
A=1

n∑
B=A+1

ĤAB − (n − 2)
n∑

A=1

ĤA, (2.1)

where n is the total number of atoms in the cluster, A and B any
of the atoms of the cluster,ĤAB the electronic Hamiltonian for
the diatomic molecule, either He2

+ or He2, and ĤA contains all
electronic kinetic energy operators, which depend only on the
atom A. If a diabatic basis set of n electronic wave functions
representing states with the positive charge localized on a
particular He atom is employed, the electronic Hamiltonian
ĤDIM can be written in the form of an n × n real-valued
matrix. The matrix elements can be expressed in terms of
diatomic potential energy curves of the electronic ground
state (�+

u ) and the first excited state (�+
g ) of He2

+ and the
electronic ground-state potential of He2. Atomic contribution
leads to a global shift of the diagonal elements and can be
set to zero. The diatomic inputs are usually provided by
independent ab initio calculations. Since it is well known
that the pure DIM model does not work well for helium
cations larger than dimer [15] due to an insufficient inclusion
of three-body interactions, several approaches have been
proposed to improve its performance. They can basically be
divided into two families: one employing explicit three-body
corrections to the DIM Hamiltonian matrix [16,17] and another
using empirical modifications of the diatomic potential energy
curve for He2 to effectively include the missing three-body
effects [18]. In this work, a very recent model belonging
to the latter family is used [9,10]. After diagonalization,
the eigenvalues of the Hamiltonian matrix give the three
adiabatic electronic levels of He2

+/He interaction system. The
collisional problem then involves three electronic channels
(partners’ internal states) with different asymptotic energies
and charge distributions. Channel 1 and channel 2 correspond
respectively to the two possible localizations of the positive
charge: He2

+(�+
u ) + He(1S) and He2(�+

g ) + He+(2S), and
channel 3 corresponds to electronically excited ionic diatom,
He2

+(�+
g ) + He(1S) .

B. Calculations of collision cross sections

1. Quantum and semiclassical methods

In the quantum and semiclassical approaches, in order
to keep a minimum of degrees of freedom and simplify
collision cross section calculations, the infinite order sudden
(IOS) approximation [12] was used. In the framework of
this approximation, the vibrational and rotational motions of
the diatomic ion are neglected, i.e., the distance rfix between
the two He atoms of the He2

+ molecule has been frozen.
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FIG. 1. Centre of mass coordinates used for collisions between
the dimer BC (He2

+) and the atom A (He). rfix is the distance between
the two helium atoms B and C and r is the distance between the centre
of mass of the He2

+ molecule and the third He atom. The approach
angle ϕ is defined as the angle between the internuclear axis of He2

+

and the axis between the centre of mass of the dimer and the He atom.
ϕ = 0◦ corresponds to the linear trimer configuration (A, B and C
being aligned).

The trimer orientation in space is described by the approach
angle ϕ between the He+-He internuclear axis and the axis
between the He2

+ center of mass and the third helium atom,
and by the distance r between the center of mass of the He2

+
molecule and the helium atom (see Fig. 1 showing the center
of mass coordinates used for the He2

+ + He collisions). This
allows us to treat the anisotropic atom-molecule interaction
potential as an atom-atom one for each approach angle ϕ

and frozen diatomic internuclear distance rfix. The anisotropy
of the atom-molecule interaction is taken into account by a

simple average without weighting over the approach angle ϕ.
We note nϕ the number of approach angles needed in order
to obtain converged collision cross section value. In the two
calculation methods, a number of approach angles nϕ = 21
was found sufficient in order to get converged collision
cross section results. Figure 2 displays an overview on the
adiabatic electronic ground state V1(r,ϕ; rfix) [Fig. 2(a)], first
excited state V2(r,ϕ; rfix) [Fig. 2(b)] and second excited state
V3(r,ϕ; rfix) [Fig. 2(c)] for He2

+/He interaction system versus
distance r for approach angles ϕ = 0◦, 45◦, 90◦ and for a frozen
distance rfix = req = 2.1 a.u. (equilibrium distance of the He2

+
molecule). Figure 2(d) shows the interaction potentials when
the distance between the atoms of the diatomic rBC varies and
when the third atom A is at infinity. Potential energies at rBC =
req give the asymptotical energies of V1(r,ϕ; req), V2(r,ϕ; req),
and V3(r,ϕ; req), respectively, shown in Figs. 2(a)–2(c) and
respectively equal to about − 2.45 eV, 1.5 eV, and 6.8 eV
(origin of energies are then taken for the plateau He++ He +
He). Therefore, electronically inelastic processes cannot take
place for collision energies below about 4 eV.

We present now integral and momentum collision cross
sections calculated with the quantum method. The problem is
considered like an atom-atom one where the colliding partners
can be in different internal states or channels. In order to
get collision cross sections for elastic and inelastic processes,
the diabatic electronic basis is used to perform the collision
cross-section calculation.

The formalism used to compute collision cross sections is
described in Ref. [19]. This general formalism is valid for

FIG. 2. Adiabatic electronic ground state (a), first excited state (b) and second excited state (c) for He2
+/He interaction system versus

internuclear distance r between He and He2
+ for approach angles ϕ = 0◦, 45◦, 90◦ and for a fixed distance rfix = req = 2.1 a.u. between the

two atoms of the diatomic ion. Figure (d) shows the interaction potential when the distance r → ∞ and when rBC varies.
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elastic and inelastic processes. Using partial wave expan-
sion with angular momentum l, the integral cross section
Q

ij

0 (ε; rfix,ϕ) and the momentum transfer cross section
Q

ij

1 (ε; rfix,ϕ) at collision energy ε from initial channel i to
final one j for a given rfix and ϕ are given by

Q
ij

0 (ε; rfix,ϕ) = π

k2
i

∑
l

(2l + 1)|T l
ij (ε; rfix,ϕ)|2

Q
ij

1 (ε; rfix,ϕ) = π

k2
i

∑
l

(2l + 1)
∣∣T l

ij (ε; rfix,ϕ)
∣∣2 − 2(l + 1)Re

(2.2)
× [

T l
ij (ε; rfix,ϕ)∗T l+1

ij (ε; rfix,ϕ)
]
,

where ki is the initial wave vector, T l
ij (ε; rfix,ϕ) is a transition

matrix element and Re refers to the real part of the product
of transition matrix elements. Transition matrix is obtained
by integration from a short distance rmin in the classically
forbidden region to a large one rmax where the wave functions
can be matched to the asymptotic ones (typically Bessel
functions), following the procedure outlined for instance in
Ref. [19].

