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Generic path for droplet relaxation in microfluidic channels
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In two-phase microfluidics, droplets often undergo deformations that drive them away from their circular
equilibrium shape. Herein we concentrate on the relaxation of symmetrical deformations to a circle driven by
surface tension effects, which are predominant at the micrometer scales. Working in a Hele-Shaw cell, we report
a generic pathway for these types of relaxations. We simulate numerically the interface shape evolution and
investigate it using linear stability analysis. Finally, we characterize this universal aspect of relaxation using a
purely geometrical model that is tested in experiments.
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I. INTRODUCTION

The strong interest in droplet-based microfluidics observed
in recent years [1,2] is mostly underpinned by the promise
of control offered when combining low Reynolds numbers, a
tailorable geometry for channels, the predominance of surface
tension effects, and the possibility to actuate them with external
tweezers such as lasers. More fundamentally, this blooming
field of science and industry relies on the capacity to form
droplets of a fluid 1 and drive them at will using another immis-
cible fluid 2. An inherent consequence of such a methodology
is that the droplet is often taken away from its equilibrium
shape either when formed while breaking up [3]—from a jet
or a bigger droplet—or instead when coalescing [4]. Similarly,
deformations also arise when the droplet is trapped [5] or flows
in a diverging (or converging) channel [6]. Such deformations
have a limited lifetime. The predominance of surface tension
effects at these scales eventually leads the deformed droplet to
relax towards a more favorable geometry: a sphere or a circular
pancake droplet depending on the channel confinement. Such
relaxations have practical applications. In fact, the time scale
of relaxation is directly related to the interfacial rheology
that thereby may be measured [6]. Similarly, in the case of
coalescence the resulting flows within the droplet and the bulk
are of interest for applications that include chemical and bio-
chemical reactions [7] since they rely on the mixing of different
species. Thus droplet deformations are ubiquitous in two-
phase microfluidics and are of practical interest. In addition,
we will demonstrate that they have fundamental implications.
Indeed, the confinement induced by the microchannel—when
the droplet typical radius R outruns the channel height
h—strongly impacts the flow [8] that will be seen to differ
drastically from the thorough investigations on ellipsoidal
drops relaxation in three-dimensional (3D) bulk flows [9,10].

II. RELAXATION OF AN ELLIPSE

Herein we report the study of an idealized, yet represen-
tative, case of relaxation: An initially flattened cylindrical
droplet of fluid 1 with an elliptical cross section of area A
is placed in a Hele-Shaw cell at t = t0 where the surrounding
fluid 2 is at rest [Fig. 1(a)]. The two fluids, of viscosity μ1 and
μ2, are immiscible and subject to surface tension (denoted by
γ ) that drives the relaxation of the droplet at a typical speed ṽ

obtained when balancing surface tension effects and viscous
dissipation such that ṽ(μ1 + μ2) = γ . Preferring μ1 + μ2 to

μ1 or μ2 is quite arbitrary at this point and will be discussed
later on. The investigation we propose is twofold. First, a
numerical simulation for this ellipse is performed using an
algorithm for dynamical problems in microfluidics [11]. Two
questions that naturally arise when considering this problem
are what the geometry of the relaxing droplet is and whether
the droplet remains elliptic. Second, we tackle the relaxation
analytically with a linear stability analysis that helps build
a predictive reduced model of the dynamics as well as a
geometric theory for droplets relaxation.

A. Nonmonotonic relaxation

At low Reynolds numbers the 3D Stokes equations prevail
and can advantageously be averaged along the cell thickness
h assuming h � R, where R = √

A/π is the characteristic
length of the problem (A is the area of the droplet). The
resulting equations, called the Brinkman equations [12], are
written

ηi(�uj − k2uj ) − ∇pj = 0, (1)

∇ · uj = 0, (2)

where uj = uj er + vj eθ and pj are, respectively, the fluid
j dimensionless speed in the xy plane (expressed in polar
coordinates) and dimensionless pressure field using ṽ and
p̃ = γ /R as gauges. The parameters of this equation are ηj =
μj/(μ1 + μ2) and k = √

12R/h. Note that the differential
operators and the variables are implicitly restricted to the
cell plane and that we work with dimensionless variables.
These equations go along with five scalar boundary conditions
expressing (i) the impermeability of the interface, the conti-
nuity of both fluid (ii) normal and (iii) tangential speeds at
the interface, (iv) the tangential stress continuity, and (v) the
normal stress discontinuity, which can be written [13]

n · [[σ ]] · n = γ

(
π

4
κ + 2

h

)
, (3)

where κ denotes the in-plane curvature of the interface, σ is
the Cauchy stress tensor, n is the normal to the interface, and
[[·]] denotes a discontinuity.

