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Polarization effect on the relativistic nonlinear dynamics of an intense laser beam propagating
in a hot magnetoactive plasma
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Nonlinear dynamics of an intense circularly polarized laser beam interacting with a hot magnetized plasma
is investigated. Using a relativistic fluid model, a modified nonlinear Schrödinger equation is derived based on
a quasineutral approximation, which is valid for hot plasma. Using a three-dimensional model, spatial-temporal
development of the laser pulse is investigated. The occurrence of some nonlinear phenomena such as self-focusing,
self-modulation, light trapping, and filamentation of the laser pulse is discussed. Also the effect of polarization
and external magnetic field on the nonlinear evolution of these phenomena is studied.
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I. INTRODUCTION

The nonlinear propagation of intense laser pulses in plasma
is one of the important recent areas of research with many
applications including charged particle acceleration in the
plasma wakefield [1–3], laser fusion [4–6], higher harmonics
generation [7–11], magnetic field generation [12], x-ray lasers
[13–15], etc. When an intense laser pulse propagates through
plasma, it can cause several instabilities, by which it may be
scattered or absorbed. However, modulation, filamentation,
and self-focusing are the well-known phenomena which can
amplify the intensity of the laser beam passing through a
plasma. Self-focusing is a nonlinear optical phenomenon that
appears when the refractive index of the medium exposed
to the intense electromagnetic radiation changes [16–18].
When the refractive index increases with the electric field
intensity, it can act as a positive focusing lens for the
electromagnetic wave characterized by an initial transverse
intensity profile, as in a laser beam. This phenomenon often
occurs when an intense electromagnetic radiation generated
by a femtosecond laser propagates through many solids,
liquids, and gases. Based on the structure of the medium
and the laser intensity, several mechanisms may produce
variations in the refractive index which leads to self-focusing.
Recently, the development of laser technology has made it
possible to observe self-focusing in interactions of intense
laser pulses with plasmas [19–22]. The filamentational and
modulational instabilities [23–26] are wave-wave interactions,
in which two electromagnetic perturbations are added to the
original laser pulse. The wave vectors and frequencies of these
electromagnetic perturbations are close to the wave vector
and frequency of the laser. When the modulation wave vector
is perpendicular to the laser wave vector, the light intensity
becomes modulated across the laser beam and the term
filamentation instability is used. The filamentation instability
causes perturbations in the intensity profile of an incident
laser beam to grow in amplitude, resulting in the breakup
of the beam into many intense filaments. As a matter of fact,
self-focusing is a process in which the whole beam is focused
and, in the filamentation, the incident laser beam breaks
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up into numerous small channels, which themselves will be
focused.

Another effect which can occur in a dispersive medium
is the excitation of soliton waves. In 1966, this phenomenon
had been predicted for ion-acoustic waves in a plasma [27].
A soliton is a nonlinear wave which is localized in space
and has a steady state form. As a nonlinear wave, its group
velocity is proportional to the wave amplitude. Because of the
balance of nonlinear and dispersive effects in the medium,
the initial shape of the wave can be maintained during
the propagation. Some familiar nonlinear equations, such as
Kortewegde Vries, nonlinear Schrödinger, and sine-Gordon
equations, have soliton form solutions.