The problem involves three channels with different asymp-
totic energies. The 3 × 3 transition matrix provides three
collision cross sections, Q11 (ε; rfix,ϕ) for the elastic process
(He2

+ + He → He+
2 + He), Q12 (ε; rfix,ϕ) for the charge ex-

change one (He2
+ + He → He2 + He+) and Q13 (ε; rfix,ϕ)

for incident ion excitation (He+
2 + He → He+∗

2 + He). The
transition matrix is obtained by a simple numerical integration
from rmin to rmax over the corresponding potential using the
De Vogelaere algorithm [20]. We typically used rmin = 0.5 a.u
and rmax = 100 a.u. The integration was performed with 20
points per wavelength. Moreover, collision cross sections were
also calculated using only the first adiabatic electronic state
V1(r,ϕ; rfix), in order to analyze inelastic charge transfer and
incident ion excitation processes impact on elastic collision
cross sections and on calculated reduced mobilities.

Semiclassical elastic collision cross sections can also be
obtained as previously [cf. Eq. (2.2)] but by using the
semiclassical collisional phase shifts. Indeed, there is a
simple expression for the transition matrix for a given rfix

and ϕ as a function of the collisional phase shifts δ
ε;rfix,ϕ

l

by iT l (ε; rfix,ϕ) = 1 − e2iδ
ε;rfix ,ϕ

l [19]. However, contrary to
the symmetrical systems, such as He+/He [6], there is no
expression that allows us to obtain inelastic charge transfer
collision cross sections. In this method, the semiclassical
JWKB approximation [11] has been used to calculate phase
shifts from the first adiabatic electronic state V1(r; ϕ,rfix).
These phase shifts are determined as a function of the collision
impact parameter b and the interaction potential V1(r; ϕ,rfix),
i.e.,

δ
ε;rfix,ϕ

l ≈ δε;rfix,ϕ(b) = ki

∫ ∞

r
ϕ,rfix
0

[
1 −

(
b

r

)2

− V1(r; ϕ,rfix)

ε

]
dr

− ki

∫ ∞

b

[
1 −

(
b

r

)2
]

dr, (2.3)

where b = (l + 1/2)h̄/ki and r
ϕ,rfix
0 represents the distance of

closest approach for V1(r; ϕ,rfix).

For the transport coefficients calculation, required quan-
tum Q

ij

1 (ε; rfix) or semiclassical Q11
1,JWKB(ε; rfix) momentum

transfer cross sections are then obtained by integration over
solid angle, which corresponds here to a simple average
of Q

ij

1 (ε; rfix,ϕ) or Q11
1,JWKB(ε; rfix,ϕ) respectively over the

approach angle ϕ.

2. Hybrid method

In the hybrid approach, the heavy nuclei are treated
classically and follow a trajectory while the potential is
computed using the time-dependent Schrödinger equation, and
decoherence is taken into account periodically. Appropriately
initial conditions need to be generated appropriately and the
equations of motion integrated numerically to evaluate the
momentum transfer cross section.

The He2
+/He collision complex has been treated semi-

classically [21] using the Ehrenfest mean-field approach with
classical equations of motion for nuclei,

q̇I = pI

MI

, ṗI = −〈ψ |∂Ĥel

∂qI

|ψ〉 (2.4)

and the quantum Schrödinger equation for electrons,

ih̄
∂ψ

∂t
= Ĥelψ. (2.5)

Here, qI and pI denote respectively nuclear coordinates and
momenta of each atom of mass MI , ψ is current electronic
wave function, Ĥel represents electronic Hamiltonian [in this
work Ĥel = ĤDIM of Eq. (2.1)], and 〈|〉 denotes the usual scalar
product on the electronic Hilbert state space (i.e., integration
over all electronic coordinates). Since the method mixes
classical and quantum approaches, we call it the hybrid method
throughout this study. Within the DIM approach, Eqs. (2.4)
and (2.5) transform to a matrix form if an appropriate basis
set is used in the electronic state space. Following the usual
practice (cf. Sec. II A), real-valued diabatic wave functions
representing electronic states with the positive charge localized
on a particular atom, ϕj , have been used. This finally leads
to [21]

q̇I = pI

MI

, ṗI = −
∑
j,k

ajak

∂Hjk

∂qI

, ih̄ȧj =
∑

k

Hjkak,

(2.6)

where aj and ak are expansion coefficients of current electronic
wave function with respect to the diabatic basis set, ψ =∑

j ajϕj , and Hjk = 〈ϕj |Ĥel|ϕk〉. This set of ordinary dif-
ferential equations has been solved numerically in the center-
of-mass system of the collision complex using a fourth-order
Runge-Kutta algorithm. The integration step ranging between
0.01 fs and 0.1 fs (depending on the collision energy) has been
used. Total integration times have been set sufficiently long so
that the collision fragments are able to separate into a distance
at which the interactions between them become negligible with
respect to the collision energy. Typically, integration times
of 0.5 ps through several dozens of picoseconds have been
sufficient, depending again on the collision energy.