Taking advantage of the predominance of interfaces in
this problem, we use a boundary element method (BEM)
[11] to solve this set of equations. The droplet interface ∂	

is first discretized into the vertices xi . The classical BEM
methodology [14] is followed with the exception of the choice
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of the test velocity w and the test stress τ that are relevant
to the Brinkman equation. In the present case these Green’s
functions solve

∇ · τ − k2w = δ(xi )ej , ∇ · w = 0, (4)

where δ(xi ) denotes the Dirac distribution centered on a
mesh vertex xi lying on ∂	 and ej may point in the x or
y direction. At each time step these functions help building a
linear algebraic system linking the vertex velocities vi(t) to the
interfacial stress jump given by (3). Additionally, the interface
motion is ensured by an implicit time marching algorithm
solving ẋi = vi , where the overdot denotes the time derivative.

Note that the surface tension γ actually sets the time scale
t̃ = R(μ1 + μ2)/γ of this evolution, but does not affect the
successive shapes of the interface. They solely depend on
the two parameters: η1 and k (or equivalently η2 = 1 − η1

and k). Given the generalized Laplace law for the normal
stress jump (3) at the interface, we anticipate that the planar
geometry of the interface parametrized by its arclength r(s)
and the interface curvature |r ,ss | = κ are of interest in this
study. In particular, we define the south and east curvatures
denoted κs = κ(0) and κe = κ(P/4), respectively, where P is
the flattened drop perimeter [Fig. 1(a)].

Without loss of generality, we consider the relaxation of
elliptic droplets of areaA = π (i.e., R = 1 and all variables are
dimensionless) that have a different initial deformation Df (t =
0), where Df = (L − W )/W denotes the deformation coeffi-
cient and L and W are the drop length and width, respectively
[see Fig. 1(a)]. As a first step both viscosities are assumed
equal (η1 = 1/2) and the dimensionless height of the channel
is chosen to be h = 1

4 , a typical value for microfluidic systems
yielding k = 8

√
3 � 13.86, a sufficiently large value for the

depth-averaged model to be accurate [12]. Shown in Fig. 1
is the relaxation diagram of three elliptic droplets obtained
with our BEM.1 As for perimeters [Fig. 1(d)], they all mono-
tonically relax towards the value of 2π that corresponds to the
perimeter of a circle of curvature κ = 1 minimizingP , and thus
the surface energy, for a given area A. Here A may be inter-
preted as the droplet volume in our depth-averaged formalism.
Unlike P , some other variable evolutions are nonmonotonic
and are of particular interest for the rest of this article.

In the following, the droplet’s path of relaxation is described
in terms of curvature. Ellipses verify the relation κs = 1/κe.
Therefore, they fall on the curve 1/κs + κs in the parameter
space (κe + κs,κs) and thus the t = t0 extremities of the three
relaxation trajectories are found on that very curve. One could
expect these ellipses to relax while remaining elliptic [15],
i.e., to follow the dotted line in Fig. 1(b). On the contrary, the
heel-shaped relaxation curves as well as the successive shapes
of the droplets reported in Fig. 1 strongly suggest a different
and nonmonotonic scenario. This scenario is depicted in the
case of ellipse a verifying Df (0) = 8. Shown in Fig. 1(c) is
the superimposition of the time t0 and the time t1, where one

1In a typical run, such as the one for Df (0) = 3, 347 points are used
to discretize the interface so that the discretization is ds � 0.01 = dt .
The run lasts 4 min 49.4 sec on a 2.6-GHz processor with 8 Go
of RAM.
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FIG. 1. (Color online) (a) Idealized case study. An elliptical
droplet of typical size R and initial deformation Df = L−W

W
is placed

in a Hele-Shaw cell of height h � R. (b) Relaxation pathways
in the plane (κn + κe,κn) corresponding to the ellipses of initial
deformations Df = 8, 3, and 5/4 (curves a, b, and c, respectively).
(c) Time evolution of the drop interface for Df = 8 (solid lines). At
t = ti the dotted line recalls the drop at t = ti−1. (d) Perimeter as a
function of time in each case.