Studying the propagation of electromagnetic waves
in a magnetized plasma is interesting fundamentally and
practically. In a number of physical situations, there is a
strong external magnetic field in the plasma. For example,
in the magnetosphere of pulsars, the magnetic field strength
can be as large as 1011 to 1013G [28]. Furthermore, in some
physical experiments, such as controlled nuclear fusion, the
application of a strong external magnetic field is necessary
to confine the plasma. Also when an intense laser pulse
interacts with a plasma, a strong magnetic field up to 460 MG
can be generated via inverse Faraday effect [29,30]. In the
quasineutral limit, the nonlinear dynamics of laser pulses
propagating in a hot unmagnetized pair plasma has been
studied by Shukla et al. [31]. Recently, a similar problem for
magnetized pair plasma has been studied by Sepehri Javan
and Adli [32]. In the present work, we take into account some
of the abovementioned nonlinear processes and analyze the
relativistic nonlinear evolution of a circularly polarized laser
beam propagating along the external magnetic field in a hot
magnetized plasma. We pay special attention to the effect
of polarization on the nonlinear evolution of the laser pulse.
Already, the effect of polarization on the nonlinear dynamics
of some phenomena such as self-focusing, modulation, and
backward Raman instabilities, etc., has been studied [33–35].
The results are applicable to the laser-plasma interactions in
experiments. The organization of this paper is as follows. In
Sec. II, the basic assumptions are presented and a nonlinear
wave equation is derived. A numerical three-dimensional
simulation for the nonlinear evolution of a laser pulse is
obtained in Sec. III. Concluding remarks are made in Sec. IV.
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FIG. 1. (Color online) The dimensionless laser amplitude (a) in log10 scale as a function of ξ⊥ and ζ coordinates at different dimensionless
times for β = 90 and α = 0.

FIG. 2. (Color online) The normalized electron density in log10 scale as a function of ξ⊥ and ζ coordinates at different dimensionless times
for β = 90 and α = 0.
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FIG. 3. (Color online) The dimensionless laser amplitude (a) in log10 scale for a left-hand circularly polarized laser as a function of ξ⊥ and
ζ coordinates at different dimensionless times for β = 90 and α = 0.4.

II. DERIVING NONLINEAR WAVE EQUATION

We consider the propagation of circularly polarized electro-
magnetic waves in hot magnetized plasma. Also, we suggest
that the external magnetic field is along the z axis: B0 = B0êz.
For describing nonlinear dynamics of electromagnetic wave
interaction with plasma, we define electric and magnetic fields
of electromagnetic waves E and B through the vector and
scalar potentials A and ϕ as

E = −1

c

∂A
∂t

− ∇ϕ, B = ∇ × A, (1)

where c is the speed of light.
In the Coulomb gauge (viz., ∇ · A = 0), using Eqs. (1) in

the Maxwell equations, we can write the following equation
for large amplitude electromagnetic waves in plasma

1

c2

∂2A
∂t2

− ∇2A = 4π

c
J, (2)

where, J = −neeve is the current density of the electrons of
the plasma, ne is the density of electrons, ve is the electron
velocity, and e is the magnitude of the electron charge.

Now, we write the relativistic fluid momentum equation for
the electrons:
∂pe

∂t
+ (ve · ∇)pe = −e

[
E + 1

c
ve × (B + B0)

]
− 1

ne

∇	, (3)

where pe is the momentum of the electrons and 	 is the
pressure of the electrons. Substituting Eqs. (1) into Eq. (3)
leads to the following equation:

∂pe

∂t
+ 1

γem0e

(pe · ∇)pe

= −e

c

∂A

∂t
+ e∇ϕ − e

γem0ec
pe × ∇ × A − ωc

γe

pe × êz

−kBTe∇ ln ne, (4)

where m0 is the electron rest mass, kB is the Boltzmann con-

stant, Te is the temperature of the electrons, γe =
√

1 + p2
e

m2
0ec

2

is the relativistic Lorentz factor of the electrons, and ωc is the
electron cyclotron frequency.

We consider the vector potential of the circularly polarized
wave propagating along the external magnetic field as the
following:

A = 1
2 Ã(êx + iσ êx) exp(−iω0t + ik0z) + c.c., (5)

where ω0 and k0 are the frequency and the wave number,
respectively, σ = +1 and −1 denotes the right- and left-hand
circularly polarized wave, respectively, and also Ã(z,t) is the
slowly varying amplitude that satisfies the following condition:∣∣∣∣ 1

ω0

∂Ã

∂t

∣∣∣∣ � |Ã|. (6)
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FIG. 4. (Color online) The normalized electron density in log10 scale for a left-hand circularly polarized laser as a function of ξ⊥ and ζ

coordinates at different dimensionless times for β = 90 and α = 0.4.