It has been shown previously [22] that quantum decoher-
ence may be important in dynamical calculations if excited
electronic states are involved. In the present work, it has
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been included via a modified Mean Field with Quenching-
Amplitude/Scaling (MFQ-AMP/S) method of Ref. [22].
Briefly, the quenching probabilities for a transition from a
current electronic state to one of accessible adiabatic states
have been calculated using adiabatic amplitudes of the current
electronic wave function ψ . The nuclear momenta have been
adjusted after each accepted electronic quenching by a simple
multiplicative scaling so that the total energy of the collision
system is conserved. Since the original MFQ-AMP/S approach
does not conserve the total angular momentum of the nuclei
unless it is zero [22], the velocity scaling procedure has
been modified so that the angular momentum conservation
law is obeyed even for nonzero total angular momentum.
More specifically, the nuclear velocities are first transformed
to a rotating coordinate system in which the total angular
momentum of the colliding nuclei is zero and then scaled
using the S method of Ref. [22]. Finally they are transformed
back to the (inertial) center-of-mass system of the collision
complex to be involved in further evolution.

The initial conditions consist, for the present task, of
initial values of nuclear coordinates, momenta, and the initial
electronic state of He2

+, and initial coordinates and momenta
of the impacting neutral atom. The initial configurations of
He2

+ have been generated via microcanonical Monte Carlo
simulations used to model vibration excitations of the dimer
or simply by using a particular interatomic distance in frozen-
dimer calculations. Then, a random rotation of the dimer
ensuring its isotropic orientation in space has been employed.
The initial momenta of the dimer atoms have been set, for each
particular configuration, so that the total vibrational energy of
the dimer is equal to the preselected value. The helium dimer
has been assumed in its electronic ground state. The initial
position of the He atom has been calculated from the initial
distance between He and He2

+ along the collision axis and
from the particular value of the collision impact parameter.
Distances along the collision axis ranging between 20 Å
and 40 Å have been used depending on the collision energy.
Values of the impact parameter have been generated randomly
between bmin = 0 Å and bmax = 3–16 Å, the upper limit
depending again on the collision energy, and weighted properly
so that the He flux is homogeneous. The initial translational
velocities in the He2

+/He center-of-mass system have been
calculated from the center-of-mass collision energy.

Totally 20000–80000 trajectories have been calculated for
each particular collision energy in order to get converged
values of the collision cross sections. More trajectories are
required for lower energies since higher maximum values of
the impact parameter have to be used in that case. All the hybrid
calculations have been performed using our MULTIDYN code
package [23].

The hybrid calculations provide two collision cross sec-
tions: one denoted Q1,hyb (ε) and corresponding to elastic
processes and electronic excitation processes not leading to
the dimer dissociation, and another,Qdiss

0,hyb (ε), related to the
three-body dissociation (He2

+ + He → He+ + He + He).

C. Calculations of transport coefficients

A Monte Carlo algorithm allows us to simulate the ion
transport in a gas under the action of a uniform electric field E.

Detailed simulation techniques using the Monte Carlo method
for transport coefficients calculation can be found elsewhere
[8,24]. In short, the Monte Carlo code treats an initially great
number of seed particles one by one until their disappearance
when elastic and inelastic collisions are defined by their cross
sections. In addition fictitious ionization (ion creation) is also
considered in order to obtain more accurate results when there
are large processes of ion removal such as asymmetric charge
transfer or electron detachment. The usual approximation of a
weakly ionized gas is made, where only interactions between
ion and neutral species in their ground states are taken into
account. This means that collisions between ion and excited
neutral species are assumed negligible. The target gas motion
at ambient temperature (300 K) has been taken into account in
the calculation of the relative ion energy by considering both
the ion and target gas velocities. Ion energy is calculated from
the classical dynamics equations by considering the electric
field acceleration and the energy of the target gas is determined
assuming a Maxwellian distribution at 300 K.

Ion mobility data are then calculated from Monte Carlo
simulation using the momentum transfer cross sections by
assuming an isotropic scattering for the calculation of the
deflection angle after every collision. As shown in a previous
work [6], using this approximation, calculated transport
coefficients present a maximal relative statistical deviation of
±2 % from the calculated ones using the differential cross
sections while gaining a factor of 20 in calculation time.
Momentum transfer cross sections can be then considered as an
approximation to indirectly take into account the anisotropy
of collisions without using the differential cross section. In
this case, the deviation angle θ is determined from a random
number rθ uniformly distributed in the interval [0,1] by the
following relation:

cos (θ ) = 1 − 2rθ . (2.7)

The probability P (t) of free time of flight tflight between tj
(initial or last collision time) and tj+1 (collision time) is directly
related to the momentum transfer collision cross section as
follows:

P (t) = exp

(
−

∫ t

t0

νtot(v(t ′))dt ′
)

(2.8)

with νtot the total collision frequency given by,

νtot [v (t)] = Nv (t) Q1 [ε (t)] , (2.9)

where N is the gas density, Q1 is the elastic or inelastic
momentum transfer cross section and v (t) and ε (t) are
respectively the time-dependent velocity modulus and energy.
Free time of flight tflight is then calculated using Eq. (2.8)
from the logarithm of a random number. Ion trajectories
x(t),y(t),z(t) between two successive collisions are deter-
mined from classical equations where the electric field 
E is
applied along the z axis and accelerates uniformly the ions
during their free flight.