may observe that the most curved parts of the ellipse (east
and west) initiate their relaxation while the least curved parts
(south and north) remain motionless. As a consequence, κe

decreases while κs remains constant and the relaxation curve
decreases vertically. The inflections of the interface induced
by the east and west parts of the respective relaxations then
reach the north and south poles and cause the curvature there to
decrease and possibly change sign (at t = t2 for ellipse a). This
is responsible for the heel-like shape of these relaxation curves.
Of particular interest is the third and last part of relaxation
in which the droplets then enter. Remarkably, all relaxation
curves eventually collapse on a master curve defined by

κe + κs = 2 (5)

(this event occurs at t = t� and is marked by a star in Fig. 1 for
ellipse a). It is crucial to note that the value 2 is reached before
the relaxation is complete (that is, when Df = 0). Therefore,
from t� onward both curvatures trade for each other; their
evolutions balance each other while their sum remains constant
and equal to 2. Everything happens as if the curvature was
flowing from areas of excess (east and west) to deprived areas
(north and south). A quantitative analysis of such a relaxation
is reported next and is generalized to different aspect ratios k

as well as different viscosity ratios η1.

B. Quantitative analysis of relaxation

Shown in Fig. 2(a) is the time evolution of the deformation
Df (t) for different aspect ratios 4 � R/h � 10 and η1 = 1/2
in the case of ellipse c [Df (0) = 5/4; see Fig. 1]. After the
earlier described initial stage of relaxation the deformations
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FIG. 2. (a) Deformation coefficient Df = (L − W )/W as a
function of the time t for several values of k = √

12 R

h
(4

√
12 �

k � 10
√

12) and η1 = 1/2. (b) The same data plotted as a function of
t̄ shows a collapse. The inset shows that a similar collapse is possible
when varying η1 while k is fixed (0 � η1 � 10/11).

appear to be exponentially decreasing. Note that the overall
time of relaxation is an increasing function of the ratio R/h

(and thus k) as explained next.
The relaxation is driven by surface tension effects that

induce a pressure field scaling as γ ( 2
h

+ π
4R

) [13], where
1
R

is the typical in-plane curvature of the droplet. This
pressure term is dominated by the factor 2

h
as we consider a

confined environment (h � R). However, this term is fixed
by the channel geometry. Consequently, only the in-plane
curvature is meant to evolve while the droplet relaxes. A proper
evaluation of the active term of the pressure field imposed by
surface tension is therefore γ /R. This driving mechanism is
counterbalanced by the viscous damping, itself dominated by
terms in the normal direction yielding to μv̄/h2 ∼ 1

R
γ /R,

where v̄ is the yet undermined characteristic velocity and
μ = μ1 + μ2 is a typical viscosity. Note that the extra 1

R
on

the right-hand side denotes the gradient of the pressure field.
One eventually obtains

v̄ = γ

μ

h2

R2
= ṽ

h2

R2
, (6)

where ṽ is the first speed gauge established earlier in the
Introduction that was built on the classical construction of the
capillary number. Equation (6) suggests the rescaling t̄ = t h2

R2

that leads to the collapse of the relaxation plots in Fig. 2(b).
Note that the use of μ = μ1 + μ2 as a viscosity gauge is
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FIG. 3. (Color online) (a) Convergence of κs + κe towards 2 for
η1 = 1/2 and k = 4

√
12 (dash-dotted line). Here t � is the time when

the sum of curvatures has converged with 0.05% error. Note that
t � ∼ 2 is much smaller than the time needed for the droplet to
become almost circular (t̄ ∼ 15) (the dashed curve represents the
deformation). The inset shows the droplet at t �. (b) Generalization
of (a) varying k and showing the collapse obtained with t̄ in lin-log
coordinates. The inset shows that a similar collapse is possible when
varying η1 while k is fixed (0 � η1 � 10/11).

consistent, as shown by the collapse in the inset of Fig. 2(b)
obtained when varying η1.