By inserting Eq. (5) into Eq. (4) we find that Eq. (4) is satisfied
by [36,37]

p̄e = Ā
1 − σα

γe

(7)

together with the low-frequency electron momentum balance
equation [

∇( − ψp) − ∇ ln

(
ne

n0e

)]
.êz = 0, (8)

where the exact relativistic ponderomotive potential due to
the circularly polarized electromagnetic wave in a magnetized
plasma is given by

ψp = βe

(
γe + σα

2γ 2
e

)
, (9)

p̄e = pe

m0ec
is the normalized electron momentum, Ā = e

m0ec2 A
is the normalized vector potential,  = eϕ

kBT
is the normalized

scalar potential, α = ωc

ω0
, βe = c2

v2
T e

, and vT e = ( kBTe

m0e
)1/2 is the

thermal velocity. Integrating Eq. (8), we can write

ne = n0e exp

{
 − βe

[
γe − 1 − σα|p̄e|2

2γ 2
e

]}
, (10)

where we assume that the plasma is unperturbed at infinity
and, accordingly, we have the boundary conditions ne = n0e,
 → 0, and p̄e → 0 at |z| → ∞.

We suppose that the ion slow motion is nonrelativistic.
When the phase velocity of the ion fluctuations is much smaller

than the thermal velocity, the quasistatic ion number density
follows from a balance of the ion thermal pressure and the slow
field. Since the quasistatic interaction arises on a very slow
time scale (typically larger than the ion plasma period ω−1

pi =
( 4πn0i e

2

m0i
)−

1
2 , where n0i and m0i are the unperturbed density of

ions and the rest mass of ions, respectively), one may assume
an isothermal equation of state for ions and obtain the ion
number density expression [36]

ni = n0i exp(−δ), (11)

where δ = Te

Ti
is the ratio of the electron temperature to the ion

temperature.
In the quasineutral limit, when ne = ni (and also n0e =

n0i = n0) Eqs. (10) and (11) yield to the following result:

ne = ni = n0 exp

[
−κ

(
γe − 1 − σ

α

2

|p̄e|2
γ 2

e

)]
, (12)

where κ = βe

1+δ−1 . In physical units, from Eq. (7) for the
velocity of the electrons we obtain

ve = e

m0ec

A
γe − σα

, (13)

Also, for the electron Lorentz factor we can approximately
write

γe ≈
√

1 + |Ā|2
(1 − σα)2

, (14)
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FIG. 5. (Color online) The dimensionless laser amplitude (a) in log10 scale for a right-hand circularly polarized laser as a function of ξ⊥
and ζ coordinates at different dimensionless times for β = 90 and α = 0.4.

Now, taking Eqs. (12) and (13) into consideration, we can
derive the nonlinear current density as the following:

−4π

c
J = ω2

p

c2

A
(γe − σα)

exp

[
−κ

(
γe − 1 − σα

2

|p̄e|2
γ 2

e

)]
,

(15)

where ωp =
√

4πn0e2

m0e
is the electron Langmuir frequency. For

weakly relativistic laser intensity, when |Ā|2,|p̄e|2 � 1 and
γe ≈ 1 + 1

2 |p̄e|2, we can simplify the current density as the
following:

−4π

c
J ≈ ω2

p

c2
AP exp

(
−κ

2

|Ā|2
(1 − σα)

)
, (16)

where

P = 1

(1 − σα)

(
1 − |Ā|2

2(1 − σα)3

)
. (17)

Substituting the nonlinear current density from Eq. (16) and
the vector potential in the form of Eq. (5) into Eq. (2) leads to
the following equation for the electromagnetic wave envelope:

∂2Ã

∂t2
− c2 ∂2Ã

∂z2
− 2iω0

∂Ã

∂t
− 2ic2k0

∂Ã

∂z

+
[
−ω2

0 + k2
0c

2 + ω2
pP exp

(
−κ

2

|Ā|2
(1 − σα)

)]
Ã = 0.