Transport coefficients such as reduced mobility K0 and
longitudinal DL or transversal DT diffusion coefficients are
determined respectively from the following relations:

K0N = 〈vz〉
E/N

T0

Tgas

Pgas

P0
, (2.10)
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DL = 1

2

d [z(t) − 〈z(t)〉]2

dt
, (2.11)

DT = 1

4

d[(x(t) − 〈x(t)〉)2 + (y(t) − 〈y(t)〉)2]

dt
, (2.12)

where T0 = 273.16 K is the standard temperature, Tgas is the
gas temperature, P0 = 760 torr is the standard atmospheric
pressure and Pgas is the gas pressure. Considering a parameter
Xij related to the positive ion number i undergoing the
collision number j during its drift towards the cathode under
the action of the uniform electric field E, the mean quantity 〈X〉
is calculated by using a statistical mean from the conventional
formula,

〈X〉 = 1

np

np∑
i=1

1

nc

nc∑
j=1

Xi,j , (2.13)

where np is the number of seed particles and nc is the
total number of collisions occurring during the whole ion
pathway from its emission at the anode to its disappear-
ance at the cathode. Such a definition is consistent with
the uniform electric field condition and steady-state regime
reached in the case of standard drift tube measurements for ion
mobility [25].

III. RESULTS AND DISCUSSIONS

A. Quantum and semiclassical results

As the first step, we investigated the dependence of
calculated collision cross sections and ion mobilities on
the basis set. The previously described quantum method
was used to calculate the elastic Q11

0,1 (ε; rfix = 2.1a.u.),
charge transfer Q12

0,1 (ε; rfix = 2.1a.u.), and ion excitation
Q13

0,1 (ε; rfix = 2.1a.u.) collision cross sections from the dia-
batic Calvo’s DIM interaction potential surfaces [9,10] with
rfix = 2.1 a.u. (cf. Sec. II A and Sec. II B1). Figure 3 shows
the calculated momentum transfer cross sections for the elastic
and charge transfer processes. The momentum transfer cross
section for particles going from channel 1 to channel 3
(electronic excitation of ionic dimer) is not shown in Fig. 3
since it was found to be negligible. The inelastic ion excitation
cross section is then negligible compared to the other ones and
therefore has no significant effect on the ion mobility. As noted
before, we see that the charge exchange process does not occur
for relative energies ε below around 4 eV. Consequently, such
charge transfer process does not affect the calculation of ion
transport coefficients at low reduced electric fields E/N for
which the ion energy distribution function has a negligible
overlap in the energy range where charge transfer occurs.
However, for the highest reduced electric field of E/N = 150 Td
considered in this work, the ion energy distribution function
(see Fig. 4) becomes negligible only above approximately
25 eV and the mean ion energy is about 3.5 eV in this
case. Then, inelastic processes (nonresonant charge transfer
and ion excitation) have to be taken into account in order
to give accurate mobility results. To analyze the effects of
inelastic processes on the cross section and mobility results,
elastic collision cross sections were also calculated by using
the electronic ground state V1(r,ϕ; rfix = 2.1 a.u.) only, i.e., the

FIG. 3. (Color online) Quantum elastic Q11
1 (ε; rfix = 2.1 a.u.)

and charge transfer Q12
1 (ε; rfix = 2.1 a.u.) momentum transfer cross

sections for the He2
+/He interaction system calculated from the

Calvo’s DIM interaction potential surfaces [9,10] in the diabatic basis.
Elastic momentum transfer cross section was also calculated from
the adiabatic basis using V1(r,ϕ; rfix = 2.1 a.u.) only and shows no
significant differences from the calculated one in the fully coupled
diabatic basis.

adiabatic basis. In Fig. 3, we see that the elastic momentum
transfer cross sections, calculated using either the diabatic or
the adiabatic basis, are very similar. This means that inelastic
processes have no significant effect on the calculated elastic
collision cross section. This remains valid for all the He2

+
frozen internuclear distances rfix considered.

Reduced data for ion mobilities were calculated from the
momentum transfer cross sections obtained from the two
different calculations. In the case of the diabatic basis, elastic
and inelastic momentum transfer cross sections have been used
[6]. In the Monte Carlo simulation, inelastic processes lead to
the disappearance of ions and then fictitious ionizations have
been considered in order to reduce the statistical fluctuations
[8]. Figure 5 shows the E/N dependence of the calculated
reduced mobilities using the collision cross sections obtained
for each basis set considered and compares them with the ex-
perimental mobility data compiled by Ellis et al. [13]. A clear

FIG. 4. He2
+ ion energy distribution function for E/N = 150 Td.
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FIG. 5. Calculated mobilities with ±2% statistical error using the
quantum method (rfix = 2.1 a.u.) from the diabatic and adiabatic
Calvo’s DIM interaction potential surfaces [9,10]. Experimental
mobilities [13] are also shown for comparison with error bars of 1%.

overestimation is observed. It is noteworthy that the diabatic
calculation, which takes into account inelastic processes, gives
a similar reduced mobility results as the adiabatic one. This
means that charge transfer and ion excitation cross sections
are not high enough to affect the ion transport coefficients for
the considered energy range. This negligible effect of inelastic
processes on mobility results remains valid also for all other
frozen internuclear distances rfix considered. The mobilities
obtained with a frozen equilibrium distance rfix = 2.1 a.u
presents a maximum value of 27.9 cm2 V−1 s−1 observed at
50 Td. Relative deviations from experimental mobility data
are 18% at 1 Td and 32% at 20 Td.

As the second step, we tested the dependence of calculated
collision cross sections and ion mobilities on calculation
method. Since we showed that the ion transport coefficients
can be obtained from momentum transfer cross sections
calculated in the adiabatic basis, i.e., considering elastic
processes only, the semiclassical method (JWKB) can also
be used. Figure 6 shows the elastic momentum transfer cross
section obtained with the semiclassical calculation for rfix =
2.1 a.u. The differences between quantum and semiclassical
results were investigated by a comparison of corresponding
nonaveraged elastic momentum transfer cross sections, re-
spectively Q11

1 (ε; rfix,ϕ) and Q11
1,JWKB (ε; rfix,ϕ), for several

approach angles ϕ. As noticed by Munn et al. [11], very
small deviations due to the semiclassical approximation were
observed for different relative collision energy ε. Collision
energies where the deviations occur vary as a function of the
approach angles ϕ considered for the cross section calculation.
These small deviations lead to no significant differences
between quantum and semiclassical mobilities are observed
with relative deviations within the error bars (see Fig. 7).