We now concentrate on the axial curvatures κs and κe

and in particular compare their evolutions to the one of the
deformation Df ( t̄ ). As the ellipse relaxes towards a circle
it is obvious that κs and κe both tend to 1. However, their
sum κs + κe and especially its deviation to the value 2 are
now investigated for R/h = 4, with equally viscous fluids and
Df (0) = 5/4 (Fig. 3). The convergence of κs + κe towards 2 is
ensured (with an error of 0.05%) at a time denoted t�, while the
deformation is still large Df � 0.7 (inset of Fig. 3). For t̄ > t�

the droplet relaxes while the sum of its south and east curvature
is conserved and their respective evolutions balance each other
(κs is increasing and κe decreasing). This result is remarkably
general in the sense that it does not depend on either k or η1,
as shown by the collapses in Fig. 3(b). We now derive a model
to shed light on the earlier reported observations.

III. TWO COMPLEMENTARY MODELS
FOR RELAXATION

A. Linear model

To explain the vertical part of the curvature relaxation
trajectories reported above, that is, to explain why ellipses
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P.-T. BRUN, MATHIAS NAGEL, AND FRANÇOIS GALLAIRE PHYSICAL REVIEW E 88, 043009 (2013)

2 4 6 8 10

1

1

2

2

3

654

20

5

(a)

(b) (d)

(c)

2 4 8 10

- 1.5

- 1.0

- 0.5

0.0

10.02.0 3.0 7.0

1

10

100

1
3

50 100 150 200
0.02

0.05

0.1

0.2

0.5

1.

2.

FIG. 4. (Color online) (a) Shown is τn(n) for increasing values
of k. (b) Superposition of relaxation shapes calculated by the BEM
(black) and the one obtained with the linear stability analysis [gray
(orange)] for k = 4

√
12. (c) Plot of the deformation Df shown for

the BEM (in black) and the linear stability analysis [gray (orange)],
respectively. The dotted line is the result found with one mode only.
(d) Fast Fourier transform of the oscillating part of κ(θ ) corresponding
to the states denoted by 1 and 2, respectively.

do not remain as such while relaxing, we proceed with a
linear analysis. We consider a weak elliptical deformation of a
circle (Df � 1). Over time this ellipse relaxes and is written
r(θ,t) = α0 + ∑

n�1 εαn(t) cos(nθ ) in polar coordinates using
a cosine Fourier decomposition where ε � 1 and the values
of α0 and αn(0) = α0

n for n ∈ N+ are chosen to match the
initial shape of the ellipse. The time evolution is assumed to be
αn(t) = α0

n exp (τnt). The values of τn, which may be complex,
are obtained through a linear stability analysis, which we now
briefly outline. A complex stream function �j is introduced
for each fluid j . In polar coordinates they relate to the speed
uj through the relation uj = 1

r

∂�j

∂θ
er − ∂�j

∂r
eθ and may be

expressed in a generic form [16]

�1(r,θ ) = i
(

an

In(kr)

In(k)
+ bnr

n

)
exp inθ, (7)

�2(r,θ ) = i
(

cn

Kn(kr)

Kn(k)
+ dnr

−n

)
exp inθ, (8)

where In and Kn denote the nth Bessel I and K functions,
respectively,2 and an, bn, cn, and dn are coefficients that are yet
to be determined. The boundary conditions (i)–(v) expressed
earlier (see Sec. II A) may be rewritten using these stream
functions and form a linear problem

M(τn) · V = 0, (9)

where V = (an,bn,cn,dn,α
0
n) and M may be seen as the

impedance of the system. Nontrivial solutions are found
only if det[M(τn)] = 0. Shown in Fig. 4(a) is a plot of the
corresponding values of τn for different values of k in the case
of equally viscous fluids. Note that these values are all negative
real numbers, thus no instability arises. More important is that

2Here In(r) is solution of r2y ′′ + ry ′ − (r2 + n2)y = 0 and Kn(r)
of r2y ′′ + ry ′ − (r2 + n2)y = 0.

the higher the mode, the faster its decrease, as pointed out
by the negative slope of the curves. This will prove to have a
large impact on the dynamics of relaxation as explained later.
Let us first point out that from the exact solution of (9) one
may derive the scaling law τn ∼ − n(n2−1)π

4k2 for large values of k

[see the inset in Fig. 4(a)]. Note that this scaling is independent
of the viscosity ratio and therefore confirms that the choice of
μ1 + μ2 as a viscosity gauge is consistent. It also explains why
the earlier proposed scaling t̄ = th2/R2 provided a collapse in
Figs. 2 and 3 (since τn ∝ h2/R2).