(18)

In the last term of Eq. (18), the coefficient of Ã is the nonlinear
dispersion relation. If we neglect the interaction between the
plasma and the electromagnetic wave, i.e., when Ã is constant,
we can derive a nonlinear dispersion relation of hot magnetized
plasma as follows:

k2
0c

2 − ω2
0 + ω2

p

(1 − σα)

(
1 − |Ā|2

2(1 − σα)3

)

× exp

(
−κ

2

|Ā|2
(1 − σα)

)
. (19)

In the linear limit Eq. (19) reduces to the well-known linear
dispersion relation for right- and left-hand circularly polarized
electromagnetic waves in magnetized plasma [38]:

k0 = ω0

c

(
1 − ω2

p

ω0(ω0 − σωc)

) 1
2

. (20)

We assume that ω0 and k0 satisfy the linear dispersion of
Eq. (20). By applying the condition of slowly varying
amplitude to Eq. (18) we obtain the following equation:

i

(
∂Ã

∂t
+ νg

∂Ã

∂z

)
+ c2

2ω0

∂2Ã

∂z2
+ ω2

p

ω0
DNLÃ = 0, (21)
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FIG. 6. (Color online) The normalized electron density in log10-scale for a right-hand circularly polarized laser as a function of ξ⊥ and ζ

coordinates at different dimensionless times for β = 90 and α = 0.4.

where νg = k0c
2

ω0
is the group velocity and

DNL = 1

2(1 − σα)

[
1 −

(
1 − |Ā|2

2(1 − σα)3

)

× exp

(
−κ

2

|Ā|2
(1 − σα)

)]
. (22)

By introducing the following dimensionless variables

τ = ω2
p

ω0
t, Ug = ω0

ωp

νg

c
, ξ = ωp

c
z − Ugτ, a = e

m0ec2
Ã,

(23)

we can write Eq. (21) in the form

i
∂a

∂t
+ 1

2

∂2a

∂ξ 2
+ DNLa = 0. (24)

III. NONLINEAR EVOLUTION OF LASER PULSE

In order to investigate the spatial-temporal evolution of an
intense laser beam in a plasma, we have numerically solved
the modified nonlinear Schrödinger equation, Eq. (24), for
the amplitude of the dimensionless vector potential and have
found the electron (ion) density given by

ne = ni = n0 exp

(
−κ

2

|Ā|2
(1 − σα)

)
. (25)

We consider the axial symmetry around the direction of the
external magnetic field. The initial condition for a modulated
laser pulse is considered to be

a|τ=0 = 0.1

[
1 + 0.02 sin

(
2πζ

Lζ

)
+ 0.02 cos

(
4πζ

Lζ

)

+ 0.02 cos

(
6πζ

Lζ

)]
exp

(
−ξ 2

⊥
32

)
, (26)

where Lζ = 16π is the simulation box dimensionless length
and ξ⊥ is the dimensionless radial space coordinate. For all
cases we set β = 90 (or Te = Ti = 5.68 keV).

Figures 1 and 2 demonstrate the spatial-temporal evolution
of the normalized laser pulse amplitude (a) and also the
normalized electron density (ne/n0) for unmagnetized plasma.
The first panels of Figs. 1 and 2 indicate the initial distribution
of the amplitude according to Eq. (26)and the corresponding
initial electron density, respectively. At the earlier stages
(τ = 3–12), the whole of the laser pulse concentrates radially
and the pulse self-focusing in the radial direction can be
seen. As the pulse focuses, the electrons are being pushed
out radially because of the ponderomotive force. Localization
of the pulse amplitude along the propagation direction due to
the modulation instability and its self-focusing in the radial
direction yield the ball-shaped structures or filaments. In the
panels corresponding to τ = 18–60 of these figures one can
see the formation of electromagnetic filaments. Consequently,
electron holes are created where the wave envelope is trapped.
At the center of each filament, the amplitude of the laser

043102-6



POLARIZATION EFFECT ON THE RELATIVISTIC . . . PHYSICAL REVIEW E 88, 043102 (2013)

FIG. 7. Variation of laser beam amplitude versus time at ζ = 0 and three different ξ⊥: (a) for unmagnetized plasma, (b) for magnetized
plasma with α = 0.4 and a left-hand circularly polarized wave, and (c) for magnetized plasma with α = 0.4 and a right-hand circularly polarized
wave.

temporally grows and reach a maximum; after this the
amplitude decreases. Again the pulse focuses radially and
azimuthally and more filaments are created. Such a scenario
is repeated for all the forthcoming times and the structure of
the laser pulse becomes more irregular and more complicated
after each iteration.