B. Hybrid results

In order to improve the agreement between calculated
mobilities and measured ones, hybrid calculations that take
into account diatomic vibrational and rotational motions,
were performed using Calvo’s DIM model [9,10]. First,

FIG. 6. (Color online) Quantum and semiclassical momentum
transfer cross section for the He2

+/He interaction system obtained
using the IOS approximation with rfix = 2.1 a.u. for a centre of mass
energy range varying from 1 meV to 25 eV.

hybrid calculations were performed for the diatomic He2
+

initially frozen at r init
fix = 2.1 a.u. but then flexible along

the collision trajectory. Figure 8 displays the obtained cross
sections:Q1,hyb (ε), which contains elastic and electronic
excitations, and the three-body dissociation cross section
Qdiss

0,hyb (ε). The quantum elastic momentum transfer cross
section Q11

1 (ε; rfix = 2.1a.u.) is also shown for comparison. In
Fig. 8, we see that the hybrid Q1,hyb (ε) cross section obtained is
larger than the quantum one up to about 5 eV (maximal relative
difference being around 40%). Above this energy, the existence
of the competing dissociative process decreases the cross
sections of the nondissociative ones. However, this fall of the
hybrid momentum transfer cross section can be compensated
by explicitly including the dissociation channel in mobility
calculations (see Fig. 9). Two basic observations are clear from
this figure. Firstly, the hybrid mobility is smaller than the quan-
tum one since the hybrid cross section,Q(ε)

1,hyb + Qdiss
0,hyb(ε), is

FIG. 7. (Color online) Comparison between experimental ion
mobility [13] and the calculated ones from the Calvo’s DIM
interaction potential surfaces [9,10] using the quantum and the
semiclassical methods with rfix = 2.1 a.u.
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FIG. 8. (Color online) Hybrid collision cross sections for elastic
and electronic excitations Q1,hyb and for three-body dissociation
Qdiss

0,hyb for He2
+ initially frozen at r init

fix = 2.1 a.u compared to
the quantum elastic momentum transfer cross section Q1

11 for the
diatomic frozen at rfix = 2.1 a.u.

larger than the quantum one,Q11
1 (ε; rfix = 2.1a.u.). Second, the

inclusion of the dissociative channel allows us to obtain the
expected bump in the E/N dependence of the ion mobility
with a maximum of K0 = 22.5 cm2 V−1 s−1 at E/N = 90 Td.
Monte Carlo simulations with and without the dissociation
cross sections included, show that the mobility decrease at
intermediate field is due to the collisional dissociation of the
dimer. However, the hybrid mobility obtained for r init

fix = 2.1 a.u
is below the experimental one and shows a constant relative
deviation from the experimental data points of about 13%.

This deviation of the hybrid mobilities from the experi-
mental data points can be attributed to the existence, in the
present light molecular system, of strong quantum effects,
which are not taken into account in the hybrid calculation.
In order to correct hybrid collision cross sections, i.e., to
effectively include the quantum effects, a hybrid calculation
was performed under the same conditions as the quantum

FIG. 9. (Color online) Measured ion mobilities [13] and calcu-
lated ones with 2% statistical error from the Calvo’s DIM interaction
potential surfaces [9,10] using the hybrid cross sections for r init

fix =
2.1 a.u. and the quantum ones for rfix = 2.1 a.u.

ones, i.e., with the diatomic frozen at rfix = 2.1 a.u. along the
whole collision trajectory. The only difference between the
two calculations was that, in the frozen quantum calculation,
the anisotropy of the atom-molecule interaction was taken
into account by averaging over the approach angle ϕ, while in
the rigid hybrid calculation the rotation of the molecule was
allowed. Then, a correction factor, called quantum correction
factor (QCF), was determined such that after it was applied to
the rigid hybrid collision cross sections, the mobilities obtained
via the Monte Carlo simulation were as close as possible to the
frozen quantum ones. The correction factor was not defined
as the ratio of the hybrid and quantum collision cross sections
since the quantum method does not provide the cross section
for the three-body dissociation. The corresponding rigid hybrid
cross sections for collision energy varying from 0.01 eV to
40 eV are shown in Fig. 10(a). The elastic quantum collision
cross section obtained for rfix = 2.1 a.u. is also presented for
comparison. We see in this figure that at low collision energies
(in the range 0.03–1 eV), which correspond to the weak field
region, the rigid hybrid cross section is larger than the quantum
one while for high energies they are very similar. This leads
to rigid hybrid mobilities with at most 20% deviation from the
quantum ones at low electric field and comparable mobilities at
high field [see Fig. 10(b)]. A quantum correction factor (QCF)
varying between 0.78 and 1 [see Fig. 10(c)] was found to
yield the best correspondence between quantum and corrected
hybrid mobilities calculated for the dimer frozen at rfix = 2.1
a.u. Then, the QCF was used to correct the hybrid mobilities
as shown in Fig. 10(d). It is noteworthy that the QCF profile
depicted in Fig. 10(c) becomes close to 1 at high energy. This
reflects the fact that at high energy the De Broglie wavelengths
and quantum effects become small.