The modes τn obtained earlier are now used to model
the dynamics of relaxation of the ellipse such that r(θ,t) =
α0 + ∑

n�1 α0
n exp(τnt) cos(nθ ). Shown in Fig. 4(c) is the

time evolution of the deformation coefficient Df (t) for this
model as well as the one obtained with our BEM for ellipse
c. Even for such a reasonably large initial deformation the
agreement between the full calculation and the linear model
remains acceptable [Figs. 4(b) and 4(c)]. Note that symmetry is
conserved over time while the ellipse relaxes towards a circle.
Note also that the volume conservation is only granted in the
linear approximation yielding α0 = 1 − O(ε2) for ellipses of
area π . Consequently, the final shape predicted by the model
in Fig. 4(b) has a radius α0 slightly smaller than 1.

Differentiating the previous expression for r(θ,t), one
finds that the linearized curvature Fourier modes scale as
(n2 − 1)α0

n exp τnt . Therefore, the higher a Fourier mode of
the curvature the more it is damped. Shown in Fig. 4(d)
are the fast Fourier transform spectra of the oscillating part
of the curvature κ(θ ) computed at two different times with
our BEM and corresponding to the interfaces denoted by 1
and 2 in Fig. 4(b). As suggested by the analysis, the highest
modes vanish in the time interval between the two shots.
Consequently, only two low-order peaks remain after some
time and this type of spectrum does not coincide with the one
of an ellipse. On the contrary, they correspond to a family of
ovals that we introduce next.

B. The κ2 ovals

A geometrical model for the droplet relaxation shapes is
developed below using the relation (5). The modeled shapes
are coined κ2 ovals after Eq. (5). They additionally follow
some more conventional geometrical constraints, namely, (i)
the periodicity ensuring a closed interface, (ii) the symmetry
along both Cartesian axes, and (iii) the conservation of the
droplet volume A. Building upon the linear analysis results
and (i) we propose the following ansatz for the droplet cur-
vature profile: κ(s) = a − b cos( 4π

P s) − c cos(2 4π
P s), where

P is the drop perimeter, s is the interface arc length, and
the minus signs help anticipate the inequality κs � κe. Note
that four degrees of freedom (a, b, c, and P) are a priori
necessary to satisfy the four stated geometrical constraints.
Applying (5) and (ii) leads to κ(s) = 1

P [2π − bPcos( 4π
P s) +

(P − 2π )cos( 8π
P s)] and leaves two parameters in the model:

the perimeter P and b, which may be interpreted as a
coefficient of deformation. These two parameters are actually
tied together by the remaining constraint (iii), which is
writtenA = 1

2

∫
xy ′ − yx ′ = π in Cartesian coordinates. This

relation explicitly depends on the shape of the drop that
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FIG. 5. (Color online) (a) Plot of the ansatz of the curvature in the
particular case of the κ2 oval shown in (b). (c) Relation between the
two parameters P and b that characterize the κ2 ovals. The light gray
is the unphysical part and the gray (orange) is the κ2 branch compared
to the simulation results (dotted black). (d) Comparison between the
full BEM numerical simulation (black) with the corresponding κ2

ovals in dotted gray (orange) lines.

we integrate with a numerical shooting method solving the
system: (

dθ

ds
,
dx

ds
,
dy

ds

)
= [κ(s), cos θ (s), sin θ (s)], (10)

[θ (0),x(0),y(0)] = (0,0,0), (11)

where the main unknown is the position of the droplet interface
(x,y) reconstructed from θ , which tracks the orientation of the
tangent to its interface. The unknowns b and P (both found in
the expression of κ) are the shooting parameters. The recovered
interface is centered around the origin after integration. A
typical result and the corresponding curvature function are
displayed in Figs. 5(a) and 5(b). This solution is not unique;
there is a 1D family of such ovals that may be represented in the
parameters plane (P,b). The branch for which the perimeter
is an increasing function of the deformation (∂P/∂b > 0) is
shown in Fig. 5(c) [dark gray (orange)]. This curve describes
the so-called κ2 oval family.