In order to highlight the effect of the magnetic field
on the nonlinear dynamics of the laser, in Figs. 3–6 we
have considered the magnetized cases for both right- and
left-hand polarizations for α = 0.4. We can see that the growth
rate of modulation and filamentation instabilities and also
the quality of self-focusing increase with the application of
an external magnetic field on the right-hand polarization.
Inversely, for the left-hand polarization, the growth rate of
instabilities and the temporal rate of self-focusing evolution
decrease by using a magnetic field. Therefore, the application
of an external magnetic field improves the nonlinearity of
plasma for right-hand polarization and reduces it for left-hand
polarization [33,34]. Physically, the right-hand wave drives

electrons in the direction of their cyclotron motion. In this
polarization, the increase in magnetic field causes the increase
in the transverse velocity of electrons and it leads to the
increase in the nonlinear current density or the nonlinearity
of plasma. The rotation sense of the left-hand polarization is
opposite to the electrons’ cyclotron motion and the velocity
of the electrons (and or consequently, the nonlinearity of the
plasma medium) decreases with an increase in the external
magnetic field. Furthermore, the concentration of radiation
energy around the symetry axis is more noticeable for the
right-hand polarization. As is clear from the last panels
of Figs. 5 and 6, the structures of the laser intensity and
the electron density distrbution become very complicated
in comparision with the unmagnetized plasma. Each of the
previous localized ball-like distributions of laser amplitude
divides into numerous spindlelike substructures and the same
happens for the corresponding electron holes.

To clarify the role of magnetization of plasma in the
nonlinear dynamics of laser, in Figs. 7 and 8 we have plotted
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FIG. 8. Variation of laser beam amplitude versus time at ζ = 15.1 and three different ξ⊥: (a) for unmagnetized plasma, (b) for magnetized
plasma with α = 0.4 and a left-hand circularly polarized wave, and (c) for magnetized plasma with α = 0.4 and a right-hand circularly polarized
wave.

the variation of the laser amplitude with time at some fixed
points of space. Figure 7 represents the temporal variation
of amplitude at three different radial coordinates ξ⊥ at the
origin ζ = 0 for unmagnetized and magnetized cases. It is
clear that exerting an external magnetic field accelerates
nonlinear processes of self-focusing and modulation of the
laser for the right-hand polarization and decelerates it for the
left-hand polarization. Also the applied magnetic field causes
the pulse to oscillate more stochastically with respect to time
for the right-hand polarization. For the left-hand polarization,
temporal oscillation of the laser amplitude is around the initial
amplitude of a0 = 0.1. Figure 8 demonstrates the variation
of the laser amplitude versus time for the points near to
the boundary of the simulation box at ζ = 15.1 and three
different ξ⊥ for the magnetized and unmagnetized plasma
cases. For all cases, the appearance of self-focusing and
modulation processes is evident in the first stage. However,
for the magnetized plasma and the right-hand polarization the
temporal growth rate of these phenomena is greater than the
other cases. After this stage when the filamentation instability

starts, temporal oscillations of the amplitude in space for the
magnetized plasma and the right-hand polarization become
more noticeable.

IV. CONCLUSIONS

In this work, we have investigated the relativistic nonlinear
dynamics of a circularly polarized laser pulse propagating
along the external magnetic field in a plasma. We obtained a
nonlinear modified Schrödinger equation, in a quasineutral ap-
proximation, which is valid for high-temperature plasmas. For
a three-dimensional model, we have simulated the nonlinear
dynamics of the laser pulse propagating in magnetized plasma.
Our simulations showed that the magnetization of plasma
accelerates the temporal evolution of nonlinear processes such
as self-focusing, modulational, and filamentational instabili-
ties for the right-hand polarization and decelerates it for the
left-hand polarization. Furthermore, in a magnetized plasma
and right-hand polarization, temporal and spatial oscillations
of the laser amplitude are more irregular and stochastic.
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