This quantum correction factor can now be applied to
the hybrid cross section shown in Fig. 8. The resulting
corrected mobilities obtained from hybrid calculations are
plotted against the electric field in Fig. 11. Noncorrected
hybrid mobilities and experimental mobilities are also shown
for comparison. The corrected mobility presents a maximum
of K0 = 23.1 cm2 V−1 s−1 at 70–80 Td (in comparison with
the uncorrected maximum mobility K0 = 22.5 cm2 V−1 s−1

at 90 Td) and a relative deviation between about 7% and 10%
from the experimental results. This is a small improvement as
compared to 13% error observed for the uncorrected hybrid
mobilities. Notice however that, whereas uncorrected hybrid
mobility is smaller than the experimental one, the corrected
one is larger.

This systematic deviation of the theoretical prediction from
the experimental data is probably due to the fact that the nuclear
delocalization effects in the initial state of the system are
neglected. These effects are very important in helium, which is
light. Calculations considered so far assumed initially frozen
dimers only. At the classical level, nuclear delocalization can
simply be included by increasing the vibrational energy of the
colliding dimer. We assume low temperatures and perform an
additional hybrid calculation for the diatomic initially at the
zero-point energy (ZPE) level. Figure 12 displays these new
collision cross sections compared to the hybrid data obtained
for initially frozen dimers. We see that the collision cross
sections Q1,hyb (elastic processes and electronic excitations)
and Qdiss

1,hyb (three-body dissociation) for the dimer initially
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FIG. 10. (Color online) Hybrid and quantum (a) collision cross sections and (b) corresponding mobilities for He2
+ frozen at rfix = 2.1 a.u

without any correction. Mobilities obtained without and with the use the quantum correction factor (c) are shown in figure (d).

excited at ZPE is larger than the collision cross section obtained
for He2

+ initially frozen at rfix = 2.1 a.u. Therefore, the
mobility obtained for the ZPE excited diatom is smaller than
the mobility of the initially frozen diatom (see Fig. 13). Using
the quantum correction factor QCF, we obtain the mobility of
He2

+ ions initially excited at ZPE with the quantum effects
implicitly included. The E/N dependence of the calculated
reduced mobility for He2

+ ions initially excited at ZPE is listed

FIG. 11. (Color online) Corrected and non-corrected reduced
mobilities calculated from the hybrid collision cross sections with
r init

fix = 2.1 a.u.

in Table I and shown in Fig. 13 with a relative statistical error
of ± 2%. Then, the corrected mobility presents a maximum
of K0 = 21.9 cm2 V−1 s−1 at 60 Td and a relative deviation
from experimental results between 4.7% and 6.0%.

Longitudinal and transversal diffusion characteristic ener-
gies, respectively eDL/K and eDT/K (K = K0N ), which
are needed for multidimensional modeling of plasma jet
electrodynamics, were also calculated. Figure 14 shows the

FIG. 12. (Color online) Hybrid collision cross sections for the
He2

+ ions initially frozen at 2.1 a.u. (green points) and He2
+ initially

excited at ZPE (blue points).
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FIG. 13. (Color online) Hybrid mobilities obtained for the He2
+

ions initially frozen at 2.1 a.u. (green points) and He2
+ initially excited

at ZPE (blue points) without (round) and with (triangles) the use of
the QCF.

calculated longitudinal and transversal diffusion characteristic
energy in meV plotted against the reduced electric field.
Diffusion characteristic energies are also listed in Table II
which shows that at E/N = 1 Td, longitudinal and transversal
characteristic energy tend to 25.8 meV. This value is consistent
with the one obtained from the Nernst-Townsend-Einstein
relation [26] valid in weak fields,

eD/K = kBT , (3.1)

where kB is the Boltzmann constant, T is the temperature, and
e is the electric charge of the ion, for T = 300 K.

The characteristic energy curves show the typical shape for
diffusion namely a plateau at low fields and then we observe
an increase of DL and DT with the increase of the field, due to
the decrease of the elastic momentum collision cross section.

FIG. 14. (Color online) Longitudinal eDL/K and transversal
eDT/K diffusion characteristic energies for He2

+ in He. The dimers
are excited at ZPE. eDL/K and eDT/K were plotted with a maximal
relative statistical error of 12%.

TABLE I. Measured and calculated reduced mobility K0 in cm2

V−1 s−1 of He2
+ ions in He.

Experimental Calculated K0 Calculated K0

E/N (Td) resultsa (hybrid methodb) (inverse methodc)

1 16.7 ± 0.2 17.5 ± 0.4 17.0 ± 0.3
2 16.7 ± 0.2 17.5 ± 0.4 17.0 ± 0.3
3 16.8 ± 0.2 17.6 ± 0.4 17.1 ± 0.3
5 16.8 ± 0.2 17.6 ± 0.4 17.1 ± 0.3
7 16.8 ± 0.2 17.7 ± 0.4 17.1 ± 0.3
8 16.9 ± 0.2 17.7 ± 0.4 17.1 ± 0.3
10 16.9 ± 0.2 17.9 ± 0.4 17.1 ± 0.3
12 17.0 ± 0.2 18.0 ± 0.4 17.2 ± 0.3
14 17.2 ± 0.2 18.2 ± 0.4 17.2 ± 0.3
15 18.3 ± 0.4 17.3 ± 0.3
16 17.3 ± 0.2 18.4 ± 0.4 17.3 ± 0.3
18 17.5 ± 0.2 18.6 ± 0.4 17.4 ± 0.3
20 17.7 ± 0.2 18.8 ± 0.4 17.6 ± 0.4
22 18.0 ± 0.2 19.0 ± 0.4 17.8 ± 0.4
24 18.3 ± 0.2 19.3 ± 0.4 18.0 ± 0.4
25 19.4 ± 0.4 18.2 ± 0.4
30 20.0 ± 0.4 18.9 ± 0.4
40 21.1 ± 0.4 20.0 ± 0.4
50 21.8 ± 0.4 21.2 ± 0.4
60 21.9 ± 0.4 21.9 ± 0.4
70 21.8 ± 0.4 22.2 ± 0.4
80 21.6 ± 0.4 22.1 ± 0.4
90 21.3 ± 0.4 21.9 ± 0.4
100 20.9 ± 0.4 21.6 ± 0.4
120 20.2 ± 0.4 20.7 ± 0.4
150 19.2 ± 0.4 19.5 ± 0.4
200 17.8 ± 0.4
300 15.5 ± 0.3
400 13.9 ± 0.3
500 12.8 ± 0.3

aReference [13].
bHe2

+ ions are initially excited at ZPE and the quantum correction
factor was used.
cMobility is calculated from a (12-4) core potential.