These ovals, solely obtained with geometrical considera-
tions, are now compared to the shapes found when solving
the full dynamics of relaxation (the BEM) for t > t�, that is,
when the droplets verify (5). Some of the BEM shapes are
shown in Fig. 5(d) (black) working with the ellipse of initial
deformation Df = 8 (denoted a in Fig. 1). For each BEM
shape, the easternmost position of the interface is used to select
the corresponding κ2 oval among the family obtained earlier
so that no adjustable parameter is used. This κ2 oval is plotted
for comparison in Fig. 5(d) [dashed gray (orange) line] and
the agreement is excellent. Consequently, under a certain level
of deformation (corresponding to a perimeter P� and the time
t�) the droplet continuously explores the κ2 oval family while
relaxing towards the limiting circle [as shown in Fig. 5(c)].
Similar results are obtained when investigating ellipses of
different eccentricities that lead to diverse values of P�. Since
the branch P(b) has a turning point, the existence of an upper
bound for the matching point between the relaxation shapes

and the κ2 ovals is anticipated, yielding P� < Pm, where Pm

is the fold point of the solutions family shown in Fig. 5(c).
We show in the following discussion that these results are not
limited to ellipses, but extend to broader cases.

IV. DISCUSSION

As explained earlier, the occurrence of κ2 ovals is supported
by the fast damping of high-order deformation modes that
keeps the lower ones afloat. Therefore, this type of result
may apply to other symmetrical shapes relaxing to a circle.
To illustrate this generic aspect we explore a different and
ubiquitous type of relaxation: the coalescence of two identical
droplets of area Ai = π/2.

This coalescence is achieved experimentally in poly-
dimethylsiloxane microchannels fabricated using a silicon
wafer that has been etched with soft lithography methods and
then bonded by plasma to a glass slide. Water is used as the
external phase and fluorinated oil (FC40) as a dispersed phase.
Both liquids are injected via syringe pumps (cetoni Nemesys)
into the chip. The microchannel of height h = 25 μm consists
of a cross junction followed by a straight channel of width of
160 μm. Far from the cross junction used to shed droplets the
channel width then increases linearly to reach 600 μm, where
coalescence by separation is performed [4]. A typical sequence
observed with a Zeiss AxioVert A.1 microscope coupled to a
Miro M310 high-speed camera is shown in Fig. 6.

The early times of coalescence are a 3D phenomenon
[4,17,18] that we do not attempt to solve here. Instead, we con-
sider the configuration at t = 0+ shown in Fig. 6 as a starting
point for our simulations. As inferred from the velocity map in
Fig. 6, only the most curved parts of the interface relax initially
(that is, κe). The dimensionless speed of the interface at these
points is about 40 times greater than anywhere else. The droplet
relaxes going through a wealth of shapes such as a peanutlike
shape, racetracks, and ovals, and ends up circular. These shapes
are accurately recovered by our numerical simulations, as seen
in Fig. 6. Remarkably, as soon as the sum of both curvatures

BEM ovals

100 µm

45

24

0

12

36

FIG. 6. (Color online) Two droplets before coalescence (t = 0)
and the initial configuration used in our numerically investigation
(t = 0+); velocity map of the droplet at t = 0+ + δt ; and comparison
with experimental pictures: BEM shapes (dashed white) and κ2 ovals
[dashed gray (orange)] at t = 0.18, 1.57, 7.15, and 13.63 ms.
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verifies (5), the droplet enters a final stage of relaxation where
both curvatures evolve while satisfying the κ2 oval criterion.
A comparison between experimental pictures and the κ2 ovals
is provided as an illustration and shows very good agreement.

Note that the κ2 ovals, found here after coalescence, are
generic. They will appear as soon as an initially symmetrical
form relaxes to a circle. Indeed, their presence is ensured by
a faster damping of higher modes of deformations and this is
always true for relaxing droplets in a confined environment.

V. CONCLUSION

In summary, we have considered the relaxation of sym-
metrically shaped droplets in Hele-Shaw cells and have found
a generic behavior. In contrast with what classically occurs

in 3D bulk flows, the droplet shapes are attracted by a
family of ovals, which verify Eq. (5). These κ2 ovals are
then constructed geometrically and are of valuable help in
predicting the interface shapes and flows in diverse events such
as coalescence. Future work will consist in exploring the P(b)
folding point as well as investigating the optimality of this area-
preserving and perimeter-shortening motion reminiscent of the
Mullins-Sekerka problem [19] and its finite-time singularities
[20].
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