C. Extrapolation of transport coefficients from
an effective potential

Finally, as the last step, an extrapolation method was used to
reproduce first the experimental mobility data at low reduced
electric field E/N and then to extend the calculated mobility
at higher fields. Various extrapolation models have been used
to describe the ion-atom interaction systems in order to get
the corresponding ion transport data. Generally, calculated
transport coefficients have been obtained in good agreement
with experimental results using interaction potential models
of Refs. [27] and [28]. It is noteworthy to emphasize a (n-4)
core potential model is better adapted for a polyatomic ion
interacting both with polar or nonpolar gases. The rigid core
potential Vcore(r) can be written as [28]:

Vcore(r) = nεw

3n − 12

{
12

n

(
rm − a

r − a

)n

− 3

(
rm − a

r − a

)4
}

,

(3.2)
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TABLE II. Calculated longitudinal and transversal diffusion characteristic energy, respectively
eDL/K and eDT/K , in meV.

E/N (Td) eDT/K eDL/K eDT/K eDL/K

(hybrid method a) (hybrid method a) (inverse method b) (inverse method b)

1 25.8 ± 3.1 25.8 ± 3.1 25.9 ± 1.0 25.9 ± 1.0
2 25.9 ± 3.1 26.4 ± 3.2 25.7 ± 1.0 26.1 ± 1.0
3 26.0 ± 3.1 26.5 ± 3.2 26.2 ± 1.0 26.3 ± 1.1
5 26.4 ± 3.2 27.7 ± 3.3 26.2 ± 1.0 27.2 ± 1.1
7 26.9 ± 3.2 29.4 ± 3.5 26.8 ± 1.1 28.7 ± 1.1
10 27.7 ± 3.3 33.2 ± 4.0 27.6 ± 1.1 31.6 ± 1.3
12 28.6 ± 3.4 36.9 ± 4.4 28.4 ± 1.1 34.6 ± 1.4
15 30.2 ± 3.6 44.9 ± 5.4 29.8 ± 1.2 40.4 ± 1.6
20 34.5 ± 4.1 64.3 ± 7.7 33.2 ± 1.3 56.3 ± 2.3
25 40.3 ± 4.8 92.3 ± 11.1 38.2 ± 1.5 83.5 ± 3.3
30 48.1 ± 5.8 126.4 ± 15.2 45.6 ± 1.8 123.3 ± 4.9
40 70.1 ± 8.4 200.8 ± 24.1 67.4 ± 2.7 233.7 ± 6.4
50 98.2 ± 11.8 262.1 ± 31.4 97.8 ± 3.9 334.0 ± 13.4
60 129.0 ± 15.5 317.5 ± 38.1 133.3 ± 5.3 402.3 ± 16.1
70 163.5 ± 19.6 370.3 ± 44.4 172.6 ± 6.9 446.8 ± 1.6
80 198.6 ± 23.8 410.9 ± 49.3 213.3 ± 8.5 481.2 ± 19.2
90 234.8 ± 28.2 446.1 ± 53.5 256.7 ± 10.3 509.0 ± 20.4
100 269.6 ± 32.4 470.7 ± 56.5 298.1 ± 11.9 539.3 ± 21.6
120 334.3 ± 40.1 507.6 ± 60.9 383.9 ± 15.4 607.2 ± 24.3
150 417.9 ± 50.1 546.0 ± 65.5 517.0 ± 20.7 731.4 ± 29.3
200 748.7 ± 29.9 981.4 ± 39.3
300 1243.1 ± 49.7 1531.1 ± 61.2
400 1770.9 ± 70.8 2109.4 ± 84.4
500 2343.4 ± 93.7 2690.5 ± 107.6

aHe2
+ ions are initially excited at ZPE and the quantum correction factor was used.

bMobility is calculated from a (12-4) core potential.

where εw is the potential well depth, rm the position of the
potential minimum and r the internuclear distance. The rigid
core diameter a, describes the shift of the center of mass from
the charge center induced by the influence of the ion on the neu-
tral atom. It is well known that the interaction potential for the
interaction between ions and atoms presents a repulsive part at
short internuclear distance r and an attractive part for larger r .

In the framework of this method, which we call the inverse
method, potential parameters n, εw, a, rm were adjusted
until a good agreement is found between calculated and
measured mobilities over the range of experimental reduced
electric field [13]. Reduced mobilities were calculated from
elastic momentum transfer cross sections determined from the
semiclassical JWKB approximation (cf. Sec. II B1) using the
(n-4) core interaction potential defined by Eq. (3.2). Then,
the momentum collision cross section Q1,(n−4) was calculated
over a wide range of center of mass energy. Using Monte Carlo
simulation, the cross section provides calculated ion transport
coefficients (K0, eDL/K and eDT/K) over a wide range of
reduced electric field E/N.

Several sets of potential parameters n,εw, a, and rm were
tested for fitting the experimental data within the error bars.
The unique solution set was found for: n = 12,εw = 0.168 eV,
a = 0.01 Å and rm = 1.55 Å. Indeed, many trials fitted the
mobility plateau well, but were outside the errors bars in
the region of rising experimental mobility. Figure 15 shows
the cross section obtained from the (12-4) core potential. The

hybrid cross sections for diatomic helium ions initially excited
at ZPE (with the use of the QCF) is also shown in this figure
for comparison.

We see in this figure that the (12-4) core collision cross
section is close to the sum of the hybrid cross sections
Q

(ε)
1,hyb + Qdiss

0,hyb(ε), except in the low ion relative energy region

FIG. 15. (Color online) Collision cross section obtained from a
(12-4) core potential and compared to hybrid collision cross sections
for the He2

+ ions initially excited at ZPE with QCF.
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FIG. 16. (Color online) Mobilities obtained from a (12-4) core
potential and hybrid mobilities obtained for the He2

+ ions initially
excited at ZPE with QCF.

around approximately 0.3 eV. These differences (up to 20%)
lead to lower inverse method mobilities at low E/N, within
the error bars of experimental data, as compared to those
obtained with the hybrid method (see Fig. 16). However, from
E/N = 60 Td, mobilities obtained from both methods are very
similar and within their respective error bars ( ± 2%). The
inverse method, which uses spherical potential to describe the
atom-molecule interaction He2

+/He gives results (Fig. 16) in a
quite surprisingly good agreement with the hybrid mobilities,
accurately reproducing the maximum.

Moreover, longitudinal and transversal diffusion character-
istic energies, eDL/K and eDT/K , were calculated with the
inverse method up to 500 Td. These ion transport coefficients
are shown in Fig. 17 and compared to the coefficients obtained
with the hybrid method. A good agreement was obtained for
the longitudinal and the transversal characteristic energies
obtained using both methods within respectively a mean

FIG. 17. (Color online) Longitudinal eDL/K and transversal
eDT/K diffusion characteristic energies for He2

+ in He obtained
with a (12-4) core potential and with a hybrid method for particles
initially excited at ZPE. Data were plotted with a maximal relative
statistical error of 12% for the hybrid method and 4% for the inverse
method.

relative error of 5% and 2.2% and a maximum relative error
of 25.35% and 19.15% at 150 Td.

D. Discussions

The quantum method is exact in principle, however as a
full three-dimensional (3D) calculation would be very difficult
and outside the scoop of the present contribution, we have
performed approximations such as limitation to 1D calculation
freezing the He+/He distance and then averaging over angles.
It leads to a clear overestimation of the mobility, and therefore
to some underestimation of the collision cross sections. It
should be emphasized that the equilibrium distance is the most
probable one for the rather cold diatomics present in the cold
plasma, thus this choice is reasonable.

On the other hand, the hybrid method does not suffer
from this limitation and rotations as well as vibrations or
even fragmentations are taken into account, however the
nuclei follow a classical trajectory and their quantum effects
are ignored. It leads to an underestimation of the mobility
and therefore to some overestimation of the collision cross
sections.

Notably, the experimental mobility results are bracketed by
the quantum and the hybrid ones. This encourages us to take
into account the quantum effects for the nuclei by a direct
comparison of the hybrid and quantum calculations done in
similar conditions and to the QCF correction that we have
further applied to the unconstrained hybrid results.

It should also be noticed that the rigid core potential used
with the semiclassical approach should not be considered as
realistic but as an effective potential. Here, the diatomic is
also frozen and moreover its interaction with the atom is
represented by a spherical potential, which reproduces nicely
the experimentally known mobilities and therefore captures the
correct behavior of the collision cross sections. Interestingly,
the extrapolated mobilities obtained by this approach and the
ones obtained by the hybrid + QCF correction approach for
the most realistic ZPE initial distribution, are in reasonably
good agreement. This gives confidence in the present theoret-
ical results.

It is worth emphasizing that the mobility calculations are
very sensitive to the collision cross section data. The rather
small differences between the cross sections obtained from
the 1D quantum and the hybrid approaches lead to noticeable
differences in the mobilities. For the He+ mobilities in helium
gas, we also found an important sensitivity and we could
discriminate between the potentials since the 1D quantum
approach used for the collision was exact in that case [6]. Here
by taking advantage of the combination of various approaches
(1D quantum, hybrid, and semiclassical), we could derive
grounded cross sections and reliable extrapolated mobilities.

IV. CONCLUSIONS

Momentum transfer collision cross sections were calculated
using quantum, semiclassical, and hybrid methods. By using
these collision cross sections, ion mobility data were deter-
mined from Monte Carlo simulation with a relative statistical
error of 2% in comparison to the calculations directly based
on differential cross sections. Quantum and semiclassical
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calculations of collision cross sections performed in the
framework of the IOS approximation, i.e., for the diatomic
helium ion frozen at the equilibrium distance req = 2.1
a.u., produced similar mobility results with a minimum
relative deviation from experimental results of 18%. Hybrid
calculations performed for the diatomic helium ions (initially
frozen at the equilibrium distance and then flexible along the
collision trajectory) showed a constant relative deviation from
the experimental data of nearly 13%. A quantum correction
factor, determined in order to correct hybrid collision cross
sections, was applied to collision cross sections for the
diatomic initially excited at ZPE level in order to include
nuclear delocalization effects in the initial state. A better
agreement between calculated and measured mobility has been
found in this case with a relative error from experimental
data between 4.7% and 6%. Finally, an inverse method
based on a (12-4) core spherical potential model has been
used to fit experimental mobility data at low E/N and to
extrapolate the mobility calculations at higher fields. A good
agreement (within error bars) was found between mobilities

obtained from this inverse method and from the hybrid method
reproducing accurately the maximum. Furthermore, a good
agreement was also obtained for longitudinal and transversal
coefficients calculated from both methods with a respective
mean relative error of 5% and 2.2%.
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